The Courant Institute of Mathematical Sciences: 75 Years of Excellence by M.L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Academic Genealogy of George Em Karniadakis
Nilos Kabasilas Demetrios Kydones Elissaeus Judaeus Manuel Chrysoloras Georgios Plethon Gemistos 1380, 1393 Basilios Bessarion 1436 Mystras Guarino da Verona Johannes Argyropoulos 1408 1444 Università di Padova Vittorino da Feltre Cristoforo Landino Marsilio Ficino 1416 Università di Padova 1462 Università di Firenze Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Theodoros Gazes Angelo Poliziano Università di Mantova 1433 Constantinople / Università di Mantova 1477 Università di Firenze Leo Outers Alessandro Sermoneta Gaetano da Thiene Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Rudolf Agricola Thomas à Kempis Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Pelope Pietro Roccabonella Nicoletto Vernia François Dubois Jean Tagault Girolamo (Hieronymus Aleander) Aleandro Janus Lascaris Matthaeus Adrianus Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Johannes von Gmunden 1504, 1515 Université Catholique de Louvain Università di Padova Università di Padova 1516 Université de Paris 1499, 1508 Università di Padova 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe / Collège de Montaigu 1474 1406 Universität Wien Niccolò Leoniceno Jacobus (Jacques Masson) Latomus Desiderius Erasmus Petrus (Pieter de Corte) Curtius Pietro Pomponazzi Jacobus (Jacques -
Conference Celebrating the 70Th Birthday of Prof. Krzysztof M. Pawa Lowski 11–13 January 2021, Online Conference Via Zoom
kpa70 Conference celebrating the 70th birthday of Prof. Krzysztof M. Pawa lowski 11{13 January 2021, Online conference via Zoom https://kpa70.wmi.amu.edu.pl/ Invited Speakers: • William Browder (Princeton University), • Sylvain Cappell (New York University), • James F. Davis (Indiana University Bloomington), • Bogus law Hajduk (University of Warmia and Mazury), • Jaros law K¸edra(University of Aberdeen), • Mikiya Masuda (Osaka City University), • Masaharu Morimoto (Okayama University), • Robert Oliver (Paris University 13), • Taras Panov (Moscow State University), • J´ozefPrzytycki (George Washington University and University of Gda´nsk), • Toshio Sumi (Kyushu University). Organizers: • Marek Kaluba, • Wojciech Politarczyk, • Bartosz Biadasiewicz, • Lukasz Michalak, • Piotr Mizerka, • Agnieszka Stelmaszyk-Smierzchalska.´ i Monday, January 11 Time Washington Warsaw Tokyo 6:45 { 12:45 { 20:45 { Opening 7:00 13:00 21:00 Mikiya Masuda, 7:00 { 13:00 { 21:00 { Invariants of the cohomology rings of the permutohedral 7:45 13:45 21:45 varieties Taras Panov, 8:00 { 14:00 { 22:00 { Holomorphic foliations and complex moment-angle 8:45 14:45 22:45 manifolds 9:15 { 15:15 { 23:15 { Robert Oliver, 10:00 16:00 00:00 The loop space homology of a small category J´ozefH. Przytycki, 10:15 { 16:15 { 00:15 { Adventures of Knot Theorist: 11:00 17:00 01:00 from Fox 3-colorings to Yang-Baxter homology{ 5 years after Pozna´ntalks Tuesday, January 12 Time Washington Warsaw Tokyo Piotr Mizerka, 6:20 { 12:20 { 20:20 { New results on one and two fixed point actions 6:45 12:45 20:45 on spheres 7:00 { 13:00 { 21:00 { Masaharu Morimoto, 7:45 13:45 21:45 Equivariant Surgery and Dimension Conditions 8:00 { 14:00 { 22:00 { Toshio Sumi, 8:45 14:45 22:45 Smith Problem and Laitinen's Conjecture Sylvain Cappell, 9:15 { 15:15 { 23:15 { Fixed points of G-CW-complex with prescribed 10:00 16:00 00:00 homotopy type 10:15 { 16:15 { 00:15 { James F. -
Www .Ima.Umn.Edu
ce Berkeley National Laboratory) ce Berkeley Who should attend? Industrial engineers and scientists who want to learn about modern techniques in scientific computations Researchers from academic institutions involved in multidisciplinary collaborations Organizer Robert V. Kohn Tutorial Lectures: Weinan E Leslie F. Greengard courtesy and S.Graphics J-D. Yu Sakia (Epson Research Corporation), and J.A. Sethian (Dept. and Lawren UC Berkeley of Mathematics, James A. Sethian www.ima.umn.edu The primary goal of this workshop is to facilitate the use of the best computational techniques in important industrial applications. Key developers of three of the most significant recent or emerging paradigms