2020-2021 Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

2020-2021 Annual Report Institute for Computational and Experimental Research in Mathematics Annual Report May 1, 2020 – April 30, 2021 Brendan Hassett, Director, PI Mathew Borton, IT Director Ruth Crane, Assistant Director and Chief of Staff Juliet Duyster, Assistant Director Finance and Administration Sigal Gottlieb, Deputy Director Jeffrey Hoffstein, Consulting Associate Director Caroline Klivans, Deputy Director Benoit Pausader, co-PI Jill Pipher, Consulting Director Emerita, co-PI Kavita Ramanan, Associate Director, co-PI Bjorn Sandstede, Associate Director, co-PI Ulrica Wilson, Associate Director for Diversity and Outreach Table of Contents Mission ........................................................................................................................................... 5 Annual Report for 2020-2021 ........................................................................................................ 5 Core Programs and Events ............................................................................................................ 5 Participant Summaries by Program Type ..................................................................................... 7 ICERM Funded Participants ................................................................................................................. 7 ICERM Funded Speakers ...................................................................................................................... 9 All Speakers (ICERM funded and Non-ICERM funded) ................................................................. 10 ICERM Funded Postdocs ..................................................................................................................... 11 All Postdocs (ICERM funded and Non-ICERM funded) ................................................................. 12 ICERM Funded Graduate Students ................................................................................................... 13 All Graduate Students (ICERM funded and Non-ICERM funded) ................................................ 14 Additional Participant Data ................................................................................................................. 15 Semester Program Length of Stay .......................................................................................................................15 Primary Field of Interest .....................................................................................................................................15 Position ................................................................................................................................................................16 Gender .................................................................................................................................................................16 US vs Foreign Based Participants .......................................................................................................................17 Ethnicity ..............................................................................................................................................................17 Impact of the Pandemic on 2020-2021 Programming ............................................................... 18 Semester Programs ...................................................................................................................... 18 Semester Program Process ................................................................................................................... 18 1. Solicitation of Proposals ..................................................................................................................................19 2. Proposal Selection ...........................................................................................................................................19 3. Selection of Long-term Visitors/Research Fellows ........................................................................................20 4. Offers to Research Fellows .............................................................................................................................20 5. Semester Workshops .......................................................................................................................................20 6. Application Process .........................................................................................................................................20 7. Applicant Selection .........................................................................................................................................21 Financial Decisions for Semester Programs ....................................................................................... 21 Opening, Closing, and Related Events ................................................................................................ 21 2020-2021 Semester Programs .................................................................................................... 22 Fall 2020 Semester Program: Advances in Computational Relativity ............................................ 22 Workshop 1: Advances and Challenges in Computational Relativity ................................................................25 Workshop 2: Mathematical and Computational Approaches for Solving the Source- Free Einstein Field Equations .............................................................................................................................................................26 Workshop 3: Mathematical and Computational Approaches for the Einstein Field Equations with Matter Fields ...................................................................................................................................................................28 Workshop 4: Statistical Methods for the Detection, Classification, and Inference of Relativistic Objects ........29 Spring 2021 Semester Program: Combinatorial Algebraic Geometry ............................................ 30 • I enjoyed the gather hours to talk more with participants and explore research ideas. .............................33 • It was great to see all the good work of young people. .............................................................................33 ICERM Annual Report 2020-2021 2 Workshop 1: Introductory Workshop: Combinatorial Algebraic Geometry ......................................................33 Workshop 2: Sage/Oscar Days for Combinatorial Algebraic Geometry ............................................................34 Workshop 3: Geometry and Combinatorics from Root Systems ........................................................................35 Workshop 4: Algebraic Geometry and Polyhedra ..............................................................................................36 Topical Workshops ....................................................................................................................... 37 1. Solicitation of Topical Workshop Proposals ...................................................................................................37 2. Topical Workshop Selection ...........................................................................................................................37 3. Recommendation of Speakers .........................................................................................................................38 4. Invitations to Speakers ....................................................................................................................................38 5. Application Process .........................................................................................................................................38 6. Applicant Selection .........................................................................................................................................38 Financial Decisions for Topical Workshops ....................................................................................... 38 Topical Workshops in 2020-2021 ................................................................................................ 38 Topical Workshop 1: Competitive Equilibrium with Gross Substitutes, with Applications to Problems in Matching, Pricing, and Market Design ...............................................................................................................38 Topical Workshop 2: Lattice Point Distribution and Homogeneous Dynamics .................................................40 Topical Workshop 3: Circle Packings and Geometric Rigidity ..........................................................................41 Topical Workshop 4: Geometry Labs United Conference ..................................................................................42 Topical Workshop 5: Women in Algebraic Geometry .......................................................................................43 Topical Workshop 6: Free Resolutions and Representation Theory ...................................................................45 Topical Workshop 7: Symmetry, Randomness, and Computations in Real Algebraic Geometry .....................46 Collaborate@ICERM (C@I) ........................................................................................................ 47 TRIPODS Workshops .................................................................................................................
