Western Australian Wildlife Management Program No

Total Page:16

File Type:pdf, Size:1020Kb

Western Australian Wildlife Management Program No WESTERN AUSTRALIAN WILDLIFE MANAGEMENT PROGRAM NO. 33 Declared Rare and Poorly Known Flora in the Central Forest Region by Kim Williams Andrew Horan Scott Wood Andrew Webb 2001 Department of Conservation and Land Management Locked Bag 104, Bentley Delivery Centre WA 6983 1 Department of Conservation and Land Management Locked Bag 104, Bentley Delivery Centre WA 6983 This study was partly funded by the Endangered Species Program of Environment Australia (ESP Project No. 440) Department of Conservation and Land Management Western Australia 2001 ISSN 0816-9713 Cover photograph: Grevillea maccutcheonii by Andrew Brown Editorial..................................................................................................... Kim Williams, Andrew Horan Editors and page preparation....................................................Kim Williams, Andrew Horan, Jill Pryde Maps....................................................................................................................................Kim Williams 2 FOREWORD Western Australian Wildlife Management Programs are a series of publications produced by the Department of Conservation and Land Management (CALM). The programs are prepared in addition to Regional Management Plans to provide detailed information and guidance for the management and protection of certain exploited or threatened species (e.g. Kangaroos, Noisy Scrub-bird and the Rose Mallee). This program provides a brief description of the appearance, distribution, habitat and conservation status of flora declared as rare under the Western Australian Wildlife Conservation Act (Threatened Flora) and poorly known flora (Priority Flora) in CALM's Central Forest Region and makes recommendations for research and management action necessary to ensure their continued survival. By ranking the Declared Rare Flora in priority order according these requirements, Departmental staff and resources can be allocated to those taxa most urgently in need of attention. Priority Flora that are under consideration for declaration as rare are also dealt with, but to a lesser extent than the Declared Rare Flora. However, the information available should assist in the ongoing work of assessment of their conservation status. This Program has been approved by the Executive Director, Department of Conservation and Land Management, the Conservation Commission and the Minister for the Environment. Approved programs are subject to modification as dictated by new findings, changes in species' status and completion of recovery actions. Information in the Plan was accurate at August 1998. 3 ACKNOWLEDGEMENTS I would like to thank a number of people who have assisted during the prolonged task of producing this document. Past and present Central Forest Region, Regional and District nature conservation operational staff, including Andrew Webb, Mitch Davies, Meredith Soutar, Rob Turner, Caroline Brocx, Rob Brazell, Greg Voigt, Charlie Broadbent and Bob Fitzgerald, have all contributed field information to the population data presented here. Greg Keighery and Neil Gibson from CALMScience provided comment and feedback on the numerous drafts as did Ken Atkins, CALM Wildlife Branch and Russel Smith, Environmental Protection Branch. Andrew Brown and Val English from WATSCU provided comments, feed back and advice in the early stages of the document. Sue Carroll answered our innumerable questions arising from the WA Herbarium flora databases and Anne Cochrane from the Threatened Flora Seed Centre assisted in field work, training our staff in seed collection techniques and by providing information used in the threat matrix analysis. A big thank you must go to Graham McCutcheon for his many years of field work and collections across the region which provided the basis for many of the population details contained in the plan and for penning the Botanical History of the region. Finally special mention must be made concerning the contributions of Scott Wood who commenced as Project Coordinator, compiling the early datasets and first draft of the document before transferring (he must have known something!) and Andrew Horan who picked up the project and has followed it through to completion over the last two years. Kim Williams Program Leader, Nature Conservation Central Forest Region 4 ABBREVIATIONS Shires AMR Augusta Margaret River Shire BOD Boddington Shire BOY Boyup Brook Shire BRG Bridgetown Greenbushes Shire BSN Busselton Shire BUN Bunbury City Council CAP Capel Shire COL Collie Shire DAR Dardanup Shire DBK Donnybrook Balingup Shire HVY Harvey Shire NAN Nannup Shire WAR Waroona Shire WEA West Arthur Shire Central Forest Region Districts BWD Blackwood District MON Mornington