ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009)

Total Page:16

File Type:pdf, Size:1020Kb

ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) GEM Technical Report 2012-01 V1.0.0 Storchak D.A., D. Di Giacomo, I. Bondár, J. Harris, E.R. Engdahl, W.H.K. Lee, A. Villaseñor, P. Bormann, and G. Ferrari Geological, earthquake and geophysical data GEM GLOBAL EARTHQUAKE MODEL ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) GEM Technical Report 2012-01 Version: 1.0.0 Date: July 2012 Authors*: Storchak D.A., D. Di Giacomo, I. Bondár, J. Harris, E.R. Engdahl, W.H.K. Lee, A. Villaseñor, P. Bormann, and G. Ferrari (*) Authors’ affiliations: Dmitry Storchak, International Seismological Centre (ISC), Thatcham, UK Domenico Di Giacomo, International Seismological Centre (ISC), Thatcham, UK István Bondár, International Seismological Centre (ISC), Thatcham, UK James Harris, International Seismological Centre (ISC), Thatcham, UK Bob Engdahl, University of Colorado Boulder, USA Willie Lee, U.S. Geological Survey (USGS), Menlo Park, USA Antonio Villaseñor, Institute of Earth Sciences (IES) Jaume Almera, Barcelona, Spain Peter Bormann, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany Graziano Ferrari, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy Rights and permissions Copyright © 2012 GEM Foundation, International Seismological Centre, Storchak D.A., D. Di Giacomo, I. Bondár, J. Harris, E.R. Engdahl, W.H.K. Lee, A. Villaseñor, P. Bormann, and G. Ferrari Except where otherwise noted, this work is licensed under a Creative Commons Attribution 3.0 Unported License. The views and interpretations in this document are those of the individual author(s) and should not be attributed to the GEM Foundation. With them also lies the responsibility for the scientific and technical data presented. The authors have taken care to ensure the accuracy of the information in this report, but accept no responsibility for the material, nor liability for any loss including consequential loss incurred through the use of the material. Citation advice Storchak D.A., D. Di Giacomo, I. Bondár, J. Harris, E.R. Engdahl, W.H.K. Lee, A. Villaseñor, P. Bormann, and G. Ferrari (2012), ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009), GEM Technical Report 2012- 01 V1.0.0, 128 pp., GEM Foundation, Pavia, Italy, doi: 10.13117/GEM.GEGD.TR2012.01. Photo credits Large cover image: © Scott Haefner/ USGS. Close-up shot of the southeast area along the surface trace of the San Andreas fault in the Carrizo Plain, north of Wallace Creek, where Elkhorn Rd. meets the fault. Small cover image: © 2013 GEM Foundation and International Seismological Centre, © 2013 Google, © 2013 Geo Basis-DE/BKG, Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Close-up view of the ISC-GEM Global Instrumental Earthquake Catalogue, 2013 ISC-GEM KML file overlayed on 2013 Google Earth. www.globalquakemodel.org i ACKNOWLEDGEMENTS We are grateful to the GEM Foundation for selecting our team to work on the Global Instrumental Earthquake Catalogue and for support during the work on this exciting project. We are grateful to Peter Suhadolc (University of Trieste, Italy) for leading the group of IASPEI observers that included: Roger Musson (British Geological Survey, UK) and Johannes Schweitzer (NORSAR, Norway) who provided an invaluable advice on the availability of important historical documents and bulletins, Göran Ekström (Columbia University, US) who provided analysis of uncertainties of MW values in GCMT Catalogue; Nobuo Hamada (Japan Meteorological Agency, emeritus, Japan) who provided a digital copy of JMA historical bulletin data for 1923-1970; We thank Katsuyuki Abe for making available a CD-ROM with the Catalogue of Abe and Noguchi. We wish to recognize the initiative of the late Edouard Arnold and Pat Willmore, former Directors of the ISC, for their initiative, despite the financial difficulties, in organizing the first effort of transferring a large fraction of the ISS paper bulletins onto punch-cards and preparing the Shannon tape. We also wish to acknowledge the effort of Tom Boyd, Colorado School of Mines, USA, for his contribution in correcting the data on the Shannon tape. We thank Robin Adams and David McGregor (ISC, emeritus) for providing historical information on the operations in the early years of the ISC. We are grateful to Anna