Recommended publications
  • Www .Ima.Umn.Edu
    ce Berkeley National Laboratory) ce Berkeley Who should attend? Industrial engineers and scientists who want to learn about modern techniques in scientific computations Researchers from academic institutions involved in multidisciplinary collaborations Organizer Robert V. Kohn Tutorial Lectures: Weinan E Leslie F. Greengard courtesy and S.Graphics J-D. Yu Sakia (Epson Research Corporation), and J.A. Sethian (Dept. and Lawren UC Berkeley of Mathematics, James A. Sethian www.ima.umn.edu The primary goal of this workshop is to facilitate the use of the best computational techniques in important industrial applications. Key developers of three of the most significant recent or emerging paradigms of computation – fast multipole methods, level set methods, and multiscale computation – will provide tutorial introductions to these classes of methods. Presentations will be particularly geared to scientists using or interested in using these approaches in industry. In addition the workshop will include research reports, poster presentations, and problem posing by industrial researchers, and offer ample time for both formal and informal discussion, related to the use of these new methods of computation. The IMA is an NSF funded Institute Schedule Weinan E received his Ph.D. from the University of California at Los Angeles in 1989. He was visiting MONDAY, MARCH 28 member at the Courant Institute from 1989 to 1991. He joined the IAS in Princeton as a long term mem- All talks are in Lecture Hall EE/CS 3-180 ber in 1992 and went on to take a faculty 8:30 Coffee and Registration position at the Courant Institute at New York Reception Room EE/CS 3-176 University in 1994.
    [Show full text]
  • Torification and Factorization of Birational Maps 3
    TORIFICATION AND FACTORIZATION OF BIRATIONAL MAPS DAN ABRAMOVICH, KALLE KARU, KENJI MATSUKI, AND JAROSLAW WLODARCZYK Abstract. Building on work of the fourth author in [69], we prove the weak factorization conjecture for birational maps in characteristic zero: a birational map between complete nonsingular varieties over an algebraically closed field K of characteristic zero is a composite of blowings up and blowings down with smooth centers. Contents 0. Introduction 1 1. Preliminaries 5 2. Birational Cobordisms 10 3. Torification 16 4. A proof of the weak factorization theorem 22 5. Generalizations 24 6. Problems related to weak factorization 27 References 28 0. Introduction We work over an algebraically closed field K of characteristic 0. We denote the multiplicative group of K by K∗. 0.1. Statement of the main result. The purpose of this paper is to give a proof for the following weak factorization conjecture of birational maps. We note that another proof of this theorem was given by the fourth author in [70]. See section 0.12 for a brief comparison of the two approaches. Theorem 0.1.1 (Weak Factorization). Let φ : X1 99K X2 be a birational map between complete nonsingular algebraic varieties X1 and X2 over an algebraically closed field K of characteristic zero, and let U ⊂ X1 be an open set where φ is an isomorphism. Then φ can be factored into a sequence of blowings up and blowings arXiv:math/9904135v4 [math.AG] 31 May 2000 down with smooth irreducible centers disjoint from U, namely, there exists a sequence of birational maps between complete nonsingular algebraic varieties ϕ1 ϕ2 ϕi ϕi+1 ϕi+2 ϕl−1 ϕl X1 = V0 99K V1 99K · · · 99K Vi 99K Vi+1 99K · · · 99K Vl−1 99K Vl = X2 where 1.
