The Effects of Eutrophication on Jellyfish Populations in New Jersey Waterways
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of Wetlands and Deepwater Habitats of the United States
Pfego-/6^7fV SDMS DocID 463450 ^7'7/ Biological Services Program \ ^ FWS/OBS-79/31 DECEMBER 1979 Superfund Records Center ClassificaHioFF^^^ V\Aetlands and Deepwater Habitats of the United States KPHODtKtD BY NATIONAL TECHNICAL INFOR/V^ATION SERVICE U.S. IKPARTMEN TOF COMMERCt SPRINGMflO, VA. 22161 Fish and Wildlife Service U.S. Department of the Interior (USDI) C # The Biological Services Program was established within the U.S. Fish . and Wildlife Service to supply scientific information and methodologies on key environmental issues which have an impact on fish and wildlife resources and their supporting ecosystems. The mission of the Program is as follows: 1. To strengthen the Fish and Wildlife Service in its role as a primary source of Information on natural fish and wildlife resources, par ticularly with respect to environmental impact assessment. 2. To gather, analyze, and present information that will aid decision makers in the identification and resolution of problems asso ciated with major land and water use changes. 3. To provide better ecological information and evaluation for Department of the Interior development programs, such as those relating to energy development. Information developed by the Biological Services Program is intended for use in the planning and decisionmaking process, to prevent or minimize the impact of development on fish and wildlife. Biological Services research activities and technical assistance services are based on an analysis of the issues, the decisionmakers involved and their information neeids, and an evaluation of the state^f-the-art to Identify information gaps and determine priorities. This Is a strategy to assure that the products produced and disseminated will be timely and useful. -
Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats. -
Climate Change Impacts
CLIMATE CHANGE IMPACTS Josh Pederson / SIMoN NOAA Matt Wilson/Jay Clark, NOAA NMFS AFSC NMFS Southwest Fisheries Science Center GULF OF THE FARALLONES AND CORDELL BANK NATIONAL MARINE SANCTUARIES Report of a Joint Working Group of the Gulf of the Farallones and Cordell Bank National Marine Sanctuaries Advisory Councils Editors John Largier, Brian Cheng, and Kelley Higgason EXECUTIVE SUMMARY June 2010 Executive Summary On global and regional scales, the ocean is changing due to increasing atmospheric carbon dioxide (CO2) and associated global climate change. Regional physical changes include sea level rise, coastal erosion and flooding, and changes in precipitation and land runoff, ocean- atmosphere circulation, and ocean water properties. These changes in turn lead to biotic responses within ocean ecosystems, including changes in physiology, phenology, and population connectivity, as well as species range shifts. Regional habitats and ecosystems are thus affected by a combination of physical processes and biological responses. While climate change will also significantly impact human populations along the coast, this is discussed only briefly. Climate Change Impacts, developed by a joint working group of the Gulf of the Farallones (GFNMS) and Cordell Bank (CBNMS) National Marine Sanctuary Advisory Councils, identifies and synthesizes potential climate change impacts to habitats and biological communities along the north-central California coast. This report does not assess current conditions, or predict future changes. It presents scientific observations and expectations to identify potential issues related to changing climate – with an emphasis on the most likely ecological impacts and the impacts that would be most severe if they occur. Climate Change Impacts provides a foundation of information and scientific insight for each sanctuary to develop strategies for addressing climate change. -
Changing Jellyfish Populations: Trends in Large Marine Ecosystems
CHANGING JELLYFISH POPULATIONS: TRENDS IN LARGE MARINE ECOSYSTEMS by Lucas Brotz B.Sc., The University of British Columbia, 2000 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate Studies (Oceanography) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2011 © Lucas Brotz, 2011 Abstract Although there are various indications and claims that jellyfish have been increasing at a global scale in recent decades, a rigorous demonstration to this effect has never been presented. As this is mainly due to scarcity of quantitative time series of jellyfish abundance from scientific surveys, an attempt is presented here to complement such data with non- conventional information from other sources. This was accomplished using the analytical framework of fuzzy logic, which allows the combination of information