Books, Articles, Reports, Abstracts, Technical and Popular, Peer-Reviewed and Non-Peer-Reviewed)

Total Page:16

File Type:pdf, Size:1020Kb

Books, Articles, Reports, Abstracts, Technical and Popular, Peer-Reviewed and Non-Peer-Reviewed) DONALD R. HODEL—BIBLIOGRAPHY. This bibliography has two lists: I. Books. II. Complete, comprehensive, chronological list of all my publications over my career, including books. I. Books (these are also included in the complete bibliography below). 1. Hodel, D. R. 1988. Exceptional Trees of Los Angeles. California Arboretum Foundation, Arcadia. pp. 80. 2. Hodel, D. R. 1992. Chamaedorea Palms: The Species and Their Cultivation. The International Palm Society, Lawrence, KS. 358 pp. 3. Hodel, D. R. 1998. The Palms and Cycads of Thailand. Kampon Tansacha, Nong Nooch, Thailand. 190 pp. 4. Hodel, D. R. and J.-C. Pintaud. 1998. The Palms of New Caledonia. Kampon Tansacha, Nong Nooch, Thailand. 119 pp. 5. McPherson, E. G., J. R. Simpson, P. J. Pepper, Q. Xiao, D. R. Pittenger, and D. R. Hodel. 2001. Tree Guidelines for Inland Empire Communities. Local Government Commission, Sacramento, California. pp. 115. 6. Hodel, D. R. and D. V. Johnson. 2007. Imported and American Varieties of Dates (Phoenix dactylifera) in the United States. UC ANR Publication 3498. University of California, Oakland, CA. 112 pp. 7. Hodel, D. R. 2012. The Biology and Management of Landscape Palms. The Britton Fund, Inc., Western Chapter, International Society of Arboriculture, Porterville, CA. 176 pp. 8. Hodel, D. R. 2012. Loulu, The Hawaiian Palm. University of Hawaii Press, Honolulu, HI. 190 pp. II. Complete Chronological Bibliography (books, articles, reports, abstracts, technical and popular, peer-reviewed and non-peer-reviewed). 1. Hodel, D. R. 1977. Notes on embryo culture of palms. Principes 21: 103-108. 2. Hodel, D. R. 1980. Notes on Pritchardia in Hawaii. Principes 24: 65-81. 3. Hodel, D. R. 1982. In search of Carpoxylon. Principes 26: 34-41. 4. Hodel, D. R. 1982. Cultivated palms in Tahiti and The Jardin Botanique de Papeari. Principes 26: 77-85. 5. Hodel, D. R. 1982. Harold E. Moore, Jr. remembered. Principes 26: 135-137. 6. Hodel, D. R. 1985. Palm literature. Principes 29: 94. 7. Hodel, D. R. 1985. A new Pritchardia from South Kona, Hawaii. Principes 29: 31-34. 8. Hodel, D. R. 1985. Gliocladium and Fusarium diseases of palms. Principes: 29: 85-88. 9. Jones, V. P., M. P. Parrella, D. R. Hodel. 1986. Biological control of leaf miners in greenhouse chrysanthemums. Cal. Ag. 40(1, 2): 10-12. 10. Hodel, D. R. 1986. Drought tolerance of selected non-irrigated trees. Landscape & 1 Irrigation 10: 66-69. 11. Hodel, D. R. 1986. An analysis and overview of the wholesale nursery industry in Los Angeles County. University of California, Cooperative Extension, Los Angeles. 30 pp. 12. Hodel, D. R. 1986. A needs-assessment of the wholesale nursery and floriculture industries in Los Angeles County. University of California, Cooperative Extension, Los Angeles. 38 pp. 13. Hodel, D. R. 1987. Control of Phytophthora root rots in containerized nursery stock. University of California, Cooperative Extension, Los Angeles. 3 pp. 14. Hodel, D. R. 1987. A survey of commodity movement on the Los Angeles Wholesale Flower Market. University of California, Cooperative Extension, Los Angeles. 