of computation – fast multipole methods, level set methods, and multiscale computation – will provide tutorial introductions to these classes of methods. Presentations will be particularly geared to scientists using or interested in using these approaches in industry. In addition the workshop will include research reports, poster presentations, and problem posing by industrial researchers, and offer ample time for both formal and informal discussion, related to the use of these new methods of computation. The IMA is an NSF funded Institute Schedule Weinan E received his Ph.D. from the University of California at Los Angeles in 1989. He was visiting MONDAY, MARCH 28 member at the Courant Institute from 1989 to 1991. He joined the IAS in Princeton as a long term mem- All talks are in Lecture Hall EE/CS 3-180 ber in 1992 and went on to take a faculty 8:30 Coffee and Registration position at the Courant Institute at New York Reception Room EE/CS 3-176 University in 1994. -
Prospects in Topology
Annals of Mathematics Studies Number 138 Prospects in Topology PROCEEDINGS OF A CONFERENCE IN HONOR OF WILLIAM BROWDER edited by Frank Quinn PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY 1995 Copyright © 1995 by Princeton University Press ALL RIGHTS RESERVED The Annals of Mathematics Studies are edited by Luis A. Caffarelli, John N. Mather, and Elias M. Stein Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources Printed in the United States of America by Princeton Academic Press 10 987654321 Library of Congress Cataloging-in-Publication Data Prospects in topology : proceedings of a conference in honor of W illiam Browder / Edited by Frank Quinn. p. cm. — (Annals of mathematics studies ; no. 138) Conference held Mar. 1994, at Princeton University. Includes bibliographical references. ISB N 0-691-02729-3 (alk. paper). — ISBN 0-691-02728-5 (pbk. : alk. paper) 1. Topology— Congresses. I. Browder, William. II. Quinn, F. (Frank), 1946- . III. Series. QA611.A1P76 1996 514— dc20 95-25751 The publisher would like to acknowledge the editor of this volume for providing the camera-ready copy from which this book was printed PROSPECTS IN TOPOLOGY F r a n k Q u in n , E d it o r Proceedings of a conference in honor of William Browder Princeton, March 1994 Contents Foreword..........................................................................................................vii Program of the conference ................................................................................ix Mathematical descendants of William Browder...............................................xi A. Adem and R. J. Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-Macaulay........................................................................3 A. -
Classics in Mathematics Richard Courant· Fritz John Introduction To
Classics in Mathematics Richard Courant· Fritz John Introduction to Calculus and Analysis Volume I Springer-V erlag Berlin Heidelberg GmbH Richard Courant • Fritz John Introd uction to Calculus and Analysis Volume I Reprint of the 1989 Edition Springer Originally published in 1965 by Interscience Publishers, a division of John Wiley and Sons, Inc. Reprinted in 1989 by Springer-Verlag New York, Inc. Mathematics Subject Classification (1991): 26-XX, 26-01 Cataloging in Publication Data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Courant, Richard: Introduction to calcu1us and analysis / Richard Courant; Fritz John.- Reprint of the 1989 ed.- Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo: Springer (Classics in mathematics) VoL 1 (1999) ISBN 978-3-540-65058-4 ISBN 978-3-642-58604-0 (eBook) DOI 10.1007/978-3-642-58604-0 Photograph of Richard Courant from: C. Reid, Courant in Gottingen and New York. The Story of an Improbable Mathematician, Springer New York, 1976 Photograph of Fritz John by kind permission of The Courant Institute of Mathematical Sciences, New York ISSN 1431-0821 This work is subject to copyright. All rights are reserved. whether the whole or part of the material is concemed. specifically the rights of trans1ation. reprinting. reuse of illustrations. recitation. broadcasting. reproduction on microfilm or in any other way. and storage in data banks. Duplication of this publication or parts thereof is permitted onlyunder the provisions of the German Copyright Law of September 9.1965. in its current version. and permission for use must always be obtained from Springer-Verlag. Violations are Iiable for prosecution under the German Copyright Law. -