District SWC South West Capes District Land Tenure CP Conservation Park LNNP Leeuwin Naturaliste National Park NP National Park NR Nature Reserve Park Parkland Reserve PP Private Property Rail Railway Reserve Reserve Executive Director Reserve Road Road Reserve/Main Roads Department SF State Forest Shire Shire Reserve Utility Public Utility 5 VCL Vacant (Unallocated) Crown Land Verge Road verge – vesting undetermined Water Water Authority Reserve 6 TABLE OF CONTENTS Page Page Foreword ....................................................... Drakaea micrantha ms ..............................65 iii Dryandra mimica.......................................67 Dryandra nivea subsp. uliginosa...............69 Acknowledgements........................................... iv Dryandra squarrosa subsp. argillacea......71 Eleocharis keigheryi..................................73 Abbreviations .............................................. v Eucalyptus phylacis ...................................75 Grevillea brachystylis subsp. australis......77 PART ONE: INTRODUCTION ................. 1 Grevillea elongata .....................................79 Grevillea maccutcheonii............................82 1. The Need for Management..................... 1 Grevillea rara............................................84 2. Objective of the Program ....................... 2 Jacksonia velveta ms .................................86 3. Rare Flora Legislation and Guidelines Kennedia macrophylla...............................88 for Gazettal ........................................... 3 Lambertia echinata subsp. occidentalis ....90 4. CALM’s Priority Flora List ................... 5 Lambertia orbifolia...........................................92 5. Responsibilities within the Department . 5 Laxmannia jamesii.....................................94 6. The Central Forest Region ..................... 6 Leptomeria dielsiana .................................96 6.1 Climate ........................................... 6 Meziella trifida .................................................98 6.2 Geology, Landforms and Soils....... 6 Petrophile latericola ms ..........................100 6.3 Vegetation ...................................... 7 Rulingia sp. Trigwell Bridge 7. Botanical Exploration and Study in the (R. Smith s.n. 20.6.89)........................102 Central Forest Region........................... 9 Tetraria australiensis ..............................104 8. References.............................................. 8 Verticordia densiflora var. pedunculata..106 Verticordia plumosa var. ananeotes........108 PART TWO: DECLARED RARE FLORA IN Verticordia plumosa var. vassensis .........110 THE CENTRAL FOREST REGION........ 13 Wurmbea calcicola.........................................113 15 Boronia exilis.................................................... PART THREE: PRIORITY FLORA.......115 Brachysema modestum......................................17 Brachysema papilio................................... 20 Priority One Flora....................................115 Caladenia bryceana subsp. bryceana ms.. 23 Caladenia busselliana ms ......................... 26 Andersonia ferricola ms ..........................116 Caladenia caesarea subsp. maritima ms .. 29 Boronia humifusa ....................................118 Caladenia christineae ms.......................... 32 Boronia juncea subsp. juncea..................120 Caladenia dorrienii...........................................34 subsp. ms122 Caladenia excelsa ms................................ 36 Caladenia longicauda clivicola subsp. ms .124 Caladenia harringtoniae ms ..................... 39 Caladenia uliginosa patulens Caladenia huegelii............................................41 Calothamnus sp. Wicher (B.J. Keighery & Caladenia viridescens ms.......................... 44 N. Gibson 230) ...................................126 Chamelaucium roycei ms .......................... 47 Carex tereticaulis ....................................128 Darwinia ferricola ms............................... 49 Caustis sp. Boyanup (G.S. McCutcheon 1706) .......................................................130 Darwinia sp. Williamson ms ............................132 (G.J. Keighery 12717).......................... 51 Chordifex jacksonii Conospermum caeruleum subsp. contortum134 Daviesia elongata subsp. elongata............ 53 Diuris micrantha...............................................55 Eryngium subdecumbens ms....................136 Diuris purdiei ............................................ 57 Eucalyptus lane-poolei Maiden var. Wicher Drakaea confluens ms............................... 59 (S.D. Hopper 6316) ............................138 Drakaea elastica ....................................... 62 Eucalyptus x mundijongensis...................140 7 Grevillea sp. Scott River (G.J.