Berezina (Institute of Seismology, National Academy of Sciences, Kyrgyzstan) for organizing the scanning of the original operator’s notepads of the seismic station Frunze. We thank Irina Gabsatarova, Olga Kamenskaya, Vera Babkina and Raisa Mihailova (Geophysical Survey of the Russian Academy of Sciences, Obninsk, Russia) for providing the digital archive and scanning copies of the seismological bulletins of the Unified Network of Backbone Seismic Stations of the Former Soviet Union in 1971-1977. We thank Siegfried Wendt (Universitaet Leipzig, Germany) for sending missing bulletins of the Collm Observatory; Jina Gachechiladze (Ilia State University, Tbilisi, Georgia) and Arkady Aronov and Vladislav Aronov (Centre of Geophysical Monitoring of the National Academy of Sciences, Belarus) for providing information on positions of long-serving seismic stations. We wish to thank Emile Okal for stimulating discussions on seismic moments and moment magnitudes; Yun- tai Chen and Chao Liu for providing a compilation of seismic moments published by Chinese seismologists. We are indebted to Jon DeBord and Chuck Wenger, USGS Librarians, for assistance in searching the literature and arranging inter-library loans. We are also grateful to Bill Bakun, Wang-Ping Chen, Diane Doser, Göran Ekström, Hiroo Kanamori, Hong Kao, Hitoshi Kawakatsu and Donald Wells for answering our inquires and their helpful comments. ii ABSTRACT This report describes the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) created on the request and with sponsorship from the GEM Foundation. The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) is a major step forward on the way to improve characterization of spatial distribution of seismicity, magnitude frequency relation and maximum magnitudes within the scope of GEM. With a few exceptions, parameters of this catalogue are the result of computations based on the original reports of seismic stations and observatories. We made every effort to use uniform location and magnitude determination procedures during the entire period of the catalogue: • In earthquake location, we used a combination of the EHB depth determination technique and the new ISC procedures that use a multitude of primary and secondary seismic phases from the IASPEI Seismic Phase List and the ak135 velocity model and take into account the correlated error structure. • In determination of earthquake magnitude, where possible, we used direct MW values from Global CMT project for the period 1976-2009. In addition, 1,127 high quality scientific papers have been processed to obtain directly measured values of M0 and MW for 970 large earthquakes during 1900-1979. In all other instances we computed MW proxy values based on our own determination of instrumental surface or body wave magnitudes using updated regression models. • It has to be noted that a computation of MW proxy values based on regressions from other types of magnitudes does not bring similarly reliable results as compared to a direct measurement of MW based on the original waveform analysis. It is, nevertheless, a necessary measure since the direct measurement of MW using historical analogue waveforms on a global scale is beyond the scope of this project. A number of important additional benefits have been achieved during this project: • The entire ISC collection of historical paper-based seismic station bulletins was reviewed, indexed and catalogued for further works. Indexes of similar collections at USGS/Berkeley were used in filling the gaps in the ISC collection. • A large number of seismic phase arrival times, body and surface wave amplitude measurements have been made electronically available on a global scale that have never been available on a global scale prior to this project. • A large number of more accurate network MS and mb magnitudes have been computed for large earthquakes that either had no magnitude estimate or the estimates were previously based on single or unreliable station data. In our work we consulted and were observed by experts from the IASPEI and, where possible, followed the IASPEI seismic standards. iii We put together an excellent team of professionals in the field and gave training to a group of technical personnel without whom the work on this project would have been impossible to complete. These personnel members are a valuable asset