Mathematisches Forschungsinstitut Oberwolfach Emigration Of
Mathematisches Forschungsinstitut Oberwolfach Report No. 51/2011 DOI: 10.4171/OWR/2011/51 Emigration of Mathematicians and Transmission of Mathematics: Historical Lessons and Consequences of the Third Reich Organised by June Barrow-Green, Milton-Keynes Della Fenster, Richmond Joachim Schwermer, Wien Reinhard Siegmund-Schultze, Kristiansand October 30th – November 5th, 2011 Abstract. This conference provided a focused venue to explore the intellec- tual migration of mathematicians and mathematics spurred by the Nazis and still influential today. The week of talks and discussions (both formal and informal) created a rich opportunity for the cross-fertilization of ideas among almost 50 mathematicians, historians of mathematics, general historians, and curators. Mathematics Subject Classification (2000): 01A60. Introduction by the Organisers The talks at this conference tended to fall into the two categories of lists of sources and historical arguments built from collections of sources. This combi- nation yielded an unexpected richness as new archival materials and new angles of investigation of those archival materials came together to forge a deeper un- derstanding of the migration of mathematicians and mathematics during the Nazi era. The idea of measurement, for example, emerged as a critical idea of the confer- ence. The conference called attention to and, in fact, relied on, the seemingly stan- dard approach to measuring emigration and immigration by counting emigrants and/or immigrants and their host or departing countries. Looking further than this numerical approach, however, the conference participants learned the value of measuring emigration/immigration via other less obvious forms of measurement. 2892 Oberwolfach Report 51/2011 Forms completed by individuals on religious beliefs and other personal attributes provided an interesting cartography of Italian society in the 1930s and early 1940s. -
Implications for Understanding the Role of Affect in Mathematical Thinking
Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Rena E. Gelb All Rights Reserved Abstract Mathematicians and music: Implications for understanding the role of affect in mathematical thinking Rena E. Gelb The study examines the role of music in the lives and work of 20th century mathematicians within the framework of understanding the contribution of affect to mathematical thinking. The current study focuses on understanding affect and mathematical identity in the contexts of the personal, familial, communal and artistic domains, with a particular focus on musical communities. The study draws on published and archival documents and uses a multiple case study approach in analyzing six mathematicians. The study applies the constant comparative method to identify common themes across cases. The study finds that the ways the subjects are involved in music is personal, familial, communal and social, connecting them to communities of other mathematicians. The results further show that the subjects connect their involvement in music with their mathematical practices through 1) characterizing the mathematician as an artist and mathematics as an art, in particular the art of music; 2) prioritizing aesthetic criteria in their practices of mathematics; and 3) comparing themselves and other mathematicians to musicians. The results show that there is a close connection between subjects’ mathematical and musical identities. I identify eight affective elements that mathematicians display in their work in mathematics, and propose an organization of these affective elements around a view of mathematics as an art, with a particular focus on the art of music. -
Professor Richard Courant (1888 – 1972)