Recommended publications
  • BORR IPT 2019A - Part 1 of 12)
    APPENDIX C ATTACHMENTS LIST (BORR IPT 2019a - Part 1 of 12) Biota. (2019b). Bunbury Outer Ring Road Southern Section Targeted Fauna Assessment. Unpublished report prepared for Main Roads Western Australia. BORR IPT. (2019a). Bunbury Outer Ring Road Southern Section Vegetation and Flora Study. Unpublished report prepared for Main Roads Western Australia. Brad Goode & Associates. (2012). Aboriginal Heritage Survey Report of the Proposed Bunbury Outer Ring Road Stage 2, Western Australia. Unpublished report prepared for GHD Pty Ltd on behalf of Main Roads Western Australia. Main Roads WA. (2018). Environmental Policy. WRM. (2019). Bunbury Outer Ring Road Southern Investigation Area: Targeted Conservation Significant Aquatic Fauna Survey. Unpublished report prepared for BORR IPT on behalf of Main Roads Western Australia. Bunbury Outer Ring Road Southern Section Vegetation and Flora Study September 2019 Executive Summary The Commissioner of Main Roads Western Australia (Main Roads) is planning for the construction of the Bunbury Outer Ring Road (BORR) Project. BORR is a planned Controlled Access Highway linking the Forrest Highway and Bussell Highway. The completed BORR will provide a high standard route for access to the Bunbury Port and facilitate proposed development to the east of the City of Bunbury. BORR will also provide an effective bypass of Bunbury for inter-regional traffic. BORR forms a major component of the planned regional road network for the Greater Bunbury area. The land requirement for BORR is identified in the Greater Bunbury Region Scheme (GBRS). The proposed BORR comprises three sections: ‘BORR Northern Section’ – Forrest Highway to Boyanup-Picton Road ‘BORR Central Section’ – The Central Section has been previously constructed however further improvements are proposed for this section, including the extension of Willinge Drive southwards to South Western Highway ‘BORR Southern Section’ – South Western Highway (near Bunbury Airport) to Bussell Highway.
    [Show full text]
  • Supplementary Materialsupplementary Material
    10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell.
    [Show full text]
  • Acacia Cochlearis RIGID WATTLE (Labill.) H.L.Wendl
    Plants of the West Coast family: fabaCeae Acacia cochlearis RIGID WATTLE (Labill.) H.L.Wendl Flowering period: July–October. Description: Bushy, erect to sprawling shrub, 0.5–3 m high and found as solitary plants or in thickets. Leaves to 45 mm long with a sharp point, rigid, with prominent parallel veins. Flower heads globular with up to three produced in each leaf axil. The green-brown pod is flat, to 50 mm long, and produces 10–15 black and usually highly viable seeds. Pollination: Open pollinated by a wide variety of non-specific insects. Sets a moderate amount of seed in good seasons. Distribution: From Lancelin to Israelite Bay where the species grows as solitary plants or in thickets in coastal to near-coastal habitats. Along the coast the species favours stable secondary dunes. Often an indicator of good quality dunes as the species is vulnerable to disturbance. Propagation: Grow from seed collected in December when pods mature. Seed should be hot water treated or lightly abraded with fine sandpaper. Sow in a free-draining soil mix and keep moist. Seedling growth may benefit from incorporation of a little soil taken from the weed- and disease-free soil surface around a parent plant to ensure transfer of the Rhizobium bacteria that are important in nitrogen nutrition of the plant. R. Barrett Habit Uses in restoration: A useful species that reliably establishes in stabilised soil. Must be protected from direct exposure to high winds and is best incorporated into mixed plantings with other shrubs including Acacia rostellifera and Scaevola crassifolia.