of this project and their experience can be used if further work was to be planned. Although the ISC-GEM Catalogue is a major accomplishment, we nevertheless believe that further work is necessary to enhance its qualities: • Firstly, neglecting to update the ISC-GEM Catalogue beyond 2009 would seriously hamper the GEM community efforts of testing and refining of the earthquake forecasting models. • Secondly, it is well known that in seismic hazard studies the effect of small to moderate size earthquakes is not negligible. This is especially the case in densely populated and industrialized areas. This calls for further improvement of completeness of the reference catalogue to be extensively used by GEM community for many years to come. • Thirdly, it has to be noted that we really have no magnitude estimates for many events in our main original source of historical
Recommended publications
  • The Kobe (Hyogo-Ken Nanbu), Japan, Earthquake of January 16, 1995
    The Kobe (Hyogo-ken Nanbu), Japan, Earthquake of January 16, 1995 A report of preliminary observations prepared by Hiroo Kanamori California Institute of Technology he Kobe earthquake of January 16, 1995, is one of the Daishinsai (A major earthquake disaster in the Osaka-Kobe most damaging earthquakes in the recent history of area)." As ofJanuary 29, 1995, the casualty toll reached 5,094 T Japan. This earthquake is also called "The Hyogo-ken dead, 13 missing and 26,798 injured. Nanbu (Southern part of Hyogo prefecture) earthquake," This article presents some background on the earth- and the disaster caused by it is referred to as "Hanshin quake and its setting and a summary of some preliminary seismological results obtained by various investigators. The Japan Meteorological Agency ,/" e</-..... 0MA) located this earthquake at 34.60~ 135.00~ depth=22 km, origin time= 1943Tottori 1927Tango 1948 Fukui // '/~;/",~ 7 05:46:53.9, 1/17/1995JST, (20:46:53.9, 1/16/ (M=7.2) (M=7.a) (M=7.~) / ,.~o~.>:'/ k i 1995 GMT) with a JMA magnitude Mj=7.2 rS.. 7a (Figure 1). The epicenter is close to the city of Kobe (population, about 1.4 million), ap- proximately 200 km away from the Nankai trough (the major plate boundary between ,0., ~" "v"~.M "-'-" ~ the Philippine Sea and the Eurasia plates), and about 40 km from the Median Tectonic Line. In this sense this earthquake can be called an intraplate earthquake. In central- ,,o, oi ~J/ ,~ western Japan four major intraplate earth- .... "...C%<,,. ",z,.-.. :~/.S,,.-/" I \,q' _.. s , quakes have occurred since 1890 (Figure 1): .
    [Show full text]
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Title Characteristics of Seismicity Distribution Along the Sunda Arc
    Characteristics of Seismicity Distribution along the Sunda Arc: Title Some New Observations Author(s) GHOSE, Ranajit; OIKE, Kazuo Bulletin of the Disaster Prevention Research Institute (1988), Citation 38(2): 29-48 Issue Date 1988-06 URL http://hdl.handle.net/2433/124954 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 38, Part 2, No. 332, June, 1988 29 Characteristics of Seismicity Distribution along the Sunda Arc: Some New Observations By Ranajit GHOSEand Kazuo OIKE (Manuscript received March 7, 1988) Abstract Spatio-temporal variations of earthquake activity along the Sunda arc were investigated. We prepared a strain release map for this century. Adjacent to the zones of high strain release, presence of seismically quiet zones was noted. A careful inspection of the depth distribution of the earthquakes revealed that in the eastern Sunda arc, possibly there exists a zone of scarce seismicity at an interme- diate depth. We discussed the probable implications. We also analysed the patterns of temporal distributions of earthquakes at the three different seismotectonic provinces of the Sunda arc—Sumatra, Java, and the Lesser Sunda Islands. We could clearly see that, although the causative geodynamic situations for seismicity vary significantly in space along the length of the arc, the period of increase or decrease in seismicity is largely space invariant. The locally differing levels of seismicity are superposed on the common background of long period seismicity fluctuation. Finally, clustering of seismicity at some patches along the Sunda arc was studied with respect to the altimetric gravity anomaly data. We noted some apparent conformities.
