Unfolding Jellyfish Bloom Dynamics Along the Mediterranean Basin by Transnational Citizen Science Initiatives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Changing Jellyfish Populations: Trends in Large Marine Ecosystems
CHANGING JELLYFISH POPULATIONS: TRENDS IN LARGE MARINE ECOSYSTEMS by Lucas Brotz B.Sc., The University of British Columbia, 2000 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate Studies (Oceanography) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2011 © Lucas Brotz, 2011 Abstract Although there are various indications and claims that jellyfish have been increasing at a global scale in recent decades, a rigorous demonstration to this effect has never been presented. As this is mainly due to scarcity of quantitative time series of jellyfish abundance from scientific surveys, an attempt is presented here to complement such data with non- conventional information from other sources. This was accomplished using the analytical framework of fuzzy logic, which allows the combination of information with variable degrees of cardinality, reliability, and temporal and spatial coverage. Data were aggregated and analysed at the scale of Large Marine Ecosystem (LME). Of the 66 LMEs defined thus far, which cover the world’s coastal waters and seas, trends of jellyfish abundance (increasing, decreasing, or stable/variable) were identified (occurring after 1950) for 45, with variable degrees of confidence. Of these 45 LMEs, the overwhelming majority (31 or 69%) showed increasing trends. Recent evidence also suggests that the observed increases in jellyfish populations may be due to the effects of human activities, such as overfishing, global warming, pollution, and coastal development. Changing jellyfish populations were tested for links with anthropogenic impacts at the LME scale, using a variety of indicators and a generalized additive model. Significant correlations were found with several indicators of ecosystem health, as well as marine aquaculture production, suggesting that the observed increases in jellyfish populations are indeed due to human activities and the continued degradation of the marine environment. -
Biological Interactions Between Fish and Jellyfish in the Northwestern Mediterranean
Biological interactions between fish and jellyfish in the northwestern Mediterranean Uxue Tilves Barcelona 2018 Biological interactions between fish and jellyfish in the northwestern Mediterranean Interacciones biológicas entre meduas y peces y sus implicaciones ecológicas en el Mediterráneo Noroccidental Uxue Tilves Matheu Memoria presentada para optar al grado de Doctor por la Universitat Politècnica de Catalunya (UPC), Programa de doctorado en Ciencias del Mar (RD 99/2011). Tesis realizada en el Institut de Ciències del Mar (CSIC). Directora: Dra. Ana Maria Sabatés Freijó (ICM-CSIC) Co-directora: Dra. Verónica Lorena Fuentes (ICM-CSIC) Tutor/Ponente: Dr. Manuel Espino Infantes (UPC) Barcelona This student has been supported by a pre-doctoral fellowship of the FPI program (Spanish Ministry of Economy and Competitiveness). The research carried out in the present study has been developed in the frame of the FISHJELLY project, CTM2010-18874 and CTM2015- 68543-R. Cover design by Laura López. Visual design by Eduardo Gil. Thesis contents THESIS CONTENTS Summary 9 General Introduction 11 Objectives and thesis outline 30 Digestion times and predation potentials of Pelagia noctiluca eating CHAPTER1 fish larvae and copepods in the NW Mediterranean Sea 33 Natural diet and predation impacts of Pelagia noctiluca on fish CHAPTER2 eggs and larvae in the NW Mediterranean 57 Trophic interactions of the jellyfish Pelagia noctiluca in the NW Mediterranean: evidence from stable isotope signatures and fatty CHAPTER3 acid composition 79 Associations between fish and jellyfish in the NW CHAPTER4 Mediterranean 105 General Discussion 131 General Conclusion 141 Acknowledgements 145 Appendices 149 Summary 9 SUMMARY Jellyfish are important components of marine ecosystems, being a key link between lower and higher trophic levels. -
Age and Growth Rate Verification of Longfin Mako Sharks