    [Show full text]
  • Allopolyploidy and Root Nodule Symbiosis in Glycine
    TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Adrian Federico Powell January 2017 © 2017 Adrian Federico Powell TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE Adrian Federico Powell, Ph.D. Cornell University 2017 Polyploidy (or whole genome duplication) and root nodule symbioses with bacteria (termed ‘rhizobia’) have both been important phenomena in the evolutionary history of the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the development or refinement of nodulation. Given the varied potential impacts of polyploidy, effects on biotic interactions are plausible. However, direct studies of the interactions between these phenomena in symbiotic, nodule-forming species are lacking. In this dissertation, using a complex of recently formed allopolyploids in Glycine subgenus Glycine, the perennial relatives of soybean, we examined (1) the root metabolites and symbiotic signaling capacity of multiple allopolyploid species relative to the diploid progenitor species that hybridized to form each allopolyploid, (2) the nodulation-related responses of allopolyploids and diploid progenitors to rhizobia and (3) the transcriptome-level responses to inoculation in allopolyploid G. dolichocarpa (T2) and its diploid progenitors. These objectives were pursued using a variety of approaches including root metabolite profiling, inoculation trials, and RNA sequencing. We found that, while there were no common transgressive patterns in the root metabolite profiles of allopolyploids in the complex, one of the progenitors of T2 had distinctive root metabolite and exudate profiles; profiles of symbiotic signaling metabolites were also altered in the allopolyploid.
    [Show full text]
  • South West Region
    Regional Services Division – South West Region South West Region ‐ Parks & Wildlife and FPC Disturbance Operations Flora and Vegetation Survey Assessment Form 1. Proposed Operations: (to be completed by proponent) NBX0217 Summary of Proposed Operation: Road Construction and Timber Harvesting New road construction – 3.75km Existing road upgrade – 14.9km New gravel pit construction – 2ha (exploration area) Contact Person and Contact Details: Adam Powell [email protected] 0427 191 332 Area of impact; District/Region, State Forest Block, Coupe/Compartment (shapefile to be provided): Blackwood District South West Region Barrabup 0317 Period of proposed disturbance: November 2016 to December 2017 1 2.Desktop Assessment: (to be completed by the Region) ‐ Check Forest Ecosystem reservation. Forest Ecosystems proposed for impact: Jarrah Forest‐Blackwood Plateau, Shrub, herb and sedgelands, Darling Scarp Y Are activities in a Forest Ecosystem that triggers informal reservation under the FMP? The Darling Scarp Forest Ecosystem is a Poorly Reserved Forest Ecosystem and needs to be protected as an Informal Reserve under the Forest Management Plan (Appendix 11) ‐ Check Vegetation Complexes, extents remaining uncleared and in reservation (DEC 2007/EPA 2006). Vegetation Complex Pre‐European extent (%) Pre‐European extent (Ha) Extent in formal/informal reservation (%) Bidella (BD) 94% 44,898 47% Darling Scarp (DS) Figures not available Corresponds to Darling Scarp Forest Ecosystem extent Gale (GA) 80% 899 17% Jalbarragup (JL) 91% 14,786 32% Kingia (KI) 96% 97,735 34% Telerah (TL) 92% 25,548 33% Wishart (WS2) 84% 2,796 35% Y Do any complexes trigger informal reservation under the FMP? Darling Scarp complex as discussed above Y Are any complexes significant as per EPA regionally significant vegetation? Gale (GA) complex is cleared below the recommended retention of 1,500ha (Molloy et.al 2007) ‐ Check Threatened flora and TEC/PEC databases over an appropriate radius of the disturbance boundary.