126 pp. 15. Hodel, D. R. 1987. Exceptional trees of Los Angeles, pp. 14-16 in: A. MacFail and R. Venne (eds.), Minimal maintenance landscaping, a report of the Elvenia J. Slosson Fund for Ornamental Horticulture: 1983-1986. University of California, Division of Agriculture and Natural Resources, Oakland, CA. 16. Burger, D. W., J. S. Hartin, D. R. Hodel, T. A. Lukaszewski, S. A. Tjosvold, and S. A. Wagner. 1987. Water use in California’s ornamental nurseries. Cal. Ag. 41(9, 10): 7-8. 17. Hodel, D. R. 1988. Chemical vs. hand-weeding in containerized nursery stock. University of California, Cooperative Extension, Los Angeles. 3 pp. 18. Hodel, D. R. 1988. The genus Chamaedorea in commerce in California. Report for World Wildlife Fund Project 3322. World Wildlife Fund, Washington, D.C. 19. Hodel, D. R. 1988. Exceptional Trees of Los Angeles. California Arboretum Foundation, Arcadia. pp. 80. 20. Hodel, D. R. 1990. Chamaedorea amabilis: An ornamental species from Central America. Principes 34: 4-10. 21. Hodel, D. R. and N.W. Uhl. 1990. Two new species of Chamaedorea from Mexico. Principes 34: 58-63. 22. Hodel, D. R. and N. W. Uhl. 1990. A new species and a synopsis of a distinctive and natural subgroup of Chamaedorea. Principes 34: 108-119. 23. Hodel, D. R. and N. W. Uhl. 1990. New species of Chamaedorea from Costa Rica and Panama. Principes 34: 120-133. 24. Read, R. and D. R. Hodel. 1990. Arecaceae. Palm Family, pp. 1360-1375, in: W. L. Wagner, D.R. Herbst, and S. H. Sohmer (eds.), Manual of the Flowering Plants of Hawai’i. Bishop Museum Special Publication 83. B.P. Bishop Museum, HI. 25. Hodel, D. R. and J. J. Castillo Mont. 1990. Two new species of Chamaedorea (Arecaceae) from Guatemala. Phytologia 68: 390-396. 26. Hodel, D. R. 1990. Chamaedorea castillo-montii (Arecaceae), a new species from Guatemala. Phytologia 68: 397-400. 27. Hodel, D. R. 1990. Three new species of Chamaedorea from Oaxaca, Mexico. Phytologia 68: 401-409. 28. Hodel, D. R. 1990. New species and notes on related taxa in Chamaedorea subgenus Stephanostachys. Principes 34: 160-176. 29. Pittenger, D. R., D. R. Hodel, and D. A. Shaw. 1990. Relative water requirements of six groundcover species. HortSci. 25: 1085. 30. Hodel, D. R. 1991. The economics and value of urban horticulture. University of 2 California, Cooperative Extension, Los Angeles. 7 pp. 31. Hodel, D. R. 1991. Palms for the Southern California Landscape. University of California, Cooperative Extension, Los Angeles. 6 pp. 32. Hodel, D. R. and J. J. Castillo-Mont. 1991. Additional new species of Chamaedorea. Principes 35: 4-8. 33. Hodel, D. R. 1991. New species of Chamaedorea from Central America. Principes 35: 72-82. 34. Grayum, M. H. and Hodel, D. R. 1991. Two new species of Chamaedorea from Panama. Principes 35: 135-138. 35. Hodel, D. R. 1991. Note on Chamaedorea tenerrima. Principes 35: 138. 36. Hodel, D. R. 1991. The cultivated species of Chamaedorea with cespitose habit and pinnate leaves. Principes 35: 184-198. 37. Hodel, D. R. 1992. New and/or underutilized Chamaedorea palms with ornamental potential, p. 6 in: D. R. Pittenger (ed.), Proceedings of the Landscape Management and Field Day. University of California, Riverside. 38. Hodel, D. R. 1992. New and/or underutilized Chamaedorea palms with ornamental potential. University of California, Cooperative Extension, Los Angeles. 