Lecture 8 Conduction of Nerve Impulse the Impulse Is Conducted Throughout the Neuron by One of Two Methods of Propagation:C

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 8 Conduction of Nerve Impulse the Impulse Is Conducted Throughout the Neuron by One of Two Methods of Propagation:C Lecture 8 Conduction of nerve impulse The impulse is conducted throughout the neuron by one of two methods of propagation:contiguous conduction or saltatory conduction. Contiguous conduction involves the spread of the action potential along every patch of membrane down the length of the axon (fig.1), which represents a longitudinal section of the axon hillock and the portion of the axon immediately beyond it. Figure 1 Contiguous conduction. Local current flow between the active area at the peak of an action potential and the adjacent inactive area still at resting potential reduces the potential in this contiguous inactive area to threshold, which triggers an action potential in the previously inactive area. The original active area returns to resting potential, and the new active area induces an action potential in the next adjacent inactive area by local current flow as the cycle repeats itself down the length of the axon. Refractory periods a- Absolute refractory period is the period during which another action potential cannot be elicited, no matter how large the stimulus. coincides with almost the entire duration of the action potential. Explanation: Recall that the inactivation gates of the Na+ channels are closed when the membrane potential is depolarized. They remain closed until repolarization occurs. No action potential can occur until the inactivation gates open. b-Relative refractory period begins at the end of the absolute refractory period and continues until the membrane potential returns to the resting level. An action potential can be elicited during this period only if a larger than usual inward current is provided. Explanation: The K+ conductance is higher than at rest, and the membrane potential is closer to the K+ equilibrium potential and, therefore, farther from threshold; more inward current is required to bring the membrane to threshold.(see fig. 2, and fig. 3) Figure 2 Value of the refractory period. The refractory period prevents “backward” current flow. During an action potential and slightly afterward, an area cannot be restimulated by normal events to undergo another action potential. Thus, the refractory period ensures that an action potential can be propagated only in the forward direction along the axon. Figure 3 Absolute and relative refractory periods. During the absolute refractory period, the portion of the membrane that has just undergone an action potential cannot be restimulated. This period corresponds to the time during which the Na gates are not in their resting conformation. During the relative refractory period, the membrane can be restimulated only by a stronger stimulus than is usually necessary. This period corresponds to the time during which the K gates opened during the action potential have not yet closed, coupled with lingering inactivation of the voltage gated Na channels. Action potentials occur in all or none fashion an excitable membrane either responds to a triggering event with a maximal action potential that spreads non decrementally throughout the membrane, or it does not respond with an action potential at all. This property is called the all-or-none law. Myelination increases the speed of conduction of action potentials Myelinated fibers are axons covered with myelin, a thick layer composed primarily of lipids, at regular intervals along their length (fig. 4a). Because the water-soluble ions responsible for carrying current across the membrane cannot permeate this myelin coating, it acts as an insulator, prevent leakage of current across the myelinated portion of the membrane. Myelin is not actually a part of the neuron but consists of separate myelin-forming cells that wrap themselves around the axon. These myelin forming cells are Schwann cells in the peripheral nervous system (PNS) (fig. 4b), the nerves running between the CNS and the various regions of the body, and oligodendrocytes in the CNS (the brain and spinal cord) (fig. 4c). Figure 4 Myelinated fibers. (a) A myelinated fiber is surrounded by myelin at regular intervals. The intervening bare, unmyelinated regions are known as nodes of Ranvier. The electron micrograph shows a myelinated fiber in cross section at a myelinated region. (b) In the PNS each patch of myelin is formed by a separate Schwann cell that wraps itself jelly-roll fashion around the nerve fiber. (c) In the CNS each of the several processes (“arms”) of a myelin-forming oligodendrocyte forms a patch of myelin around a separate nerve fiber. Between the myelinated regions, at the nodes of Ranvier, the axonal membrane is bare and exposed to the ECF. Current can flow across the membrane only at these bare spaces to produce action potentials. Voltage-gated Na channels are concentrated at the nodes, whereas the myelin-covered regions are almost devoid of these special passage ways.The distance between the nodes is short enough that local current can flow between an active node and