Professor Richard Courant (1888 – 1972) From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Richard_Courant Field: Mathematics Institutions: University of Göttingen University of Münster University of Cambridge New York University Alma mater: University of Göttingen Doctoral advisor: David Hilbert Doctoral students: William Feller Martin Kruskal Joseph Keller Kurt Friedrichs Hans Lewy Franz Rellich Known for: Courant number Courant minimax principle Courant–Friedrichs–Lewy condition Biography: Courant was born in Lublinitz in the German Empire's Prussian Province of Silesia. During his youth, his parents had to move quite often, to Glatz, Breslau, and in 1905 to Berlin. He stayed in Breslau and entered the university there. As he found the courses not demanding enough, he continued his studies in Zürich and Göttingen. Courant eventually became David Hilbert's assistant in Göttingen and obtained his doctorate there in 1910. He had to fight in World War I, but he was wounded and dismissed from the military service shortly after enlisting. After the war, in 1919, he married Nerina (Nina) Runge, a daughter of the Göttingen professor for Applied Mathematics, Carl Runge. Richard continued his research in Göttingen, with a two-year period as professor in Münster. There he founded the Mathematical Institute, which he headed as director from 1928 until 1933. Courant left Germany in 1933, earlier than many of his colleagues. While he was classified as a Jew by the Nazis, his having served as a front-line soldier exempted him from losing his position for this particular reason at the time; however, his public membership in the social-democratic left was a reason for dismissal to which no such exemption applied.[1] After one year in Cambridge, Courant went to New York City where he became a professor at New York University in 1936. -
A Free-Space Adaptive Fmm-Based Pde Solver in Three Dimensions M.Harper Langston, Leslie Greengardand Denis Zorin
Communications in Applied Mathematics and Computational Science A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN vol. 6 no. 1 2011 mathematical sciences publishers COMM. APP. MATH. AND COMP. SCI. Vol. 6, No. 1, 2011 msp A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN We present a kernel-independent, adaptive fast multipole method (FMM) of arbi- trary order accuracy for solving elliptic PDEs in three dimensions with radiation and periodic boundary conditions. The algorithm requires only the ability to evaluate the Green’s function for the governing equation and a representation of the source distribution (the right-hand side) that can be evaluated at arbitrary points. The performance is accelerated in three ways. First, we construct a piecewise polynomial approximation of the right-hand side and compute far-field expansions in the FMM from the coefficients of this approximation. Second, we precompute tables of quadratures to handle the near-field interactions on adaptive octree data structures, keeping the total storage requirements in check through the exploitation of symmetries. Third, we employ shared-memory parallelization methods and load-balancing techniques to accelerate the major algorithmic loops of the FMM. We present numerical examples for the Laplace, modified Helmholtz and Stokes equations. 1. Introduction Many problems in scientific computing call for the efficient solution to linear partial differential equations with constant coefficients. On regular grids with separable Dirichlet, Neumann or periodic boundary conditions, such equations can be solved using fast, direct methods. -
De Analysi Per Aequationes Numero Terminorum Infinitas 1669 (Published 1711) After 1696, Master of the Mint
Nick Trefethen Oxford Computing Lab Who invented the great numerical algorithms? Slides available at my web site: www.comlab.ox.ac.uk/nick.trefethen A discussion over coffee. Ivory tower or coal face? SOME MAJOR DEVELOPMENTS IN SCIENTIFIC COMPUTING (29 of them) Before 1940 Newton's method least-squares fitting orthogonal linear algebra Gaussian elimination QR algorithm Gauss quadrature Fast Fourier Transform Adams formulae quasi-Newton iterations Runge-Kutta formulae finite differences 1970-2000 preconditioning 1940-1970 spectral methods floating-point arithmetic MATLAB splines multigrid methods Monte Carlo methods IEEE arithmetic simplex algorithm nonsymmetric Krylov