    [Show full text]
  • New York Journal of Mathematics Lang's Conjectures, Fibered
    New York Journal of Mathematics New York J. Math. 2 (1996) 20–34. Lang’s Conjectures, Fibered Powers, and Uniformity Dan Abramovich and Jos´e Felipe Voloch Abstract. We prove that the fibered power conjecture of Caporaso et al. (Con- jecture H, [CHM], §6) together with Lang’s conjecture implies the uniformity of rational points on varieties of general type, as predicted in [CHM]; a few applications on the arithmetic and geometry of curves are stated. In an opposite direction, we give counterexamples to some analogous results in positive characteristic. We show that curves that change genus can have arbitrarily many rational points; and that curves over Fp(t) can have arbitrarily many Frobenius orbits of non-constant points. Contents 1. Introduction 21 1.1. A Few Conjectures of Lang 21 1.2. The Fibered Power Conjecture 22 1.3. Summary of Results on the Implication Side 22 1.4. Summary of Results: Examples in Positive Characteristic 24 1.5. Acknowledgments 25 2. Proof of Theorem 1.5 25 2.1. Preliminaries 25 2.2. Prolongable Points 25 2.3. Proof of Theorem 1.5 26 3. A Few Refinements and Applications in Arithmetic and Geometry 26 3.1. Proof of Theorem 1.6 26 3.2. Uniformity in Terms of the Degree of an Extension 27 3.3. The Geometric Case 28 4. Examples in Positive Characteristic 30 4.1. Curves that Change Genus 30 Received December 20, 1995. Mathematics Subject Classification. 14G; 11G. Key words and phrases. arithmetic geometry, Lang’s conjecture, rational points. Abramovich partially supported by NSF grant DMS-9503276.
    [Show full text]
  • A Free-Space Adaptive Fmm-Based Pde Solver in Three Dimensions M.Harper Langston, Leslie Greengardand Denis Zorin
    Communications in Applied Mathematics and Computational Science A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN vol. 6 no. 1 2011 mathematical sciences publishers COMM. APP. MATH. AND COMP. SCI. Vol. 6, No. 1, 2011 msp A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN We present a kernel-independent, adaptive fast multipole method (FMM) of arbi- trary order accuracy for solving elliptic PDEs in three dimensions with radiation and periodic boundary conditions. The algorithm requires only the ability to evaluate the Green’s function for the governing equation and a representation of the source distribution (the right-hand side) that can be evaluated at arbitrary points. The performance is accelerated in three ways. First, we construct a piecewise polynomial approximation of the right-hand side and compute far-field expansions in the FMM from the coefficients of this approximation. Second, we precompute tables of quadratures to handle the near-field interactions on adaptive octree data structures, keeping the total storage requirements in check through the exploitation of symmetries. Third, we employ shared-memory parallelization methods and load-balancing techniques to accelerate the major algorithmic loops of the FMM. We present numerical examples for the Laplace, modified Helmholtz and Stokes equations. 1. Introduction Many problems in scientific computing call for the efficient solution to linear partial differential equations with constant coefficients. On regular grids with separable Dirichlet, Neumann or periodic boundary conditions, such equations can be solved using fast, direct methods.
    [Show full text]
  • Januar 2007 FØRSTE DOKTORGRAD I
    INFOMATJanuar 2007 Kjære leser! FØRSTE DOKTORGRAD I INFOMAT ønsker alle et godt nytt år. MATEMATIKKDIDAKTIKK Det ble aldri noe desember- nummer. Redaktørens harddisk VED HiA hadde et fatalt sammenbrudd like før Jul og slike hendelser er altså nok til at enkelte ting stopper opp. Våre utmerkede dataingeniører ved Matematisk institutt i Oslo klarte å redde ut alle dataene, og undertegnede lærte en lekse om back-up. Science Magazine har kåret beviset for Poincaré-formod- ningen til årets vitenskapelige gjennombrudd i 2006. Aldri før har en matematikkbegiven- het blitt denne æren til del. Men Foto: Torstein Øen hyggelig er det og det er et vik- tig signal om at det ikke bare er Den 27. november disputerte indiske Sharada Gade for doktorgraden anvendt vitenskap som er be- i matematikk-didaktikk ved Høgskolen i Agder. Dette er den første tydningsfullt for samfunnet. matematikkdidaktikk-doktoren høgskolen har kreert etter at studiet ble HiA har fått kreert sin første opprettet i 2002. doktor i matematikkdidaktikk og er på full fart mot universi- Dermed er et viktig krav for å ta steget opp i universitetsklassen opp- tetsstatus! Vi gratulerer både fylt. HiA må levere doktorgrader i andre fag enn nordisk og det sørget høgskolen og den nye doktoren Sharada Gade for. Hennes avhandling dreier seg om viktigheten av Sharada Gade. mening, mål og lærerens rolle i matematikkundervisningen. hilsen Arne B. INFOMAT kommer ut med 11 nummer i året og gis ut av Norsk Matematisk Forening. Deadline for neste utgave er alltid den 10. i neste måned. Stoff til INFOMAT sendes til infomat at math.ntnu.no Foreningen har hjemmeside http://www.matematikkforeningen.no/INFOMAT Ansvarlig redaktør er Arne B.