an adjacent inactive node before dying off. In a myelinated fiber, the impulse “jumps” from node to node, skipping over the myelinated sections of the axon (fig. 5); this process is called saltatory conduction (saltare means “to jump or leap”). Saltatory conduction propagates action potentials more rapidly than contiguous conduction does, because the action potential does not have to be regenerated at myelinated sections but must be regenerated within every section of an unmyelinated axonal membrane from beginning to end. Figure 5 Saltatory conduction. The impulse “jumps” from node to node in a myelinated fiber. Synapses There are two types of synapses: electrical synapses and chemical synapses. in electrical synapse, two neurons are connected by gap junctions, which allow charge carrying ions to flow directly between the two cells in either direction. in chemical synapses a chemical messenger transmits information one way across a space separating the two neurons. A chemical synapse involves a junction between an axon terminal of one neuron, known as the presynaptic neuron, and the dendrites or cell body of a second neuron, known as the postsynaptic neuron. The dendrites and, to a lesser extent, the cell body of most neurons receive thousands of synaptic inputs, which are axon terminals from many other neurons. Some neurons in the CNS receive as many as 100,000 synaptic inputs (fig. 6). The anatomy of one of these thousands of chemical synapses is shown in fig. 7. The anatomy of one of these thousands of chemical synapses is shown in fig. 7. Figure 6 Synaptic inputs (presynaptic axon terminals) to the cell body and dendrites of a single postsynaptic neuron. The drying process used to prepare the neuron for the electron micrograph has toppled the presynaptic axon terminals and pulled them away from the postsynaptic cell body. A neurotransmitter carries the signal across a synapse When an action potential in a presynaptic neuron has been propagated to the axon terminal (fig.7), the sequence of events take place at a synapse. The permeability change induced at an excitatory synapse results in the movement of a few K ions out of the postsynaptic neuron, while a larger number of Na ions simultaneously enter this neuron. The result is net movement of positive ions into the cell. This makes the inside of the membrane slightly less negative than at resting potential, thus producing a small epolarization of the postsynaptic neuron. Figure 7 Structure and function of a single synapse. The numbered steps designate the sequence of events that take place at a synapse. The blowup depicts the release by exocytosis of neurotransmitter from the presynaptic axon terminal and its subsequent binding with receptors specific for it on the subsynaptic membrane of the postsynaptic neuron. The electron micrograph shows a synapse between a presynaptic axon terminal and a dendrite of a postsynaptic cell. There are two types of synapses, depending on the permeability changes induced in the postsynaptic neuron by the combination of a specific neurotransmitter with its receptor-channels: excitatory synapses and inhibitory synapses. Excitatory synapses, At an excitatory synapse, the response to the binding of a neurotransmitter to the receptor-channel is the opening of nonspecific cation channels in the subsynaptic membrane that permit simultaneous passage of Na and K through them. Activation of one excitatory synapse can rarely depolarize the postsynaptic neuron enough to bring it to threshold. the change in postsynaptic potential occurring at an excitatory synapse is called an excitatory postsynaptic potential, or EPSP (fig.8a). (a) Excitatory synapse Inhibitory synapses, At an inhibitory synapse, the binding of a different released neurotransmitter with its receptor-channels increases the permeability of the subsynaptic membrane to either K or Cl. The resulting ion movements typically bring about a small hyperpolarization of the postsynaptic neuron—that is, the inside of the neuron becomes slightly more negative (fig.8b). (b) Inhibitory synapse Figure 8 Postsynaptic potentials. (a) An excitatory postsynaptic potential (EPSP) brought about by activation of an excitatory presynaptic input brings the postsynaptic neuron closer to threshold potential. (b) An inhibitory postsynaptic potential (IPSP) brought about by activation of an inhibitory presynaptic input moves the postsynaptic neuron farther from threshold potential. The grand postsynaptic potential depends on the sum of activities of the presynaptic inputs EPSPs and IPSPs are graded potentials. Unlike action potentials, which behave according to the all-or-none law, graded potentials can be of varying magnitude, have no refractory period, and can be summed (added on top of one another). What are the mechanisms and significance of summation? Temporal summation, Suppose that Ex1 has an action potential that causes an EPSP in the postsynaptic neuron. After this EPSP has died off, if another action potential occurs in Ex1, an EPSP of the same magnitude takes place before dying off (fig.9). Spatial summation, Let us now see what happens in the postsynaptic neuron if both excitatory inputs are stimulated simultaneously (fig.9).