    [Show full text]
  • Landslide Generated Tsunamis : Numerical Modeling
    Sektion 2.5: Geodynamische Modellierung, GeoForschungsZentrum Potsdam Landslide generated tsunamis - Numerical modeling and real-time prediction Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Geophysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vorgelegt von Sascha Brune Potsdam, den 29. Januar 2009 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2009/3298/ URN urn:nbn:de:kobv:517-opus-32986 [http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-32986] Abstract Submarine landslides can generate local tsunamis posing a hazard to human lives and coastal facilities. Two major related problems are: (i) quantitative estimation of tsunami hazard and (ii) early detection of the most dangerous landslides. This thesis focuses on both those issues by providing numerical modeling of landslide- induced tsunamis and by suggesting and justifying a new method for fast detection of tsunamigenic landslides by means of tiltmeters. Due to the proximity to the Sunda subduction zone, Indonesian coasts are prone to earthquake, but also landslide tsunamis. The aim of the GITEWS-project (German- Indonesian Tsunami Early Warning System) is to provide fast and reliable tsunami warnings, but also to deepen the knowledge about tsunami hazards. New bathymetric data at the Sunda Arc provide the opportunity to evaluate the hazard potential of landslide tsunamis for the adjacent Indonesian islands.
    [Show full text]
  • A Discussion on the Relations of Site Effect and Damage of Wooden Houses Using with Microtremors in Fukui Plain Affected by the 1948 Fukui Earthquake
    13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 722 A DISCUSSION ON THE RELATIONS OF SITE EFFECT AND DAMAGE OF WOODEN HOUSES USING WITH MICROTREMORS IN FUKUI PLAIN AFFECTED BY THE 1948 FUKUI EARTHQUAKE. Norio ABEKI*1 and Toshiyuki MAEDA*2 SUMMARY Authors observed microtremors in Fukui Plain to discuss on the relationships between dynamic characteristics of surface geology and the damages of wooden houses caused by the 1948 Fukui Earthquake. By the distribution maps of predominant periods using H/V spectral ratio and damaged ratios of wooden houses, the distribution of the short periods corresponded to the low damaged ratios. And the areas of predominant long periods distributed on alluvial deposit in the western part from the earthquake fault. The high damage ratios at the sites of alluvial deposit are located within 8km from the earthquake fault, but the ratios decreased and varied widely in the areas farther than 8km. The predominant periods are related with the thickness of alluvial deposit. We can conclude that the earthquake damages were related with the dynamic characteristics of surface geology in this area. INTRODUCTION The 1948 Fukui Earthquake occurred at July 28, 1948 and it affected the buildings, railway, road, bridges and another social facilities. 3,763 persons had been killed, 36,134 houses completely and 11,816 houses partially destroyed, and 3,851 houses burned down by The Earthquake.1) The epicenter located at Maruoka town where is in the Fukui Plain, and the seismic fault went through from south to north in the plain.
    [Show full text]
  • Rate/State Coulomb Stress Transfer Model for the CSEP Japan Seismicity Forecast
    Earth Planets Space, 63, 171–185, 2011 Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast Shinji Toda1 and Bogdan Enescu2 1Disaster Prevention Research Institute (DPRI), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan 2National Research Institute for Earth Science and Disaster Prevention (NIED), 3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan (Received June 25, 2010; Revised January 13, 2011; Accepted January 13, 2011; Online published March 4, 2011) Numerous studies retrospectively found that seismicity rate jumps (drops) by coseismic Coulomb stress increase (decrease). The Collaboratory for the Study of Earthquake Prediction (CSEP) instead provides us an opportunity for prospective testing of the Coulomb hypothesis. Here we adapt our stress transfer model incorporating rate and state dependent friction law to the CSEP Japan seismicity forecast. We demonstrate how to compute the forecast rates of large shocks in 2009 using the large earthquakes during the past 120 years. The time dependent impact of the coseismic stress perturbations explains qualitatively well the occurrence of the recent moderate size shocks. Such ability is partly similar to that of statistical earthquake clustering models. However, our model differs from them as follows: the off-fault aftershock zones can be simulated using finite fault sources; the regional areal patterns of triggered seismicity are modified by the dominant mechanisms of the potential sources; the imparted stresses due to large earthquakes produce stress shadows that lead to a reduction of the forecasted number of earthquakes. Although the model relies on several unknown parameters, it is the first physics based model submitted to the CSEP Japan test center and has the potential to be tuned for short-term earthquake forecasts.