with variable degrees of cardinality, reliability, and temporal and spatial coverage. Data were aggregated and analysed at the scale of Large Marine Ecosystem (LME). Of the 66 LMEs defined thus far, which cover the world’s coastal waters and seas, trends of jellyfish abundance (increasing, decreasing, or stable/variable) were identified (occurring after 1950) for 45, with variable degrees of confidence. Of these 45 LMEs, the overwhelming majority (31 or 69%) showed increasing trends. Recent evidence also suggests that the observed increases in jellyfish populations may be due to the effects of human activities, such as overfishing, global warming, pollution, and coastal development. Changing jellyfish populations were tested for links with anthropogenic impacts at the LME scale, using a variety of indicators and a generalized additive model. Significant correlations were found with several indicators of ecosystem health, as well as marine aquaculture production, suggesting that the observed increases in jellyfish populations are indeed due to human activities and the continued degradation of the marine environment. -
Intertidal Sand and Mudflats & Subtidal Mobile
INTERTIDAL SAND AND MUDFLATS & SUBTIDAL MOBILE SANDBANKS An overview of dynamic and sensitivity characteristics for conservation management of marine SACs M. Elliott. S.Nedwell, N.V.Jones, S.J.Read, N.D.Cutts & K.L.Hemingway Institute of Estuarine and Coastal Studies University of Hull August 1998 Prepared by Scottish Association for Marine Science (SAMS) for the UK Marine SACs Project, Task Manager, A.M.W. Wilson, SAMS Vol II Intertidal sand and mudflats & subtidal mobile sandbanks 1 Citation. M.Elliott, S.Nedwell, N.V.Jones, S.J.Read, N.D.Cutts, K.L.Hemingway. 1998. Intertidal Sand and Mudflats & Subtidal Mobile Sandbanks (volume II). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project). 151 Pages. Vol II Intertidal sand and mudflats & subtidal mobile sandbanks 2 CONTENTS PREFACE 7 EXECUTIVE SUMMARY 9 I. INTRODUCTION 17 A. STUDY AIMS 17 B. NATURE AND IMPORTANCE OF THE BIOTOPE COMPLEXES 17 C. STATUS WITHIN OTHER BIOTOPE CLASSIFICATIONS 25 D. KEY POINTS FROM CHAPTER I. 27 II. ENVIRONMENTAL REQUIREMENTS AND PHYSICAL ATTRIBUTES 29 A. SPATIAL EXTENT 29 B. HYDROPHYSICAL REGIME 29 C. VERTICAL ELEVATION 33 D. SUBSTRATUM 36 E. KEY POINTS FROM CHAPTER II 43 III. BIOLOGY AND ECOLOGICAL FUNCTIONING 45 A. CHARACTERISTIC AND ASSOCIATED SPECIES 45 B. ECOLOGICAL FUNCTIONING AND PREDATOR-PREY RELATIONSHIPS 53 C. BIOLOGICAL AND ENVIRONMENTAL INTERACTIONS 58 D. KEY POINTS FROM CHAPTER III 65 IV. SENSITIVITY TO NATURAL EVENTS 67 A. POTENTIAL AGENTS OF CHANGE 67 B. KEY POINTS FROM CHAPTER IV 74 V. SENSITIVITY TO ANTHROPOGENIC ACTIVITIES 75 A. -
Age and Growth Rate Verification of Longfin Mako Sharks
High-Tech in the High Sea: Innovative Technology Helps Scientists Study the Bering Sea Food Web Hongsheng Bi1, Mary Beth Decker2, Katie Lankowicz1, Kevin Boswell3 1. University of Maryland Center for Environmental Science 2. Yale University 3. Florida International University Outline ● Introduction to the Bering Sea ● Research cruises ● Fun ● Work ● Sobering stuff ● Serious science ● What did we see ● What did we learn ● Take home message ● Not yet! Introduction ● Jellyfish biomass in the Bering Sea increased, important fish stocks declined. ● What favor jellyfish bloom? ● Where are they coming from? ● Source location, spatial distribution, demographic structure ● Where do they go? ● Spatial distribution, advection ● Recruitment success ● Abundance and size structure ● Impacts on the food web Bering Sea Study area and circulation Source: Ladd Study site and Sampling ●Four cruises ●Two in 2017 late spring and summer ●Two in 2018 early summer and fall ● 33 stations ● At each station, ZOOVIS-ARIS coupled frame was towed ~1.5 -2 hour continuously ● Shipboard multi-frequency echo sounder recorded data continuously ● >10 TB along with CTD and ADCP data ● >100,000 ZOOVIS image frames Sampling at ST02 ● Direct Sampling ● CTD ● 1 m2 plankton net ● 20 cm Bongo net ● Imaging ● ZOOplankton VISualization (ZOOVIS) System ● RBR CTD for ZOOVIS ● Acoustics ● ARIS 1800 Imaging Sonar ● Multi-frequency Simrad EK60 ● Shipboard ADCP What do we see? ZOOVIS Image: ROI Extraction Process Deep Learning- >90% Classification accuracy Note: images are not scaled to each other. Sonar Imaging system Acoustic Survey Methodology • Continuous acoustic survey conducted during cruise. • Data was partitioned to coincide with ZOOVIS sampling stations. • 4 hull mounted SIMRAD EK60 Scientific Echosounders. -
State of Nearshore Marine Habitats in the Wider Caribbean