Recommended publications
  • Long-Term Potentiation Differentially Affects Two Components of Synaptic
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 9346-9350, December 1988 Neurobiology Long-term potentiation differentially affects two components of synaptic responses in hippocampus (plasticity/N-methyl-D-aspartate/D-2-amino-5-phosphonovglerate/facilitation) DOMINIQUE MULLER*t AND GARY LYNCH Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92717 Communicated by Leon N Cooper, September 6, 1988 (receivedfor review June 20, 1988) ABSTRACT We have used low magnesium concentrations ing electrode was positioned in field CAlb between two and the specific antagonist D-2-amino-5-phosphonopentanoate stimulating electrodes placed in fields CAla and CAlc; this (D-AP5) to estimate the effects of long-term potentiation (LTP) allowed us to activate separate inputs to a common pool of on the N-methyl-D-aspartate (NMDA) and non-NMDA recep- target cells. Stimulation voltages were adjusted to produce tor-mediated components of postsynaptic responses. LTP in- field EPSPs of -1.5 mV and did not elicit population spikes duction resulted in a considerably larger potentiation of non- in any of the responses included for data analysis. NMDA as opposed to NMDA receptor-related currents. In- Paired-pulse facilitation was produced by applying two creasing the size of postsynaptic potentials with greater stimulation pulses separated by 30 or 50 ms to the same stimulation currents or with paired-pulse facilitation produced stimulating electrode and LTP was induced by patterned opposite effects; i.e., those aspects ofthe response dependent on burst stimulation-i.e., 10 bursts delivered at 5 Hz, each NMDA receptor's increased to a greater degree than did those burst being composed of four pulses at 100 Hz (see ref.
    [Show full text]
  • Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1989 Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes Nancy C. Tkacs Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Physiology Commons Recommended Citation Tkacs, Nancy C., "Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes" (1989). Dissertations. 2652. https://ecommons.luc.edu/luc_diss/2652 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1989 Nancy C. Tkacs UBRA~Y·· NEUROPHYSIOLOGY OF FROG DORSAL ROOT AFFERENT FIBERS AND THEIR INTRASPINAL PROCESSES by Nancy C. Tkacs A Dissertation Submitted to the Faculty of the Graduate School of .Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy April 1989 DEDICATION To Bill, with deep love and gratitude ii ACKNOWLEDG.EMENTS I would like to thank the faculty of the Department of Physiology for the excellent training I have received. I am particularly grateful to Dr. James Filkins for supporting my dissertation research. My thanks also go to Dr. Charles Webber, Dr. David Euler, Dr. David Carpenter, and Dr. Sarah Shefner for serving on my dissertation committee. Their helpful suggestions added much to the research and the dissertation. My gratitude goes to several individuals who unselfishly shared their time, resources, and expertise.
    [Show full text]
  • Action Potential and Synapses
    SENSORY RECEPTORS RECEPTORS GATEWAY TO THE PERCEPTION AND SENSATION Registering of inputs, coding, integration and adequate response PROPERTIES OF THE SENSORY SYSTEM According the type of the stimulus: According to function: MECHANORECEPTORS Telereceptors CHEMORECEPTORS Exteroreceptors THERMORECEPTORS Proprioreceptors PHOTORECEPTORS interoreceptors NOCICEPTORS STIMULUS Reception Receptor – modified nerve or epithelial cell responsive to changes in external or internal environment with the ability to code these changes as electrical potentials Adequate stimulus – stimulus to which the receptor has lowest threshold – maximum sensitivity Transduction – transformation of the stimulus to membrane potential – to generator potential– to action potential Transmission – stimulus energies are transported to CNS in the form of action potentials Integration – sensory information is transported to CNS as frequency code (quantity of the stimulus, quantity of environmental changes) •Sensation is the awareness of changes in the internal and external environment •Perception is the conscious interpretation of those stimuli CLASSIFICATION OF RECEPTORS - adaptation NONADAPTING RECEPTORS WITH CONSTANT FIRING BY CONSTANT STIMULUS NONADAPTING – PAIN TONIC – SLOWLY ADAPTING With decrease of firing (AP frequency) by constant stimulus PHASIC– RAPIDLY ADAPTING With rapid decrease of firing (AP frequency) by constant stimulus ACCOMODATION – ADAPTATION CHARACTERISTICS OF PHASIC RECEPTORS ALTERATIONS OF THE MEMBRANE POTENTIAL ACTION POTENTIAL TRANSMEMBRANE POTENTIAL