1 p. 39. Hodel, D. R. 1992. Size and impact of the environmental horticulture industries (Green Industries) in Los Angeles County. University of California, Cooperative Extension, Los Angeles. 2 pp. 40. Hodel, D. R. 1992. Guidelines for irrigating plants in the landscape accurately and economically. University of California, Cooperative Extension, Los Angeles. 10 pp. 41. Hodel, D. R. 1992. Guidelines for irrigating containerized nursery stock accurately and economically. University of California, Cooperative Extension, Los Angeles. 12 pp. 42. Hodel, D. R. 1992. Flowering trees for the southern California landscape. University of California, Cooperative Extension, Los Angeles. 12 pp. 43. Pittenger, D. R., D. R. Hodel, D. A. Shaw, and D. B. Holt. 1992. Determination of minimum irrigation needs of non-turf groundcovers in the landscape. Technical completion report to the University of California, Water Resources Center, Project No. UCAL-WRC-W-741. 24 pp. 44. Shaw, D. A., P. F. Zellman, V. A. Gibeault, J. S. Hartin, J. M. Henry, D. R. Hodel, J. Kabashima, and D. R. Pittenger. 1992. Landscape irrigation system evaluation and scheduling for southern California. University of California, Riverside. 36 pp. 45. Hodel, D. R. 1992. An update on the mineral nutrition of palms. Pac. Coast Nurs. 51(5): 55-59. 46. Hodel, D. R. 1992. Tree selection guide for greater Los Angeles. University of California, Cooperative Extension, Los Angeles. 7 pp. 47. Hodel, D. R. 1992. Chamaedorea palms: diverse species in diverse habitats, pp. 433- 458, in: F. Kahn (ed.), Palms in Tropical Forests. Bulletin de l’Institute Francaise d’Etudes Andines 21(2). 48. Hodel, D. R. 1992. Chamaedorea Palms: The Species and Their Cultivation. The International Palm Society, Lawrence, KS. 358 pp. 49. Hodel, D. R. 1992. Additions to Chamaedorea Palms: New species from Mexico and Guatemala and miscellaneous notes. Principes 36: 188-202. 50. Hodel, D. R. 1992. Palms in Amazonian Peru. Palm J. (November): 16-21. 3 51. Hodel, D. R. 1992. James L. Degen, long-time Palm Society member. Principes 36: 228-229. 52. Hodel, D. R. 1992. Economics and value of urban horticulture. Pac. Coast Nurs. 51(8): 67-70. 53. Pittenger, D. R. and D. R. Hodel. 1992. Minimum irrigation of landscape groundcovers. HortSci. 27(6): 82. 54. Hodel, D. R. and D. R. Pittenger. 1992. Responses of groundcovers to renovation by mowing, HortSci. 27(6): 631-632. 55. Hodel, D. R. 1992. Environmental horticulture program saves water, money. Access (Fall): 2. 56. Hodel, D. R. 1993. A tale of two (three?) Neodypsis. Palm J. (January): 8-18. 57. Hodel, D. R. 1993. Palms for Southern California, part 2: Chrysalidocarpus. Palm J. (May): 25. 58. Hodel, D. R. 1993. The growth of some palms in Tahiti. Principes 37: 127-138. 59. Hodel, D. R. 1993. Palms for southern California, part 3: Euterpe and Prestoea. Palm J. (July): 33-34. 60. Hodel, D. R. 1994. Quantify accurate irrigation schedules with ET data. Cal. Lands. Feb.: 23-25, 56. 61. Hodel, D. R. 1994. Using evapotranspiration data to irrigate containerized nursery stock accurately. Pac. Coast Nurs. 52(5): 39-42, 40. 62. Hodel, D. R. and D. R. Pittenger (eds). 1993. Proceedings of the Palm Management and Culture Seminar, July 15, 1993. University of California, Riverside. 63. Hodel, D. R. 1993. Uses and problems of palms in the landscape, pp.