High-Tech in the High Sea: Innovative Technology Helps Scientists Study the Bering Sea Food Web Hongsheng Bi1, Mary Beth Decker2, Katie Lankowicz1, Kevin Boswell3 1. University of Maryland Center for Environmental Science 2. Yale University 3. Florida International University Outline ● Introduction to the Bering Sea ● Research cruises ● Fun ● Work ● Sobering stuff ● Serious science ● What did we see ● What did we learn ● Take home message ● Not yet! Introduction ● Jellyfish biomass in the Bering Sea increased, important fish stocks declined. ● What favor jellyfish bloom? ● Where are they coming from? ● Source location, spatial distribution, demographic structure ● Where do they go? ● Spatial distribution, advection ● Recruitment success ● Abundance and size structure ● Impacts on the food web Bering Sea Study area and circulation Source: Ladd Study site and Sampling ●Four cruises ●Two in 2017 late spring and summer ●Two in 2018 early summer and fall ● 33 stations ● At each station, ZOOVIS-ARIS coupled frame was towed ~1.5 -2 hour continuously ● Shipboard multi-frequency echo sounder recorded data continuously ● >10 TB along with CTD and ADCP data ● >100,000 ZOOVIS image frames Sampling at ST02 ● Direct Sampling ● CTD ● 1 m2 plankton net ● 20 cm Bongo net ● Imaging ● ZOOplankton VISualization (ZOOVIS) System ● RBR CTD for ZOOVIS ● Acoustics ● ARIS 1800 Imaging Sonar ● Multi-frequency Simrad EK60 ● Shipboard ADCP What do we see? ZOOVIS Image: ROI Extraction Process Deep Learning- >90% Classification accuracy Note: images are not scaled to each other. Sonar Imaging system Acoustic Survey Methodology • Continuous acoustic survey conducted during cruise. • Data was partitioned to coincide with ZOOVIS sampling stations. • 4 hull mounted SIMRAD EK60 Scientific Echosounders. -
Cnidarian Phylogenetic Relationships As Revealed by Mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1
Kayal et al. BMC Evolutionary Biology 2013, 13:5 http://www.biomedcentral.com/1471-2148/13/5 RESEARCH ARTICLE Open Access Cnidarian phylogenetic relationships as revealed by mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1 Abstract Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. -
Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included. -
Hyperia Galba in the North Sea Birgit Dittrich*
HELGOLANDER MEERESUNTERSUCHUNGEN Helgol&nder Meeresunters. 42, 79-98 (1988) Studies on the life cycle and reproduction of the parasitic amphipod Hyperia galba in the North Sea Birgit Dittrich* Lehrstuhl ffir Speziefle Zoologie und Parasitologie, Ruhr-Universit~t Bochum; D-4630 Bochum 1 and Biologische Anstalt Helgoland (Meeresstation); D-2192 Helgoland, Federal Republic of Germany ABSTRACT: The structure of a Hyperia galba population, and its seasonal fluctuations were studied in the waters of the German Bight around the island of Helgoland over a period of two years (1984 and 1985). A distinct seasonal periodicity in the distribution pattern of this amphipod was recorded. During summer, when its hosts - the scyphomedusae Aurelia aurita, Chrysaora hysoscella, Rhizo- stoma pulmo, Cyanea capillata and Cyanea lamarckn'- occur in large numbers, supplying shelter and food, a population explosion of H. galba can be observed. It is caused primarily by the relatively high fecundity of H. galba which greatly exceeds that of other amphipods: a maximum of 456 eggs was observed. The postembryonic development is completed in the medusae infested; only then are the young able to swim and search for a new host. The smallest fr4ely-swimming hyperians obtained from plankton samples were 2.6 mm in body size. The size classes observed as well as moult increment and moulting frequencies in relation to different temperatures suggest that two genera- tions are developed per year: a rapidly growing generation in summer and a slower growing generation in winter that shifts to a benthic mode of life and hibernation. For short periods, adult hyperians may become attached to zooplankters other than scyphomedusae. -
Jellyfish Aggregations and Leatherback Turtle Foraging Patterns in a Temperate Coastal Environment