    [Show full text]
  • The Damage Estimation on the Nankai Trough Megathrust
    The Damage Estimation onthen the Nankai Trough Megathrust Earthquake Disaster Management Bureau Cabinet Office, Government of Japan Number of Deaths and Missing Persons in Previous Disasters 25, 000 Great East Japan Earthquake (19,515) 20,000 1945 Mikawa Earthquake (2,306 ) 1945 Typhoon Makurazaki(3,756 ) 1946 Showa Nankai 1, Earthquake (443) 15,000 1947 Typhoon Kathleen(1,930) 1948 Fukui Earthquake (3,769) 1959 Typhoon Ise-wan(5,098 ) 10,000 1995 Great Hanshin-Awaji Earthquake (6,437) 1953 Torrential Rains in Nanki(1,124) 1954 Typhoon Touyamaru(1,761) 5,000 0 '45 '47 '49 '51 '53 '55 '57 '59 '61 '63 '65 '67 '69 '71 '73 '75 '77 '79 '81 '83 '85 '87 '89 '91 '93 '95 '97 '99 '01 '03 '05 '07 '09 '11 (year) Source: Chronological Scientific Table Large Earthquakes Reviewed by the Central Disaster Management Council Super wide-area earthquake extending to western Japan Tokikai Eart hqua ke Huge tsunami over 20 meters Tonankai, Nankai Earthquake Rate of earthquake production over 30 years: Oceanic-type earthquakes 60 ~ 70% in the vicinity of the Japan and Chishima Trenches Concerns about neglected timber buildings and Unknown ( Miyagi offshore cultural assets earthquake production rate over 30 years: 99% prior to the Great East Cyubu region, Kinki region Japan Earthquake) Inland Earthquake Concern about critical national operations Tokyyqo Inland Earthquake Rate of earthquake production over 30 years: approx 70% (Magnitude 7 in southern Kanto area) Oceanic earthquake Inland earthquake Rate of earthquake occurrence is by Ministry of Education, Culture, Sports, Science and Technology Planning and Review for Countermeasures Against Earthquakes (1) Estimate distribution of seismic intensity, tsunami height, etc.
    [Show full text]
  • The Great East Japan Earthquake 2011
    Tohoku University International Recovery Platform Kobe University Cabinet office of Japan Asian Disaster Reduction Center United Nations Office for Disaster Risk Reduction © IRP 2013 This report was jointly developed by Tohoku University, Kobe University, and individual experts with the support and supervision of the International Recovery Platform (IRP) and Prof. Yasuo Tanaka of University Tunku Abdul Rahman/Kobe University. International Recovery Platform Yasuo Kawawaki, Senior Recovery Expert Yoshiyuki Akamatsu, Senior Researcher Sanjaya Bhatia, Knowledge Management Officer Gerald Potutan, Recovery Expert The findings, interpretations, and conclusions expressed in this report do not necessarily reflect the views of IRP partners and governments. The information contained in this publication is provided as general guidance only. Every effort has been made to ensure the accuracy of the information. This report maybe freely quoted but acknowledgment of source is requested. INTERNATIONAL RECOVERY PLATFORM RECOVERY STATUS REPORT March 2013 The Great East Japan Earthquake 2011 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................... I FOREWORD ........................................................................................................................ 1 OVERVIEW OF THE GREAT EAST JAPAN EARTHQUAKE ............................................................ 3 TWO YEARS AFTER THE GREAT EAST JAPAN EARTHQUAKE: CURRENT STATUS AND THE CHALLENGES
    [Show full text]
  • Japan Is One of the Most Earthquake-Prone Countries
    Research on Urban Earthquake Engineering at Tokyo Tech. - Earthquake Disaster Mitigation - The 2011 Tohoku Earthquake (M9) Anticipated Tokyo Earthquake Technologies for Earthquake Disaster Mitigation Hiroaki Yamanaka, Center for Urban Earthquake Engineering Tokyo Institute of Technology 1 Japan is one of the most earthquake-prone countries. Epicenters of Large Earthquakes 2 Damage Earthquakes with more than 1,000 Fatalities in Japan since Meiji era 1894 Nobi Earthquake M8.0 7,300 1896 Sanriku Tsunami M8.3 22,000 1923 Kanto Earthquake M7.9 105,000 1927 Kita-Tango Earthquake M7.3 2,900 1933 Sanriku Tsunami M8.1 3,100 1943 Tottori Earthquake M7.2 1,100 1944 Tonankai Earthquake M7.9 1,000 1945 Mikawa Earthquake M6.8 2,000 1946 Nankai Earthquake M8.0 1,400 1948 Fukui Earthquake M7.1 3,800 1995 Kobe Earthquake M7.3 6,300 2011 Tohoku Earthquake M9.0 19,000 3 Strong Shaking during the 1995 Kobe Earthquake 4 Damage of the 1995 Kobe (Inland) Earthquake The 2011 off the Pacific coast of Tohoku Earthquake Origin Time: 14:46, March/11/2011 Magnitude: Mw9.0 Number of dead and missing: 19,000 Number of displaced people: 300,000 Number of damaged houses: 1,000,000 Direct monetary loss: 200 billion US$ 6 Tectonic Plates in the Japanese archipelago and surrounding areas Fault Plane of the Tohoku Earthquake 500km Length Pacific plate subducts Japan Islands, and Japan Islands spring up after HERP generating tsunami and shaking. 7 Video of Tsunami in Sendai From You Tube8 Onagawa 9 Seismic Intensity Map MM Intensity Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ XI JMA Intensity 4 5L 5U 6L 6U 7 after JMA The area of intensity 5 upper (MMI 8) or greater is approx.