    [Show full text]
  • Manas Rachh Positions Education Publications
    Manas Rachh AKW 109, 51 Propsect St, Email: [email protected] New Haven CT - 06511 http://gauss.math.yale.edu~/mr2245 Positions Jul 2015 - present Gibbs Assistant Professor, Applied Mathematics Program, Yale University Education 08/2011 - 05/2015 Ph.D. Mathematics, Courant Institute of Mathematical Sciences, New York University, Integral equation methods for problems in electrostatics, elastostics and viscous flow Thesis advisor: Leslie Greengard 08/2006 - 08/2011 B.Tech and M.Tech Aeropsace Engineering, Indian Institute of Technology, Bombay Publications 1. M. Rachh, and K. Serkh, \On the solution of Stokes equation on regions with corners", Technical report YALEU/DCS/TR-1536 (Yale University, New Haven, CT). 2. Y. Bao, M. Rachh, E. Keaveny, L. Greengard, and A. Donev, \A fluctuating boundary inte- gral method for Brownian suspensions", arXiv preprint arXiv:1709.01480 (2017), submitted to Journal of Computational Physics. 3. M. Rachh, and T. Askham, \Integral equation formulation of the biharmonic Dirichlet problem", Journal of Scientific Computing (2017). https://doi.org/10.1007/s10915-017-0559-8. 4. F. Pausinger, M. Rachh, and S. Steinerberger, \Optimal Jittered Sampling for two points in the unit square", (to appear in) Statistics and Probability Letters. 5. X. Cheng, M. Rachh, and S. Steinerberger, \On the Diffusion Geometry of Graph Laplacians and Applications", submitted to Applied Computational Harmonic Analysis. 6. M. Rachh, and S. Steinerberger, \On the location of maxima of solutions of Schr¨odinger'sequa- tion", (to appear in) Communications in Pure and Applied Mathematics. 7. S. Jiang, M. Rachh, and Y. Xiang, \An efficient high order method for dislocation climb in two dimensions", SIAM Journal on Multiscale Modeling and Simulation 15.1 (2017): 235:253.
    [Show full text]
  • The Courant Institute of Mathematical Sciences: 75 Years of Excellence by M.L
    Celebrating 75 Years The Courant Institute of Mathematical Sciences at New York University Subhash Khot wins NSF’s Alan T. Waterman Award This award is given annually by the NSF to a single outstanding young researcher in any of the fields of science, engineering, and social science it supports. Subhash joins a very distinguished recipient list; few mathematicians or computer scientists have won this award in the past. Subhash has made fundamental contributions to the understanding of the exact difficulty of optimization problems arising in industry, mathematics and science. His work has created a paradigm which unites a broad range of previously disparate optimization problems and connects them to other fields of study including geometry, coding, learning and more. For the past four decades, complexity theory has relied heavily on the concept of NP-completeness. In 2002, Subhash proposed the Unique Games Conjecture (UGC). This postulates that the task of finding a “good” approximate solution for a variant Spring / Summer 2010 7, No. 2 Volume of the standard NP-complete constraint satisfaction problem is itself NP-complete. What is remarkable is that since then the UGC has Photo: Gayatri Ratnaparkhi proven to be a core postulate for the dividing line In this Issue: between approximability and inapproximability in numerous problems of diverse nature, exactly specifying the limit of efficient approximation for these problems, and thereby establishing UGC as an important new paradigm in complexity theory. As a further Subhash Khot wins NSF’s Alan T. Waterman Award 1 bonus, UGC has inspired many new techniques and results which are valid irrespective of UGC’s truth.