Ecology, 87(8), 2006, pp. 1967–1972 Ó 2006 by the the Ecological Society of America JELLYFISH AGGREGATIONS AND LEATHERBACK TURTLE FORAGING PATTERNS IN A TEMPERATE COASTAL ENVIRONMENT 1 2 2 2 1,3 JONATHAN D. R. HOUGHTON, THOMAS K. DOYLE, MARK W. WILSON, JOHN DAVENPORT, AND GRAEME C. HAYS 1Department of Biological Sciences, Institute of Environmental Sustainability, University of Wales Swansea, Singleton Park, Swansea SA2 8PP United Kingdom 2Department of Zoology, Ecology and Plant Sciences, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland Abstract. Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal ‘‘hotspots’’ during consecutive years (2003–2005). Examination of retro- spective sightings data (.50 yr) suggested that 22.5% of leatherback distribution could be explained by these hotspots, with the inference that these coastal features may be sufficiently consistent in space and time to drive long-term foraging associations. Key words: aerial survey; Dermochelys coriacea; foraging ecology; gelatinous zooplankton; jellyfish; leatherback turtles; planktivore; predator–prey relationship; Rhizostoma octopus. INTRODUCTION remains the leatherback turtle Dermochelys coriacea that Understanding the distribution of species is central to ranges widely throughout temperate waters during R many ecological studies, yet this parameter is sometimes summer and autumn months (e.g., Brongersma 1972). -
A Review of Toxins from Cnidaria
marine drugs Review A Review of Toxins from Cnidaria Isabella D’Ambra 1,* and Chiara Lauritano 2 1 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy 2 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5833201 Received: 4 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Keywords: venom; phospholipase; metalloproteinases; ion channels; transcriptomics; proteomics; biotechnological applications 1. -
The Effects of Eutrophication on Jellyfish Populations in New Jersey Waterways
The Effects of Eutrophication on Jellyfish Populations in New Jersey Waterways How this issue in the Mississippi River delta can be used to predict the effects of eutrophication in New Jersey’s waterways Tag Words: Jellyfish; Eutrophication; New Jersey; CODAR Authors: William Pirl, Emily Pirl with Julie M. Fagan, Ph.D Summary: (WP) What people are doing on land is having a large effect on the coastal ocean waterways. Human beings are introducing excessive amounts of nutrients into these waterways, which is causing biological dead zones that support little productivity. With fewer fish to compete with and hide from, jellyfish are taking over in these areas. This is very true for the New Jersey coastline, specifically in Barnegat Bay. This area is highly enriched from anthropogenic nitrogen sources and there has been an explosion in jellyfish populations in recent years. By coupling research and monitoring programs that have been established in the Gulf of Mexico with CODAR Hf radar it is our goal to allow New Jersey to monitor, study and track these harmful blooms of jellyfish back to the sources of eutrophication in coastal waterways. Video Link: http://youtu.be/S00bAylLd6s ** Listed on You Tube as “Eutrophication in New Jersey” Jellyfish Populations Explode (WP) Jellyfish populations around the world have skyrocketed in recent years. There have been reported increases in jellyfish blooms from Japan to Portugal and most of the areas in between. There is an extensive list of negative consequences that these large increases of jellyfish populations can have on both the environment and its inhabitants. The increase of gelatinous zooplankton directly affects the human population both physically and indirectly. -
Human-Driven Benthic Jellyfish Blooms: Causes and Consequences for Coastal Marine Ecosystems Elizabeth W
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 6-10-2014 Human-driven Benthic Jellyfish Blooms: Causes and Consequences for Coastal Marine Ecosystems Elizabeth W. Stoner [email protected] DOI: 10.25148/etd.FI14071173 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Recommended Citation Stoner, Elizabeth W., "Human-driven Benthic Jellyfish Blooms: Causes and Consequences for Coastal Marine Ecosystems" (2014). FIU Electronic Theses and Dissertations. 1516. https://digitalcommons.fiu.edu/etd/1516 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida HUMAN-DRIVEN BENTHIC JELLYFISH BLOOMS: CAUSES AND CONSEQUENCES FOR COASTAL MARINE ECOSYSTEMS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Elizabeth W. Stoner 2014 To: Interim Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Elizabeth W. Stoner, and entitled Human-driven Benthic Jellyfish Blooms: Causes and Consequences for Coastal Marine Ecosystems, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ James W. Fourqurean _______________________________________ Ligia L. Collado-Vides _______________________________________ Jennifer S. Rehage _______________________________________ William M. Graham _______________________________________ Craig A. Layman, Major Professor Date of Defense: June 10, 2014 The dissertation of Elizabeth W. -