UNITED NATIONS EP Distr. LIMITED UNEP(DEPI)/CAR WG.42/INF.5 1 February 2021 Original: ENGLISH Ninth Meeting of the Scientific and Technical Advisory Committee (STAC) to the Protocol Concerning Specially Protected Areas and Wildlife (SPAW) in the Wider Caribbean Region 17–19 March 2021 THE STATE OF NEARSHORE MARINE HABITATS IN THE WIDER CARIBBEAN For reasons of public health and safety associated with COVD-19, this meeting is being convened virtually. Delegates are kindly requested to access all meeting documents electronically for download as necessary. *This document has been reproduced without formal editing. 2020 The State of Nearshore Marine Habitats in the Wider Caribbean United Nations Environment Programme - Caribbean Environment Programme (UNEP-CEP) Caribbean Natural Resources Institute (CANARI), Technical Report No. 00 Title of the Report Authors of the Report Partner’s Name, Technical Report No.00 Catalyzing implementation of the Strategic Action Programme for the Caribbean and North Brazil Shelf LME’s (2015-2020) ACKNOWLEDGMENTS Development of this Information Product and its contents, and/or the activities leading thereto, have benefited from the financial support of the UNDP/GEF Project: “Catalysing Implementation of the Strategic Action Programme (SAP) for the Sustainable Management of shared Living Marine Resources in the Caribbean and North Brazil Shelf Large Marine Ecosystems” (CLME+ Project, 2015-2020) The CLME+ Project is executed by the United Nations Office for Project Services (UNOPS) in close collaboration with a large number of global, regional and national-level partners. All are jointly referred to as the “CLME+ Project co- executing partners”. www.clmeproject.org [email protected] As a GEF Agency, the United Nations Development Programme (UNDP) implements a global portfolio of GEF co-funded Large Marine Ecosystem projects, among which the CLME+ Project. -
Harmful Algal Blooms
NSF GK-12 Graduate Fellows Program Award # DGE-0139171 University of North Carolina at Wilmington Harmful Algal Blooms by Tika Knierim, Department of Chemistry This activity is aligned with the 2001 North Carolina Standard Course of Study for 8th Grade Science: Goal # 1 & 2 Algal species sometimes make their presence known as a massive “bloom” of cells that may discolor the water These “blooms” alter marine habitats Every coastal state has reported major blooms Although they are referred to as harmful algal blooms, not all HABs are toxic Toxic blooms are caused by algae that produce potent toxins that can cause massive fish kills, marine mammal deaths, and human illness There are several types of toxins produced by these harmful algae. .commonly the toxins affect the functioning of nerve and muscle cells Toxic blooms have been responsible for causing diarrhea, vomiting, numbness, dizziness, paralysis, and even death The key is how the toxins move through the food web The key to this scenario is bioaccumulation!! BIOACCUMULATION is the process by which compounds accumulate or build up in an organism at a faster rate than they can be broken down. Some organisms, such as krill, mussels, anchovies, and mackerel, have been found to retain toxins in their bodies Today we are going to do a little activity in order to better understand the concept of bioaccumulation and how toxins are transferred through the food chain. Each person will be assigned one of the following organisms: Krill: Seal: Fish: Killer Whale: There is an outbreak of a Harmful Algal Bloom within the boundaries of this classroom, and there is algae (green beads) spread all over the area. -
Introduction to Marine Conservation Biology
Network of Conservation Educators & Practitioners Introduction to Marine Conservation Biology Author(s): Tundi Agardy Source: Lessons in Conservation, Vol. 1, pp. 5-43 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2007, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Introduction to Marine Conservation Biology Tundi Agardy* *Sound Seas, Bethesda, MD, USA, email -
Mapping and Modelling of Marine Habitats in the Baltic Sea (Draft)
Mapping and modelling of marine habi- tats in the Baltic Sea region DRAFT BALANCE Interim Report No. 10 i Title BALANCE Interim Report No. Mapping and modelling of marine habitats in the Baltic 27 Sea region Authors Date Grete E. Dinesen (ed.), The Danish Forest and Nature Agency In association with: May 2008 Jesper H. Andersen, DHI Water, Environment & Health, Denmark Johnny B. Reker, The Danish Forest and Nature Agency Approved by With report contribution from (in alphabetic order): Trine Bekkby, Norwegian Institute for Water Research Ulf Bergström, The National Board of Fisheries, Sweden Martynas Bučas, Klaipeda University, Lithuania Ida Carlén, AquaBiota Water Research, Sweden Karsten Dahl, The National Environmental Institute, Denmark Darius Daunys, Klaipeda University, Lithuania Jørgen Hansen, The National Environmental Institute Kristjan Herkül, University of Tartu, Estonia Martin Isæus, AquaBiota Water