    [Show full text]
  • 23/01/2014 Cons Timber Habitat Status Harvest ID Forest Red-Tailed
    BMW0112 Detail Created: 23/01/2014 Cons Timber Habitat Common Name Scientific name Score FDIS Land System FDIS Landscape Unit Status Harvest ID Forest Red-tailed Black Cockatoo Calyptorhynchus banksii naso VU 12 High 32 Blackwood Plateau Jarrah Uplands Forest Red-tailed Black Cockatoo Calyptorhynchus banksii naso VU 12 High 34 Blackwood Plateau Depressions / Swamps Baudin's Cockatoo Calyptorhynchus baudinii EN 12 High 32 Blackwood Plateau Jarrah Uplands Baudin's Cockatoo Calyptorhynchus baudinii EN 12 High 34 Blackwood Plateau Depressions / Swamps Chuditch (Western Quoll) Dasyurus geoffroii VU Moderate 32 Blackwood Plateau Jarrah Uplands Chuditch (Western Quoll) Dasyurus geoffroii VU Moderate 34 Blackwood Plateau Depressions / Swamps Peregrine Falcon Falco peregrinus P4 Low 32 Blackwood Plateau Jarrah Uplands Peregrine Falcon Falco peregrinus P4 Low 34 Blackwood Plateau Depressions / Swamps Crested Shrike-tit Falcunculus frontatus P4 Low 32 Blackwood Plateau Jarrah Uplands Crested Shrike-tit Falcunculus frontatus P4 Low 34 Blackwood Plateau Depressions / Swamps Western Falspistrelle Falsistrellus mackenziei P4 12 High 32 Blackwood Plateau Jarrah Uplands Western Falspistrelle Falsistrellus mackenziei P4 12 High 34 Blackwood Plateau Depressions / Swamps Mud Minnow Galaxiella munda VU Moderate 34 Blackwood Plateau Depressions / Swamps White-bellied Frog Geocrinia alba CR 6 Low 32 Blackwood Plateau Jarrah Uplands Orange-bellied Frog Geocrinia vitellina VU 7 High 34 Blackwood Plateau Depressions / Swamps Quenda (Southern Brown Bandicoot) Isoodon
    [Show full text]
  • Integrated Approach to Nitrogen Fixing Tree Germplasm Development
    INTEGRATED APPROACH TO NITROGEN FIXING TREE GERMPLASM DEVELOPMENT JAKE HALLIDAY' ABSTRACT - The performance of nitrogen fixing trees introduced to new environments depends on proper reconstitution of the symbiotic associatioi on which the trees rely for their nutrition. Thus selection strategies employed to identify adapted g.rmplasm for particular sites must provide for three-way selection of seed, rhiobia and mycorrhizae. Selected lines must then be multiplied before they can be deployed in varying types of development programs. Speciai problems are faced in accomplishing these ends with virtually all nitrogen fixing tr-es. Results and experiences are described which emphasize the importance of parallel selection of plant germplasm and Rhizobiurn strains. '.n the case of VA mycorrhizae, effective symbioses can occur without specific inoculation. Methods for selecting and multiplying trees and their microsymbionts on a large scale are described and discussed. Index terms: mycorrhiza technology, Rhizobium technology, nitrogen fixing trees, plant selection, seed technology. AqAO INTEGRADA PARA DESENVOLVER GERMOPLASMAS FIXADORES DE NITROGtNIO RESUMO - 0 comportamento de Arvores fixadoras denitrogdniodcpoisde serem introdu­ zidas em novas ambientes depende da reconstituiiSo plena das associaq6es simbi6ticas, as quais contribuem para a nutripo drs plantas. No entanto, as estrat~gias de selecio em­ pregadas para identificar germoplasmas adaptados para certos locais precisam levar em conta a seleno conjunta das sementes, do riz6bio e das micorrizas. As linhas selecionadao tim de multiplicar-se em grande escala arites de serem utilizadas em vdrios tipos de progra­ mas. Encontram-se grades problemas para alcancar estes fins em quase todoi os casos de Arvores fixadaras de nitrogdnio. Descrevem-se experidncias e resultados que enfatizam a importhncia da seleqio paralela de germoplasma de plantas e cepas de Rhizobium.