Recommended publications
  • Assessing Bird Species Richness Within Shade-Grown Coffee Farms in Chiapas, Mexico / Project ID: 0251711
    Assessing Bird Species Richness within Shade-Grown Coffee Farms in Chiapas, Mexico / Project ID: 0251711 Daniel Camilo Thompson Poo, Daniela Valle León, Alberto Martínez Fernández and Jennifer Siobhan Lowry San Cristóbal de las Casas, Chiapas, México. C.P. 29200 / [email protected] 10 July, 2012. Revised December 2014 Assessing Bird Species Richness within Shade-Grown Coffee Farms in Chiapas, Mexico / ID: 0251711 Overall Aim The goal of this project was to identify mechanisms and conservation strategies across agro-forestry systems in the El Triunfo Biosphere Reserve in Chiapas, Mexico. In particular we analyzed key biodiversity, economic, and social components that impact land-use change and ecosystem services in coffee production areas, focusing on how to improve sustainable production and conservation of nature. 2 Assessing Bird Species Richness within Shade-Grown Coffee Farms in Chiapas, Mexico / ID: 0251711 Section 1 Summary The agroforestry systems with coffee at the Sierra Madre of Chiapas, as a part of the Mesoamerican Biological Corridor region, are important for bird species. Agroforestry ecosystems also represent sustainable livelihoods for indigenous groups on the region. Sustainable coffee farming system represents a less human impact on the ecosystem. However, not all coffee producers on the region produce on the same way. Not all the inhabitants are aware of the importance of birds, as a part of the great natural capital of la Sierra Madre, but they either are prepared for the climate change risks and impacts. In this sense, this project seeks to understand, generate and communicate information useful for coffee farmers and their families. The goal is to understand social and economic factors to maintain and increase agroforestry systems with sustainable coffee.
    [Show full text]
  • Two Species of Armored Scale Insects (Hemiptera: Diaspididae) Associated with Sori of Ferns Marcelo Guerra Santos¹ & Vera Regina Dos Santos Wolff²
    doi:10.12741/ebrasilis.v8i3.492 e-ISSN 1983-0572 Publicação do Projeto Entomologistas do Brasil www.ebras.bio.br Distribuído através da Creative Commons Licence v4.0 (BY-NC-ND) Copyright © EntomoBrasilis Copyright © do(s) Autor(es) Two Species of Armored Scale Insects (Hemiptera: Diaspididae) Associated with Sori of Ferns Marcelo Guerra Santos¹ & Vera Regina dos Santos Wolff² 1. Universidade do Estado do Rio de Janeiro, e-mail: [email protected] (Autor para correspondência). 2. Fundação Estadual de Pesquisa Agropecuária – FEPAGRO, Rio Grande do Sul, e-mail: [email protected]. _____________________________________ EntomoBrasilis 8 (3): 232-234 (2015) Abstract. This note reports the presence of two scale insects species Hemiberlesia palmae (Cockerell) and Pinnaspis strachani (Cooley) (Coccoidea, Diaspididae), associated respectively with Asplenium serratum L. (Aspleniaceae) and Niphidium crassifolium (L.) Lellinger (Polypodiaceae). It is the first record of a fern species as host plant of H. palmae. In both fern species, the diaspidids were found nearby the sori. Keywords: Aspleniaceae; Fern-insect interactions; Polypodiaceae; Pteridophytes; Scale Insect. Duas Espécies de Cochonilhas (Hemiptera: Diaspididae) Associadas com Soros de Samambaias Resumo. A presente comunicação relata a presença de duas espécies de cochonilhas Hemiberlesia palmae (Cockerell) e Pinnaspis strachani (Cooley) (Coccoidea, Diaspididae), associadas respectivamente com Asplenium serratum L. (Aspleniaceae) e Niphidium crassifolium (L.) Lellinger (Polypodiaceae). É o primeiro registro de uma samambaia como planta hospedeira de H. palmae. Nas duas espécies de samambaias, os diaspidídeos encontravam-se concentrados principalmente ao redor dos soros. Palavras-chave: Aspleniaceae; Cochonilhas; Interações samambaia-inseto; Polypodiaceae; Pteridófitas. _____________________________________ nteractions between ferns and insects are more poorly (2003).