iterations conjugate gradients & Lanczos interior point methods Fortran fast multipole methods stiff ODE solvers wavelets finite elements automatic differentiation Before 1940 Newton’s Method for nonlinear eqs. Heron, al-Tusi 12c, Al Kashi 15c, Viète 1600, Briggs 1633… Isaac Newton 1642-1727 Mathematician and physicist Trinity College, Cambridge, 1661-1696 (BA 1665, Fellow 1667, Lucasian Professor of Mathematics 1669) De analysi per aequationes numero terminorum infinitas 1669 (published 1711) After 1696, Master of the Mint Joseph Raphson 1648-1715 Mathematician at Jesus College, Cambridge Analysis Aequationum universalis 1690 Raphson’s formulation was better than Newton’s (“plus simple” - Lagrange 1798) FRS 1691, M.A. 1692 Supporter of Newton in the calculus wars—History of Fluxions, 1715 Thomas Simpson 1710-1761 1740: Essays on Several Curious and Useful Subjects… 1743-1761: -
Topology MATH-GA 2310 and MATH-GA 2320
Topology MATH-GA 2310 and MATH-GA 2320 Sylvain Cappell Transcribed by Patrick Lin Figures transcribed by Ben Kraines Abstract. These notes are from a two-semester introductory sequence in Topology at the graduate level, as offered in the Fall 2013{Spring 2014 school year at the Courant Institute of Mathematical Sciences, a school of New York University. The primary lecturer for the course was Sylvain Cappell. Three lectures were given by Edward Miller during the Fall semester. Course Topics: Point-Set Topology (Metric spaces, Topological spaces). Homotopy (Fundamental Group, Covering Spaces). Manifolds (Smooth Maps, Degree of Maps). Homology (Cellular, Simplicial, Singular, Axiomatic) with Applications, Cohomology. Parts I and II were covered in MATH-GA 2310 Topology I; and Parts III and IV were covered in MATH-GA 2320 Topology II. The notes were transcribed live (with minor modifications) in LATEX by Patrick Lin. Ben Kraines provided the diagrams from his notes for the course. These notes are in a draft state, and thus there are likely many errors and inconsistencies. These are corrected as they are found. Revision: 21 Apr 2016 15:29. Contents Chapter 0. Introduction 1 Part I. Point-Set Topology 5 Chapter 1. Topological Spaces 7 1.1. Sets and Functions 7 1.2. Topological Spaces 8 1.3. Metric Spaces 8 1.4. Constructing Topologies from Existing Ones 9 Chapter 2. Properties of Topological Spaces 13 2.1. Continuity and Compactness 13 2.2. Hausdorff Spaces 15 2.3. Connectedness 15 Part II. The Fundamental Group 17 Chapter 3. Basic Notions of Homotopy 19 3.1. -
Januar 2007 FØRSTE DOKTORGRAD I
INFOMATJanuar 2007 Kjære leser! FØRSTE DOKTORGRAD I INFOMAT ønsker alle et godt nytt år. MATEMATIKKDIDAKTIKK Det ble aldri noe desember- nummer. Redaktørens harddisk VED HiA hadde et fatalt sammenbrudd like før Jul og slike hendelser er altså nok til at enkelte ting stopper opp. Våre utmerkede dataingeniører ved Matematisk institutt i Oslo klarte å redde ut alle dataene, og undertegnede lærte en lekse om back-up. Science Magazine har kåret beviset for Poincaré-formod- ningen til årets vitenskapelige gjennombrudd i 2006. Aldri før har en matematikkbegiven- het blitt denne æren til del. Men Foto: Torstein Øen hyggelig er det og det er et vik- tig signal om at det ikke bare er Den 27. november disputerte indiske Sharada Gade for doktorgraden anvendt vitenskap som er be- i matematikk-didaktikk ved Høgskolen i Agder. Dette er den første tydningsfullt for samfunnet. matematikkdidaktikk-doktoren høgskolen har kreert etter at studiet ble HiA har fått kreert sin første opprettet i 2002. doktor i matematikkdidaktikk og er på full fart mot universi- Dermed er et viktig krav for å ta steget opp i universitetsklassen opp- tetsstatus! Vi gratulerer både fylt. HiA må levere doktorgrader i andre fag enn nordisk og det sørget høgskolen og den nye doktoren Sharada Gade for. Hennes avhandling dreier seg om viktigheten av Sharada Gade. mening, mål og lærerens rolle i matematikkundervisningen. hilsen Arne B. INFOMAT kommer ut med 11 nummer i året og gis ut av Norsk Matematisk Forening. Deadline for neste utgave er alltid den 10. i neste måned. Stoff til INFOMAT sendes til infomat at math.ntnu.no Foreningen har hjemmeside http://www.matematikkforeningen.no/INFOMAT Ansvarlig redaktør er Arne B.