    [Show full text]
  • Redalyc.ARE OUR ORCHIDS SAFE DOWN UNDER?
    Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica BACKHOUSE, GARY N. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA Lankesteriana International Journal on Orchidology, vol. 7, núm. 1-2, marzo, 2007, pp. 28- 43 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339813005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 7(1-2): 28-43. 2007. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA GARY N. BACKHOUSE Biodiversity and Ecosystem Services Division, Department of Sustainability and Environment 8 Nicholson Street, East Melbourne, Victoria 3002 Australia [email protected] KEY WORDS:threatened orchids Australia conservation status Introduction Many orchid species are included in this list. This paper examines the listing process for threatened Australia has about 1700 species of orchids, com- orchids in Australia, compares regional and national prising about 1300 named species in about 190 gen- lists of threatened orchids, and provides recommen- era, plus at least 400 undescribed species (Jones dations for improving the process of listing regionally 2006, pers. comm.). About 1400 species (82%) are and nationally threatened orchids. geophytes, almost all deciduous, seasonal species, while 300 species (18%) are evergreen epiphytes Methods and/or lithophytes. At least 95% of this orchid flora is endemic to Australia.
    [Show full text]
  • Acacia in THIS ISSUE Dacacia the Name Acacia Comes This Issue of Seed Notes from the Greek Acacia, Ace Will Cover the Genus Or Acis Meaning a Point Or Acacia
    No. 9 Acacia IN THIS ISSUE DAcacia The name Acacia comes This issue of Seed Notes from the Greek acacia, ace will cover the genus or acis meaning a point or Acacia. thorn, or from acazo, to D Description sharpen, although this name applies more to African than D Geographic Australian species (Australian distribution and Acacia have no thorns or habitat larger prickles, unlike those D Reproductive biology that are native to Africa). D Seed collection Many species of Acacia, or wattles as they are commonly D Phyllodes and flowers of Acacia aprica. Photo – Andrew Crawford Seed quality called in Australia, are valuable assessment for a range of uses, in D Seed germination particular as garden plants. Description In Australia, Acacia (family is modified to form a leaf- D Recommended reading They are also used for amenity plantings, windbreaks, shade DMimosaceae) are woody like structure or phyllode. trees, groundcovers, erosion plants that range from These phyllodes may be flat and salinity control. The timber prostrate under-shrubs to or terete. Some species do of some Acacia is very hard tall trees. Acacia flowers are not have phyllodes and the and is ideal for fence posts small, regular and usually flattened stems or cladodes (e.g. A. saligna or jam). Other bisexual. They occur in spikes act as leaves. Foliage can Acacia species are used to or in globular heads and vary from blueish to dark make furniture and ornaments. range in colour from cream green to silvery grey. Most The seed of some wattles is to intense yellow. The leaves species of Acacia have glands a good food source for birds, of Acacia may be bipinnate on the axis of the phyllodes, other animals and humans (the primary leaflets being although in Australian as ‘bush tucker’.
    [Show full text]
  • Draft Survey Guidelines for Australia's Threatened Orchids
    SURVEY GUIDELINES FOR AUSTRALIA’S THREATENED ORCHIDS GUIDELINES FOR DETECTING ORCHIDS LISTED AS ‘THREATENED’ UNDER THE ENVIRONMENT PROTECTION AND BIODIVERSITY CONSERVATION ACT 1999 0 Authorship and acknowledgements A number of experts have shared their knowledge and experience for the purpose of preparing these guidelines, including Allanna Chant (Western Australian Department of Parks and Wildlife), Allison Woolley (Tasmanian Department of Primary Industry, Parks, Water and Environment), Andrew Brown (Western Australian Department of Environment and Conservation), Annabel Wheeler (Australian Biological Resources Study, Australian Department of the Environment), Anne Harris (Western Australian Department of Parks and Wildlife), David T. Liddle (Northern Territory Department of Land Resource Management, and Top End Native Plant Society), Doug Bickerton (South Australian Department of Environment, Water and Natural Resources), John Briggs (New South Wales Office of Environment and Heritage), Luke Johnston (Australian Capital Territory Environment and Sustainable Development Directorate), Sophie Petit (School of Natural and Built Environments, University of South Australia), Melanie Smith (Western Australian Department of Parks and Wildlife), Oisín Sweeney (South Australian Department of Environment, Water and Natural Resources), Richard Schahinger (Tasmanian Department of Primary Industry, Parks, Water and Environment). Disclaimer The views and opinions contained in this document are not necessarily those of the Australian Government. The contents of this document have been compiled using a range of source materials and while reasonable care has been taken in its compilation, the Australian Government does not accept responsibility for the accuracy or completeness of the contents of this document and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of the document.