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • Insights on Long-Distance Dispersal, Ecological and Morphological Evolution in the Fern
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.138776; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insights on long-distance dispersal, ecological and morphological evolution in the fern genus Microgramma from phylogenetic inferences Thaís Elias Almeida1, Alexandre Salino2, Jean-Yves Dubuisson3, Sabine Hennequin3 1Herbário HSTM, Universidade Federal do Oeste do Pará, Av. Marechal Rondon, s.n. – Santarém, Pará, Brazil. CEP 68.040-070. 2Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – Belo Horizonte, Minas Gerais, Brazil. Caixa Postal 486, CEP 30123-970 3Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, EPHE. Université des Antilles, 57 rue Cuvier, 75005 Paris, France Corresponding author: [email protected] Running title: Phylogenetic inferences of Microgramma bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.138776; this version posted June 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The epiphytic fern genus Microgramma (Polypodiaceae) comprises 30 species occurring mainly in the Neotropics with one species in Africa, being an example of trans-Atlantic disjunction. Morphologically and ecologically, Microgramma presents a wide variation that is not seen in its closest related genera.
    [Show full text]
  • How Prevalent Is Crassulacean Acid Metabolism Among Vascular Epiphytes?
    Oecologia (2004) 138: 184-192 DOI 10.1007/s00442-003-1418-x ECOPHYSIOLOGY Gerhard Zotz How prevalent is crassulacean acid metabolism among vascular epiphytes? Received: 24 March 2003 / Accepted: 1Í September 2003 / Published online: 31 October 2003 © Springer-Verlag 2003 Abstract The occurrence of crassulacean acid metabo- the majority of plant species using this water-preserving lism (CAM) in the epiphyte community of a lowland photosynthetic pathway live in trees as epiphytes. In a forest of the Atlantic slope of Panama was investigated. I recent review on the taxonomic occurrence of CAM, hypothesized that CAM is mostly found in orchids, of Winter and Smith (1996) pointed out that Orchidaceae which many species are relatively small and/or rare. Thus, present the greatest uncertainty concerning the number of the relative proportion of species with CAM should not be CAM plants. This family with >800 genera and at least a good indicator for the prevalence of this photosynthetic 20,000 species (Dressier 1981) is estimated to have 7,000, pathway in a community when expressed on an individual mostly epiphytic, CAM species (Winter and Smith 1996), or a biomass basis. In 0.4 ha of forest, 103 species of which alone would account for almost 50% of all CAM vascular epiphytes with 13,099 individuals were found. As plants. A number of studies, mostly using stable isotope judged from the C isotope ratios and the absence of Kranz techniques, documented a steady increase in the propor- anatomy, CAM was detected in 20 species (19.4% of the tion of CAM plants among local epiphyte floras from wet total), which were members of the families Orchidaceae, tropical rainforest and moist tropical forests to dry forests.
    [Show full text]
  • Biogeographical Patterns of Species Richness, Range Size And
    Biogeographical patterns of species richness, range size and phylogenetic diversity of ferns along elevational-latitudinal gradients in the tropics and its transition zone Kumulative Dissertation zur Erlangung als Doktorgrades der Naturwissenschaften (Dr.rer.nat.) dem Fachbereich Geographie der Philipps-Universität Marburg vorgelegt von Adriana Carolina Hernández Rojas aus Xalapa, Veracruz, Mexiko Marburg/Lahn, September 2020 Vom Fachbereich Geographie der Philipps-Universität Marburg als Dissertation am 10.09.2020 angenommen. Erstgutachter: Prof. Dr. Georg Miehe (Marburg) Zweitgutachterin: Prof. Dr. Maaike Bader (Marburg) Tag der mündlichen Prüfung: 27.10.2020 “An overwhelming body of evidence supports the conclusion that every organism alive today and all those who have ever lived are members of a shared heritage that extends back to the origin of life 3.8 billion years ago”. This sentence is an invitation to reflect about our non- independence as a living beins. We are part of something bigger! "Eine überwältigende Anzahl von Beweisen stützt die Schlussfolgerung, dass jeder heute lebende Organismus und alle, die jemals gelebt haben, Mitglieder eines gemeinsamen Erbes sind, das bis zum Ursprung des Lebens vor 3,8 Milliarden Jahren zurückreicht." Dieser Satz ist eine Einladung, über unsere Nichtunabhängigkeit als Lebende Wesen zu reflektieren. Wir sind Teil von etwas Größerem! PREFACE All doors were opened to start this travel, beginning for the many magical pristine forest of Ecuador, Sierra de Juárez Oaxaca and los Tuxtlas in Veracruz, some of the most biodiverse zones in the planet, were I had the honor to put my feet, contemplate their beauty and perfection and work in their mystical forest. It was a dream into reality! The collaboration with the German counterpart started at the beginning of my academic career and I never imagine that this will be continued to bring this research that summarizes the efforts of many researchers that worked hardly in the overwhelming and incredible biodiverse tropics.