Research, Sweden Gerd Kraus, The Danish Institute of Fisheries Research Jonne Kotta, University of Tartu, Estonia Jørgen O. Leth, The Geological Survey of Greenland and Denmark Cecilia Lindblad, The Swedish Environmental Protection Agency Georg Martin, University of Tartu, Estonia Frithjof Moy, Norwegian Institute for Water Research Hans Nilsson, Norwegian Institute for Water Research Anna Nójd, Finnish Environment Institute Kjell Magnus Norderhaug, Norwegian Institute for Water Research Helen Orav-Kotta, University of Tartu, Estonia Are Pedersen, Norwegian Institute for Water Research Alfred Sandstróm, The National Board of Fisheries, Sweden Mart Simm, University of Tartu, Estonia Matias Sköld, The National Board of Fisheries, Sweden Claus Sparrevohn, The Danish Institute for Fisheries Research Göran Sundblad, The National Board of Fisheries, Sweden Sandra Wennberg, Metria, Sweden Petras Zemblys, Klaipeda University, Lithuania Front page illustration: 1 Final report 0 Draft report Revision Description Checked Approved Date Key words Classification BALANCE; Baltic Sea; Kattegat; Skagerrak, marine Open BALANCE Interim Report No. -
Unfolding Jellyfish Bloom Dynamics Along the Mediterranean Basin by Transnational Citizen Science Initiatives
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2021 doi:10.20944/preprints202103.0310.v1 Type of the Paper (Article) Unfolding jellyfish bloom dynamics along the Mediterranean basin by transnational citizen science initiatives Macarena Marambio 1, Antonio Canepa 2, Laura Lòpez 1, Aldo Adam Gauci 3, Sonia KM Gueroun 4, 5, Serena Zampardi 6, Ferdinando Boero 6, 7, Ons Kéfi-Daly Yahia 8, Mohamed Nejib Daly Yahia 9 *, Verónica Fuentes 1 *, Stefano Piraino10, 11 *, Alan Deidun 3 * 1 Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain; [email protected], [email protected], [email protected] 2 Escuela Politécnica Superior, Universidad de Burgos, Burgos, Spain; [email protected] 3 Department of Geosciences, Faculty of Science, University of Malta, Malta; [email protected], [email protected]; 4 MARE – Marine and Environmental Sciences Centre, Agencia Regional para o Desenvolvimento da Investigacao Tecnologia e Inovacao (ARDITI), Funchal, Portugal; [email protected] 5 Carthage University – Faculty of Sciences of Bizerte, Bizerte, Tunisia 6 Stazione Zoologica Anton Dohrn, Naples, Italy; [email protected] 7 University of Naples, Naples, Italy; [email protected] 8 Tunisian National Institute of Agronomy, Tunis, Tunisia; [email protected] 9 Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar; [email protected] 9 Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; [email protected] 10 Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy * Correspondence : [email protected], [email protected], [email protected], [email protected]. -
Rocky Intertidal, Mudflats and Beaches, and Eelgrass Beds
Appendix 5.4, Page 1 Appendix 5.4 Marine and Coastline Habitats Featured Species-associated Intertidal Habitats: Rocky Intertidal, Mudflats and Beaches, and Eelgrass Beds A swath of intertidal habitat occurs wherever the ocean meets the shore. At 44,000 miles, Alaska’s shoreline is more than double the shoreline for the entire Lower 48 states (ACMP 2005). This extensive shoreline creates an impressive abundance and diversity of habitats. Five physical factors predominantly control the distribution and abundance of biota in the intertidal zone: wave energy, bottom type (substrate), tidal exposure, temperature, and most important, salinity (Dethier and Schoch 2000; Ricketts and Calvin 1968). The distribution of many commercially important fishes and crustaceans with particular salinity regimes has led to the description of “salinity zones,” which can be used as a basis for mapping these resources (Bulger et al. 1993; Christensen et al. 1997). A new methodology called SCALE (Shoreline Classification and Landscape Extrapolation) has the ability to separate the roles of sediment type, salinity, wave action, and other factors controlling estuarine community distribution and abundance. This section of Alaska’s CWCS focuses on 3 main types of intertidal habitat: rocky intertidal, mudflats and beaches, and eelgrass beds. Tidal marshes, which are also intertidal habitats, are discussed in the Wetlands section, Appendix 5.3, of the CWCS. Rocky intertidal habitats can be categorized into 3 main types: (1) exposed, rocky shores composed of steeply dipping, vertical bedrock that experience high-to- moderate wave energy; (2) exposed, wave-cut platforms consisting of wave-cut or low-lying bedrock that experience high-to-moderate wave energy; and (3) sheltered, rocky shores composed of vertical rock walls, bedrock outcrops, wide rock platforms, and boulder-strewn ledges and usually found along sheltered bays or along the inside of bays and coves.