    [Show full text]
  • Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona. Part 20
    Felger, R.S. and S. Rutman. 2016. Ajo Peak to Tinajas Altas: A Flora of Southwestern Arizona. Part 20. Eudicots: Solanaceae to Zygophyllaceae. Phytoneuron 2016-52: 1–66. Published 4 August 2016. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA PART 20. EUDICOTS: SOLANACEAE TO ZYGOPHYLLACEAE RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & International Sonoran Desert Alliance PO Box 687 Ajo, Arizona 85321 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 [email protected] ABSTRACT A floristic account is provided for Solanaceae, Talinaceae, Tamaricaceae, Urticaceae, Verbenaceae, and Zygophyllaceae as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in southwestern Arizona—the heart of the Sonoran Desert. This account includes 40 taxa, of which about 10 taxa are represented by fossil specimens from packrat middens. This is the twentieth contribution for this flora, published in Phytoneuron and also posted open access on the website of the University of Arizona Herbarium: <http//cals.arizona.edu/herbarium/content/flora-sw-arizona>. Six eudicot families are included in this contribution (Table 1): Solanaceae (9 genera, 21 species), Talinaceae (1 species), Tamaricaceae (1 genus, 2 species), Urticaceae (2 genera, 2 species), Verbenaceae (4 genera, 7 species), and Zygophyllaceae (4 genera, 7 species). The flora area covers 5141 km 2 (1985 mi 2) of contiguous protected areas in the heart of the Sonoran Desert (Figure 1). The first article in this series includes maps and brief descriptions of the physical, biological, ecological, floristic, and deep history of the flora area (Felger et al.
    [Show full text]
  • Low Flammability Local Native Species (Complete List)
    Indicative List of Low Flammability Plants – All local native species – Shire of Serpentine Jarrahdale – May 2010 Low flammability local native species (complete list) Location key – preferred soil types for local native species Location Soil type Comments P Pinjarra Plain Beermullah, Guildford and Serpentine River soils Alluvial soils, fertile clays and loams; usually flat deposits carried down from the scarp Natural vegetation is typical of wetlands, with sheoaks and paperbarks, or marri and flooded gum woodlands, or shrublands, herblands or sedgelands B Bassendean Dunes Bassendean sands, Southern River and Bassendean swamps Pale grey-yellow sand, infertile, often acidic, lacking in organic matter Natural vegetation is banksia woodland with woollybush, or woodlands of paperbarks, flooded gum, marri and banksia in swamps F Foothills Forrestfield soils (Ridge Hill Shelf) Sand and gravel Natural vegetation is woodland of jarrah and marri on gravel, with banksias, sheoaks and woody pear on sand S Darling Scarp Clay-gravels, compacted hard in summer, moist in winter, prone to erosion on steep slopes Natural vegetation on shallow soils is shrublands, on deeper soils is woodland of jarrah, marri, wandoo and flooded gum D Darling Plateau Clay-gravels, compacted hard in summer, moist in winter Natural vegetation on laterite (gravel) is woodland or forest of jarrah and marri with banksia and snottygobble, on granite outcrops is woodland, shrubland or herbs, in valleys is forests of jarrah, marri, yarri and flooded gum with banksia Flammability
    [Show full text]