Towards the Science-Based Jellyfish Observing System (JOS)
Title: Towards the science-based jellyfish observing system Acronym: JOS Summary/Abstract The environmental consequences of jellyfish blooms and their impact on some ecosystem services in several marine areas is recognized as a hot topic in several research programs, but much of historical information on jellyfish is anecdotal and obtained using methodology that was not adapted to study this group of marine organisms. Moreover, even currently there is a lack of standardized methodology to assess quantitative field data of both polyp and medusa abundance. The lack of standardized approaches and methodologies was also recognised as important issues during recent International Workshop ‘Coming to grips with the jellyfish phenomenon in the Southern European and other seas’. Further, during discussions it was also stressed that jellyfish need to be monitored on a regular basis and make observations mandatory. This proposed SCOR Working Group is established with the aim of standardizing and increasing rigour in jellyfish methodology. It will build on interdisciplinary competences of Working Group members what will facilitate the design and development of the proper jellyfish observing system that will encompass modelling and new and emerging technologies. This work will be achieved over a 4 year time period, with a team composed of senior, mid and early career researchers, from both developed and developing countries, what will facilitate capacity building activities. The whole group will focus in particular on field methodology and the establishment of a robust system of observation and forecasting network, towards a reference guide for best practice. 1 Scientific Background and Rationale Research into gelatinous organisms has a long tradition and the period at the end of the 19th and beginning of the 20th century is seen as the first golden age of ‘gelata’ (Haddock 2004), when famous naturalists that studied in particular morphological taxonomy, were fascinated by their beauty and fragility. -
Population Dynamics and Relationship with Environmental Conditions of Three Scyphozoan Jellyfishes in the Mar Menor Lagoon (Spain)
Population dynamics and relationship with environmental conditions of three scyphozoan jellyfishes in the Mar Menor lagoon (Spain) Dinámica poblacional y relación con las variables ambientales de tres medusas de la clase Scyphozoa en la laguna del Mar Menor (España) Alfredo Fernández Alías Máster Universitario en Biología Marina: Biodiversidad y Conservación Febrero de 2020 Universidad de La Laguna Facultad de Ciencias Universidad de Murcia Facultad de Biología Máster Universitario en Biología Marina: Biodiversidad y Conservación Population dynamics and relationship with environmental conditions of three scyphozoan jellyfishes in the Mar Menor lagoon (Spain) El Dr. Ángel Pérez Ruzafa y el Dr. José Carlos Hernández Pérez autorizan la lectura del Trabajo Fin de Máster “Population dynamics and relationship with environmental conditions of three scyphozoan jellyfishes in the Mar Menor lagoon (Spain)” realizado bajo nuestra dirección y presentado por Alfredo Fernández Alías para su defensa ante el tribunal calificador. En …..….. a ……….. de enero de 2020 En …….. a ……….. de enero de 2020 Fdo. Ángel Pérez Ruzafa Fdo. José Carlos Hernández Pérez Index: 1. Introduction 1 1.1. Area of study 1.2. Objective species 2. Objectives 4 3. Materials and Methods 4 3.1. Sampling Method 3.2. Spatiotemporal distribution of jellyfish 3.3. Environmental effect on jellyfish population dynamics 3.4. Von Bertalanffy Growth Function parameters estimation 3.5. Estimation of mortality 4. Results 9 4.1. Spatiotemporal distribution of jellyfishes 4.2. Environmental effect on jellyfish populations dynamics 4.3. Estimation of jellyfish growth and mortality 5. Discussion 21 5.1. Spatiotemporal distribution of jellyfishes 5.2. Environmental effect on jellyfish population dynamics 5.3.