    [Show full text]
  • Fast and Slow Synaptic Potentials Produced Ina Mammalian
    Proc. Nat!. Acad. Sci. USA Vol. 83, pp. 1941-1944, March 1986 Neurobiology Fast and slow synaptic potentials produced in a mammalian sympathetic ganglion by colon distension (visceral afferent/inferior mesenteric ganglion/noncholinergic) STEPHEN PETERS AND DAVID L. KREULEN Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724 Communicated by C. Ladd Prosser, November 1, 1985 ABSTRACT Radial distension of the large intestine pro- way also comprises noncholinergic fibers; indeed, it remains duced a slow depolarization in a population of neurons in the to be determined whether noncholinergic slow EPSPs even inferior mesenteric ganglion of the guinea pig. The slow occur physiologically. potentials often occurred simultaneously with cholinergic fast We report here the discovery of a noncholinergic sensory potentials [(excitatory postsynaptic potentials (EPSPs)] yet pathway that projects from the distal colon to the inferior persisted in the presence of nicotinic and muscarinic choliner- mesenteric ganglion (1MG) of the guinea pig. This pathway, gic antagonists when all fast EPSPs were absent. The amplitude activated by colon distension, produces noncholinergic slow of the distension-induced noncholinergic slow depolarization depolarizations resembling nerve-evoked slow EPSPs in increased with increasing distension pressure. For distensions sympathetic ganglion cells. Often, distension of the colon of 1-min duration at pressures of 10-20 cm of water, the mean produced both an increase in cholinergic EPSPs and a slow depolarization amplitude was 3.4 mV. The slow depolarization depolarization, suggesting a simultaneous action of two was associated with an increase in membrane resistance, and cell. The prolonged periods ofcolon distension resulted in a tachyphylax- different neurotransmitters on a single ganglion is of the depolarization.
    [Show full text]
  • Neural Plasticity in the Brain During Neuropathic Pain
    biomedicines Review Neural Plasticity in the Brain during Neuropathic Pain Myeong Seong Bak 1, Haney Park 1 and Sun Kwang Kim 1,2,* 1 Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; [email protected] (M.S.B.); [email protected] (H.P.) 2 Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0491 Abstract: Neuropathic pain is an intractable chronic pain, caused by damage to the somatosensory nervous system. To date, treatment for neuropathic pain has limited effects. For the development of efficient therapeutic methods, it is essential to fully understand the pathological mechanisms of neuropathic pain. Besides abnormal sensitization in the periphery and spinal cord, accumulating evidence suggests that neural plasticity in the brain is also critical for the development and mainte- nance of this pain. Recent technological advances in the measurement and manipulation of neuronal activity allow us to understand maladaptive plastic changes in the brain during neuropathic pain more precisely and modulate brain activity to reverse pain states at the preclinical and clinical levels. In this review paper, we discuss the current understanding of pathological neural plasticity in the four pain-related brain areas: the primary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray, and the basal ganglia. We also discuss potential treatments for neuropathic pain based on the modulation of neural plasticity in these brain areas. Keywords: neuropathic pain; neural plasticity; primary somatosensory cortex; anterior cingulate cortex; periaqueductal grey; basal ganglia Citation: Bak, M.S.; Park, H.; Kim, S.K.