    [Show full text]
  • Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta)
    Hoehnea 44(2): 251-268, 4 fig., 2017 http://dx.doi.org/10.1590/2236-8906-95/2016 Ferns of Viçosa, Minas Gerais State, Brazil: Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta) Andreza Gonçalves da Silva1 and Pedro B. Schwartsburd1,2 Received: 10.11.2016; accepted: 11.04.2017 ABSTRACT - (Ferns of Viçosa, Minas Gerais State, Brazil: Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta). As part of an ongoing project treating the ferns and lycophytes from the region of Viçosa, MG, Brazil, we here present the taxonomic treatment of Polypodiaceae. We performed field expeditions in remaining forest patches and disturbed sites from 2012 to 2016. We also revised the Polypodiaceae collection of VIC herbarium. In the region of Viçosa, 19 species of Polypodiaceae occur: Campyloneurum centrobrasilianum, C. decurrens, C. lapathifolium, C. phyllitidis, Cochlidium punctatum, Microgramma crispata, M. percussa, M. squamulosa, M. vacciniifolia, Niphidium crassifolium, Pecluma filicula, P. plumula, P. truncorum, Phlebodium areolatum, P. decumanum, Pleopeltis astrolepis, P. minima, Serpocaulon fraxinifolium, and S. menisciifolium. Among them, six are endemic to the Atlantic Forest. During our search in VIC, we found an isotype of Campyloneurum centrobrasilianum. We present keys, descriptions, illustrations, examined materials, and comments of all taxa. Keywords: epiphytic ferns, Flora, Pteridophyta, southeastern Brazil RESUMO - (Samambaias de Viçosa, MG, Brasil: Polypodiaceae (Polypodiales, Filicopsida, Tracheophyta)). Como parte de um projeto em andamento que trata da Flora de samambaias e licófitas da região de Viçosa, MG, Brasil, é aqui apresentado o tratamento taxonômico de Polypodiaceae. Foram realizadas expedições de campo em remanescentes florestais e áreas alteradas, entre 2012 e 2016. Foi também revisada a coleção de Polypodiaceae do herbário VIC.
    [Show full text]
  • Cheilanthes (Cheilanthoideae, Pteridaceae), with Emphasis on South American Species
    Organisms Diversity & Evolution (2018) 18:175–186 https://doi.org/10.1007/s13127-018-0366-6 ORIGINAL ARTICLE Further progress towards the delimitation of Cheilanthes (Cheilanthoideae, Pteridaceae), with emphasis on South American species M. Mónica Ponce1 & M. Amalia Scataglini1 Received: 20 July 2017 /Accepted: 22 April 2018 /Published online: 5 May 2018 # Gesellschaft für Biologische Systematik 2018 Abstract Cheilanthoid ferns (Cheilanthoideae sensu PPG 1 2016) constitute an important group within the Pteridaceae and are cosmopolitan in distribution. In South America, there are 155 species distributed in 13 genera, among which the largest are Adiantopsis (35), Cheilanthes (27), and Doryopteris (22). Most of the cheilanthoid species are morphologically adapted to grow in arid to semi-arid conditions and show convergent evolution, which has implied difficulties in defining the genera throughout their taxonomic history (Copeland 1947,Tryon&Tryon1973,Gastony&Rollo 1995, 1998,KirkpatrickSystematic Botany, 32:504–518, 2007, Rothfels et al. Taxon, 57: 712–724, 2008). Here, we sequenced two plastid markers (rbcL + trnL-F) of 33 South American cheilanthoid species, most of which have not been included in phylogenetic analyses previously. The South American species were analyzed together with South African and Australasian Cheilanthes and representatives of related cheilanthoid genera. The phylogenetic analysis showed that most Cheilanthes species are related to the genus Hemionitis, constituting different groups according to their distribu- tion; moreover, three species—C. hassleri, C. pantanalensis,andC. obducta—appear as the sister clade of Hemionitis. Cheilanthes micropteris, the type species, is strongly supported in a clade with Australasian Cheilanthes plus five South American Cheilanthes species, all of which show a reduction in the number of spores per sporangium; this feature would be a synapomorphy for core Cheilanthes s.s.