    [Show full text]
  • Arxiv:Math/9809023V1 [Math.AG] 5 Sep 1998 .W a That Say We 0
    UNIFORMITY OF STABLY INTEGRAL POINTS ON PRINCIPALLY POLARIZED ABELIAN VARIETIES OF DIMENSION ≤ 2 DAN ABRAMOVICH AND KENJI MATSUKI Abstract. The purpose of this paper is to prove, assuming that the conjecture of Lang and Vojta holds true, that there is a uniform bound on the number of stably integral points in the complement of the theta divisor on a principally polarized abelian surface defined over a number field. Most of our argument works in arbitrary dimension and the restriction on the dimension ≤ 2 is used only at the last step, where we apply Pacelli’s stronger uniformity results for elliptic curves. Preliminary version, July 13, 2021. 0. Introduction 0.1. The conjecture of Lang and Vojta. Let X be a variety over a field of characteristic 0. We say that X is a variety of logarithmic general type, if there exists a desingularization X˜ → X, and a projective embedding X˜ ⊂ Y where D = Y X˜ is a divisor of normal crossings, such that the invertible sheaf ωY (D) is big. We note first that this peoperty is independent of the choices of X˜ and Y , and that it is a proper birational invariant, namely, if X′ → X is a proper birational morphism (or an inverse of such) then X is of logarithmic general type if and only if X′ is. Now let X be a variety of logarithmic general type defined over a number field K. Let S be a finite set of places in K and let OK,S ⊂ K be the ring of S-integers. Fix a model X of X over OK,S.
    [Show full text]
  • Advanced Lectures in Mathematics (ALM)
    Advanced Lectures in Mathematics (ALM) ALM 1: Superstring Theory ALM 2: Asymptotic Theory in Probability and Statistics with Applications ALM 3: Computational Conformal Geometry ALM 4: Variational Principles for Discrete Surfaces ALM 6: Geometry, Analysis and Topology of Discrete Groups ALM 7: Handbook of Geometric Analysis, No. 1 ALM 8: Recent Developments in Algebra and Related Areas ALM 9: Automorphic Forms and the Langlands Program ALM 10: Trends in Partial Differential Equations ALM 11: Recent Advances in Geometric Analysis ALM 12: Cohomology of Groups and Algebraic K-theory ALM 13: Handbook of Geometric Analysis, No. 2 ALM 14: Handbook of Geometric Analysis, No. 3 ALM 15: An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rational Lattices ALM 16: Transformation Groups and Moduli Spaces of Curves ALM 17: Geometry and Analysis, No. 1 ALM 18: Geometry and Analysis, No. 2 ALM 19: Arithmetic Geometry and Automorphic Forms ALM 20: Surveys in Geometric Analysis and Relativity ALM 21: Advances in Geometric Analysis ALM 22: Differential Geometry: Under the Influence of S.-S. Chern ALM 23: Recent Developments in Geometry and Analysis ALM 24: Handbook of Moduli, Volume I ALM 25: Handbook of Moduli, Volume II ALM 26: Handbook of Moduli, Volume III Advanced Lectures in Mathematics Volume XXV Handbook of Moduli Volume II edited by Gavril Farkas · Ian Morrison International Press 浧䷘㟨十⒉䓗䯍 www.intlpress.com HIGHER EDUCATION PRESS Advanced Lectures in Mathematics, Volume XXV Handbook of Moduli, Volume II Volume Editors: Gavril Farkas (Humboldt-Universität, Berlin) Ian Morrison (Fordham University, New York) 2010 Mathematics Subject Classification. Primary: 14D20.