    [Show full text]
  • Nervous Tissue
    Nervous Tissue • Controls and integrates all body activities within limits that maintain life • Three basic functions – sensing changes with sensory receptors • fullness of stomach or sun on your face – interpreting and remembering those changes – reacting to those changes with effectors • muscular contractions • glandular secretions 12-1 Major Structures of the Nervous System • Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors 12-2 Organization of the Nervous System • CNS is brain and spinal cord • PNS is everything else 12-3 Nervous System Divisions • Central nervous system (CNS) – consists of the brain and spinal cord • Peripheral nervous system (PNS) – consists of cranial and spinal nerves that contain both sensory and motor fibers – connects CNS to muscles, glands & all sensory receptors 12-4 Subdivisions of the PNS • Somatic (voluntary) nervous system (SNS) – neurons from cutaneous and special sensory receptors to the CNS – motor neurons to skeletal muscle tissue • Autonomic (involuntary) nervous systems – sensory neurons from visceral organs to CNS – motor neurons to smooth & cardiac muscle and glands • sympathetic division (speeds up heart rate) • parasympathetic division (slow down heart rate) • Enteric nervous system (ENS) – involuntary sensory & motor neurons control GI tract – neurons function independently of ANS & CNS 12-5 Neurons • Functional unit of nervous system • Have capacity to produce action potentials – electrical excitability • Cell body • Cell processes = dendrites
    [Show full text]
  • Bi 360 Week 4 Discussion Questions: Electrical and Chemical Synapses
    Bi 360 Week 4 Discussion Questions: Electrical and Chemical Synapses 1a) What is the difference between a non-rectifying electrical synapse and a rectifying electrical synapse? A non-rectifying electrical synapse allows information to flow between two cells in either direction (presynaptic cell postsynaptic cell and postsynaptic cell presynaptic cell). A rectifying electrical synapse allows information to flow in only one direction; positive current will flow in one direction which is equivalent to negative current flowing in the opposite direction. 1b) You are conducting a voltage clamp experiment to determine the properties of a synapse within the central nervous system. You conduct the experiment as follows: 1) You depolarize the presynaptic cell and record the voltage in both the pre- and the postsynaptic cell. 2) You hyperpolarize the presynaptic cell and record from the pre- and postsynaptic cell. 3) You depolarize the postsynaptic cell and record from the pre- and postsynaptic cell. 4) You hyperpolarize the postsynaptic cell and record from the pre- and postsynaptic cell. Analyze each piece of data shown below and determine what kind of synapse this is. How did you draw your conclusion? This is a rectifying electrical synapse. When you depolarize the presynaptic cell, there is a response in both the pre and post synaptic cell. When the postsynaptic cell is depolarized, however, there is a depolarization in the postsynaptic cell but no response in the presynaptic cell. A similar trend can be seen in the hyperpolarizing data but in the opposite direction. This means there must be a voltage dependent gate allowing positive current to flow in one direction while preventing it from flowing in the other.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • A Dissertation Entitled the Induction of Traumatic Brain Injury by Blood
    A Dissertation entitled The Induction of Traumatic Brain Injury by Blood Brain Barrier Disruption by Mark D. Skopin Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering ________________________________________________________ Dr. Scott C. Molitor, Ph.D., Committee Chair ________________________________________________________ Dr. Ragheb Assaly, M.D., Committee Member ________________________________________________________ Dr. Ronald L. Fournier, Ph.D., Committee Member ________________________________________________________ Dr. Hermann von Grafenstein, Ph.D., Committee Member ________________________________________________________ Dr. Patricia A. Relue, Ph.D., Committee Member ________________________________________________________ Dr. Patricia R. Komuniecki, Ph.D., Dean College of Graduate Studies The University of Toledo May 2011 Copyright 2011, Mark D. Skopin This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Induction of Traumatic Brain Injury by Blood Brain Barrier Disruption by Mark D. Skopin Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering University of Toledo May 2011 Animal models of traumatic brain injury (TBI) are utilized for the study of underlying mechanisms and for the development of potential therapeutics. Traditional TBI models apply concussive
    [Show full text]
  • Evidence for Newly Generated Interneurons in the Basolateral Amygdala of Adult Mice
    OPEN Molecular Psychiatry (2018) 23, 521–532 www.nature.com/mp ORIGINAL ARTICLE Evidence for newly generated interneurons in the basolateral amygdala of adult mice DJ Jhaveri1,2,5, A Tedoldi1,5, S Hunt1, R Sullivan1, NR Watts3, JM Power4, PF Bartlett1,6 and P Sah1,6 New neurons are continually generated from the resident populations of precursor cells in selective niches of the adult mammalian brain such as the hippocampal dentate gyrus and the olfactory bulb. However, whether such cells are present in the adult amygdala, and their neurogenic capacity, is not known. Using the neurosphere assay, we demonstrate that a small number of precursor cells, the majority of which express Achaete-scute complex homolog 1 (Ascl1), are present in the basolateral amygdala (BLA) of the adult mouse. Using neuron-specific Thy1-YFP transgenic mice, we show that YFP+ cells in BLA-derived neurospheres have a neuronal morphology, co-express the neuronal marker βIII-tubulin, and generate action potentials, confirming their neuronal phenotype. In vivo, we demonstrate the presence of newly generated BrdU-labeled cells in the adult BLA, and show that a proportion of these cells co-express the immature neuronal marker doublecortin (DCX). Furthermore, we reveal that a significant proportion of GFP+ neurons (~23%) in the BLA are newly generated (BrdU+) in DCX-GFP mice, and using whole-cell recordings in acute slices we demonstrate that the GFP+ cells display electrophysiological properties that are characteristic of interneurons. Using retrovirus-GFP labeling as well as the Ascl1CreERT2 mouse line, we further confirm that the precursor cells within the BLA give rise to mature and functional interneurons that persist in the BLA for at least 8 weeks after their birth.