    [Show full text]
  • Common Epiphytes and Lithophytes of BELIZE 1 Bruce K
    Common Epiphytes and Lithophytes of BELIZE 1 Bruce K. Holst, Sally Chambers, Elizabeth Gandy & Marilynn Shelley1 David Amaya, Ella Baron, Marvin Paredes, Pascual Garcia & Sayuri Tzul2 1Marie Selby Botanical Gardens, 2 Ian Anderson’s Caves Branch Botanical Garden © Marie Selby Bot. Gard. ([email protected]), Ian Anderson’s Caves Branch Bot. Gard. ([email protected]). Photos by David Amaya (DA), Ella Baron (EB), Sally Chambers (SC), Wade Coller (WC), Pascual Garcia (PG), Elizabeth Gandy (EG), Bruce Holst (BH), Elma Kay (EK), Elizabeth Mallory (EM), Jan Meerman (JM), Marvin Paredes (MP), Dan Perales (DP), Phil Nelson (PN), David Troxell (DT) Support from the Marie Selby Botanical Gardens, Ian Anderson’s Caves Branch Jungle Lodge, and many more listed in the Acknowledgments [fieldguides.fieldmuseum.org] [1179] version 1 11/2019 TABLE OF CONTENTS long the eastern slopes of the Andes and in Brazil’s Atlantic P. 1 ............. Epiphyte Overview Forest biome. In these places where conditions are favorable, epiphytes account for up to half of the total vascular plant P. 2 .............. Epiphyte Adaptive Strategies species. Worldwide, epiphytes account for nearly 10 percent P. 3 ............. Overview of major epiphytic plant families of all vascular plant species. Epiphytism (the ability to grow P. 6 .............. Lesser known epiphytic plant families as an epiphyte) has arisen many times in the plant kingdom P. 7 ............. Common epiphytic plant families and species around the world. (Pteridophytes, p. 7; Araceae, p. 9; Bromeliaceae, p. In Belize, epiphytes are represented by 34 vascular plant 11; Cactaceae, p. 15; p. Gesneriaceae, p. 17; Orchida- families which grow abundantly in many shrublands and for- ceae, p.
    [Show full text]
  • How Prevalent Is Crassulacean Acid Metabolism Among Vascular Epiphytes?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Oecologia (2004) 138: 184–192 DOI 10.1007/s00442-003-1418-x ECOPHYSIOLOGY Gerhard Zotz How prevalent is crassulacean acid metabolism among vascular epiphytes? Received: 24 March 2003 / Accepted: 18 September 2003 / Published online: 31 October 2003 # Springer-Verlag 2003 Abstract The occurrence of crassulacean acid metabo- the majority of plant species using this water-preserving lism (CAM) in the epiphyte community of a lowland photosynthetic pathway live in trees as epiphytes. In a forest of the Atlantic slope of Panama was investigated. I recent review on the taxonomic occurrence of CAM, hypothesized that CAM is mostly found in orchids, of Winter and Smith (1996) pointed out that Orchidaceae which many species are relatively small and/or rare. Thus, present the greatest uncertainty concerning the number of the relative proportion of species with CAM should not be CAM plants. This family with >800 genera and at least a good indicator for the prevalence of this photosynthetic 20,000 species (Dressler 1981) is estimated to have 7,000, pathway in a community when expressed on an individual mostly epiphytic, CAM species (Winter and Smith 1996), or a biomass basis. In 0.4 ha of forest, 103 species of which alone would account for almost 50% of all CAM vascular epiphytes with 13,099 individuals were found. As plants. A number of studies, mostly using stable isotope judged from the C isotope ratios and the absence of Kranz techniques, documented a steady increase in the propor- anatomy, CAM was detected in 20 species (19.4% of the tion of CAM plants among local epiphyte floras from wet total), which were members of the families Orchidaceae, tropical rainforest and moist tropical forests to dry forests.