    [Show full text]
  • 1875–2012 Dr. Jan E. Wynn
    HISTORY OF THE DEPARTMENT OF MATHEMATICS BRIGHAM YOUNG UNIVERSITY 1875–2012 DR. LYNN E. GARNER DR. GURCHARAN S. GILL DR. JAN E. WYNN Copyright © 2013, Department of Mathematics, Brigham Young University All rights reserved 2 Foreword In August 2012, the leadership of the Department of Mathematics of Brigham Young University requested the authors to compose a history of the department. The history that we had all heard was that the department had come into being in 1954, formed from the Physics Department, and with a physicist as the first chairman. This turned out to be partially true, in that the Department of Mathematics had been chaired by physicists until 1958, but it was referred to in the University Catalog as a department as early as 1904 and the first chairman was appointed in 1906. The authors were also part of the history of the department as professors of mathematics: Gurcharan S. Gill 1960–1999 Lynn E. Garner 1963–2007 Jan E. Wynn 1966–2000 Dr. Gill (1956–1958) and Dr. Garner (1960–1962) were also students in the department and hold B. S. degrees in Mathematics from BYU. We decided to address the history of the department by dividing it into three eras of quite different characteristics. The first era (1875–1978): Early development of the department as an entity, focusing on rapid growth during the administration of Kenneth L. Hillam as chairman. The second era (1978–1990): Efforts to bring the department in line with national standards in the mathematics community and to establish research capabilities, during the administration of Peter L.
    [Show full text]
  • Final Program
    Final Program The SIAM Conference on the Life Sciences is sponsored by the SIAM Activity Group on Life Sciences (SIAG/LS) The SIAM Activity Group on the Life Sciences was established to foster the application of mathematics to the life sciences and research in mathematics that leads to new methods and techniques useful in the life sciences. The life sciences have become quantitative as new technologies facilitate collection and analysis of vast amounts of data ranging from complete genomic sequences of organisms to satellite imagery of forest landscapes on continental scales. Computers enable the study of complex models of biological processes. The activity group brings together researchers who seek to develop and apply mathematical and computational methods in all areas of the life sciences. It provides a forum that cuts across disciplines to catalyze mathematical research relevant to the life sciences and rapid diffusion of advances in mathematical and computational methods. AN16/LS16 Mobile App Scan the QR code with any QR reader and download the TripBulder EventMobileTM app to your iPhone, iPad, iTouch, or Android devices. You can also visit www.tripbuildermedia.com/apps/siam2016events Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215- 386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (US & Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings 2 2016 SIAM Annual Meeting General Information Table of Contents C. David Levermore SIAM Registration Desk University of Maryland, College Park, USA General Information ...............................2 The SIAM registration desk is located on Rachel Levy Exhibitor and Sponsor Information .6 the Concourse Level of the Westin Boston Harvey Mudd College, USA Waterfront.
    [Show full text]
  • Curriculum Vitae: Brendan Hassett
    Curriculum Vitae: Brendan Hassett Brown University brendan [email protected] Institute for Computational and Experimental Research in Mathematics 121 South Main Street, 11th Floor, Box E Providence, RI 02903 USA 401 863 7010 Department of Mathematics Box 1917 151 Thayer Street Providence, Rhode Island 02912 USA 401 863 7961 Positions Director, Institute for Computational and Experimental Research in Mathemat- ics, Brown University, from July 2016 Professor of Mathematics, from July 2015 Milton Brockett Porter Professor, Rice University, July 2013 to June 2015 Chair, Department of Mathematics, July 2009 to June 2014 Professor of Mathematics, July 2006 to June 2015 Associate Professor of Mathematics, July 2003 to June 2006 Assistant Professor of Mathematics, July 2000 to June 2003 Professeur Invit´e,Universit´eParis-Sud, Orsay, March to April 2005 Visiting Scholar, Institute of Mathematical Sciences, Chinese University of Hong Kong, August 2000 to July 2001 Dickson Instructor of Mathematics, University of Chicago, October 1996 to September 2000 Visitor at the Institut Mittag-Leffler, Stockholm, January to March 1997 Education Harvard University, M.A., 1994, and Ph.D., 1996 (supervised by Joe Harris) Yale College, B.A. in mathematics, summa cum laude, 1992 Awards Fellow of the American Mathematical Society, 2014 Charles W. Duncan Jr. Achievement Award for Outstanding Faculty, Rice Uni- versity, 2009 Grants and Fellowships Simons Foundation Award 815891: September 1, 2021{August 31, 2023; Simons Bridge for Postdoctoral Fellowships at ICERM
    [Show full text]