    [Show full text]
  • Long-Term Exposure to Local but Not Inhalation Anesthetics Affects
    Anesthesiology 2005; 102:353–63 © 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Long-term Exposure to Local but Not Inhalation Anesthetics Affects Neurite Regeneration and Synapse Formation between Identified Lymnaea Neurons Shin Onizuka, M.D.,* Mayumi Takasaki, M.D., Ph.D.,† Naweed I. Syed, Ph.D.‡ Background: General and local anesthetics are used in vari- MOST surgical procedures require either general or local ous combinations during surgical procedures to repair dam- anesthetic treatments, which last from a few minutes to aged tissues and organs, which in almost all instances involve several hours. Although surgical interventions necessi- nervous system functions. Because synaptic transmission re- tate the use of various anesthetic agents, their choices covers rapidly from various inhalation anesthetics, it is gener- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/102/2/353/357598/0000542-200502000-00018.pdf by guest on 28 September 2021 ally assumed that their effects on nerve regeneration and syn- should be based on the ones with the least deleterious apse formation that precede injury or surgery may not be as effects on neuronal function, nerve regeneration, and detrimental as that of their local counterparts. However, a di- synaptic repair. This information is important in light of rect comparison of most commonly used inhalation (sevoflu- better choices vis-à-vis various agents that are available to rane, isoflurane) and local anesthetics (lidocaine, bupivacaine), vis-à-vis
    [Show full text]
  • Normal Physiology
    YEREVAN STATE MEDICAL UNIVERSITY AFTER M. HERATSI NORMAL PHYSIOLOGY HANDOUT FOR FOREIGN STUDENTS YEREVAN – 2008 YEREVAN STATE MEDICAL UNIVERSITY AFTER M. HERATSI Ter-Markosyan A.S., Harutunyan K.R., Arakelyan K.P., Avetisyan K.A. NORMAL PHYSIOLOGY HANDOUT FOR FOREIGN STUDENTS Editor: professor Khudaverdyan D.N. YEREVAN Publishing house of the Yerevan State Medical University after M. Heratsi 2008 UDC 612 (07) Normal Physiology (Handout for Foreign Students) / Ter- Markosyan A.S., Harutunyan K.R., Arakelyan K.P., Avetisyan K.A. -Yerevan, YMSU, 2008 - 330 pp. Editor: professor Khudaverdyan D.N. Reviewers: Khanbabyan M.V., Professor of the Human and Animals’ Physiology Department of the Yerevan State Pedagogical University after Kh. Abovyan, Doctor of Medical Sciences Hakobyan N.S., Professor of the Human and Animals’ Physiology Department of the Yerevan State University, Doctor of Biological Sciences English language editor: Bisharyan M.N. In the handout are represented the main parts of physiology, which correspond to the syllabus of the normal physiology course. It will be useful for foreign students of medical and biological high schools. The handout is adopted by Methodical Comission for Foreign Students of theYerevan State Medical University after M. Heratsi. ISBN 978-9994-40-78-7 © Dpt. of Physiology of YSMU, 2008 ºðºì²ÜÆ Ø. кð²òàô ²Üì²Ü äºî²Î²Ü ´ÄÞÎ²Î²Ü Ð²Ø²Èê²ð²Ü î»ñ-سñÏáëÛ³Ý ².ê., гñáõÃÛáõÝÛ³Ý ø.è., ²é³ù»ÉÛ³Ý Î.ä., ²í»ïÇëÛ³Ý Î.². ÜàðØ²È üƼÆàÈà¶Æ² àôêàôØܲغÂà¸²Î²Ü ÒºèܲðÎ ²ðî²ê²ÐزÜòÆ àôê²ÜàÔܺðÆ Ð²Ø²ð ÊÙµ³·Çñ` åñáý»ëáñ ¸.
    [Show full text]