    [Show full text]
  • The First Anniversary of Phytotaxa in the International Year of Biodiversity
    Phytotaxa 15: 1–8 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Editorial PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) The first anniversary of Phytotaxa in the International Year of Biodiversity MAARTEN J.M. CHRISTENHUSZ1, WILLIAM BAKER2, MARK W. CHASE2, MICHAEL F. FAY 2, SAMULI LEHTONEN3, BEN VAN EE4, MATT VON KONRAT5, THORSTEN LUMBSCH5, KAREN S. RENZAGLIA6, JON SHAW7, DAVID M. WILLIAMS8 & ZHI-QIANG ZHANG9 1Botanical Garden and Herbarium, Finnish Museum of Natural History, PL 7 (Unioninkatu 44), 00014, University of Helsinki, Finland. E-mail: [email protected] 2Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom. 3Department of Biology tany, University of Turku, 20014 Turku, Finland. 4Botany Department, University of Wisconsin, 339 Birge, 430 Lincoln Drive, Madison, Wisconsin 53706, U.S.A. 5Department of Botany, The Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois, U.S.A. 6Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509, U.S.A. 7Department of Biology, Duke University, Durham, North Carolina 27708, U.S.A. 8Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. 9Landcare Research, Private Bag 92170, Auckland 1142, New Zealand; [email protected] Introduction Mankind relies on the diversity of life to provide us with food, fuel, water, oxygen, medicine and other essentials, yet this biodiversity is being lost at a greatly accelerated rate because of careless human activity. This weakens the ability of living systems to resist growing threats such as climate change, creating greater poverty through degradation of many ecosystems, both terrestrial and marine.
    [Show full text]
  • The Flora of Peninsular Malaysia Is a New Project, the Aim Of
    THAI FOR. BULL. (BOT.) 38: 187–188. 2010. BOOK REVIEW B.S. Parris, R. Kiew, R.C.K. Chung, L.G. Saw & E. Soepadmo (editors). Malayan Forest Records No. 48: Flora of Peninsular Malaysia, Series I: Ferns and Lycophytes. Volume 1. Pp 249, 6 tables, 65 maps, 28 fi gures and 18 colour plates. Forest Research Institute Malaysia, 2010. ISBN: 978-967-5221-24-8 (hardback). Price: approximately 3,500 THB. The Flora of Peninsular Malaysia is a new sidaceae. Generic delimitation also largely follows project, the aim of which is to provide a compre- Smith et al. (2006) with minor alterations except in hensive revision of all species of vascular plants in the Thelypteridaceae where Holttum’s genera from Peninsular Malaysia. These will be published in Flora Malesiana are recognized rather than the two series: Series I for the ferns and lycophytes and much broader genus concepts mostly followed Series II for the seed plants. Although the trees were today. treated in the Tree Flora of Malaya between 1972 The Forest Research Institute Malaysia and and 1989 this will be the fi rst complete revision of the editors are to be congratulated on launching all vascular plants in Peninsular Malaysia since the this ambitious project and on the successful com- seed plants were treated by Ridley between 1922 pletion of this fi rst volume. The inclusion of distri- and 1925 and the ferns by Holttum in 1968. bution maps for most species and conservation The fi rst volume to appear is volume 1 of assessments for all species is particularly to be Series I.
    [Show full text]