    [Show full text]
  • Appendix 3 Selection of Candidate Cities for Demonstration Project
    Building Disaster and Climate Resilient Cities in ASEAN Final Report APPENDIX 3 SELECTION OF CANDIDATE CITIES FOR DEMONSTRATION PROJECT Table A3-1 Long List Cities (No.1-No.62: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-1 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-2 Long List Cities (No.63-No.124: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-2 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-3 Long List Cities (No.125-No.186: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-3 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-4 Long List Cities (No.187-No.248: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-4 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-5 Long List Cities (No.249-No.310: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-5 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-6 Long List Cities (No.311-No.372: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP.
    [Show full text]
  • Contents 5 - 8 September, 2018 Lima Convention Center, Lima, Peru  Disaster Risk Reduction for Natural Hazard MT5
    12th International Symposium on Disaster Risk Management: Reconstruction Toward Resilient Cities (ISDRM 2018) Contents 5 - 8 September, 2018 Lima Convention Center, Lima, Peru Disaster risk reduction for natural hazard MT5. Capacity building for resilience in Reconstruction Earthquake history of Japan and lessons learned Reconstruction Towards Resilient Society: Research programs for earthquake risk reduction in Japan Japanese Experiences Peru-Japan SATREPS project Capacity building towards Build Back Better September 6, 2018 Fumio YAMAZAKI Professor, Ph.D., Graduate School of Engineering, Chiba University, Japan. Doctor Honoris Causa, National University of Engineering, Peru. 1 2 Estimated economic loss due to disasters in the world in 1975-2014. Mechanism behind the emergence of natural disasters (The values were converted to those in 2014.) Hazard Exposure Earthquakes, People, Property Floods, storms 2011 Thailand Disaster 2005 Hurricane Flood 1995 Kobe EQ Katrina Risk 2011 Tohoku EQ Vulnerability Susceptibility to natural hazards Disaster Risk Estimated Damage (US$ billion) Damage Estimated = Function (Hazard, Exposure, Vulnerability) Year 2008Wenchuan 3 Hand Book of Total Disaster Risk Management-Good Practices, ADRC, Japan, 2005 4 http://www.emdat.be/disaster_trends/index.html EQ Mechanism toward natural disaster reduction Disaster Cycle and Disaster Management Early Warning Basically unchanged Hazard Exposure but “climate change” Relocation of people & property Preparedness Response Disaster makes hazard bigger. from hazards
    [Show full text]
  • 1 the JAVA TSUNAMI MODEL: USING HIGHLY-RESOLVED DATA to MODEL the PAST EVENT and to ESTIMATE the FUTURE HAZARD Widjo Kongko1
    THE JAVA TSUNAMI MODEL: USING HIGHLY-RESOLVED DATA TO MODEL THE PAST EVENT AND TO ESTIMATE THE FUTURE HAZARD Widjo Kongko1 and Torsten Schlurmann2 This study is to validate the tsunami model with extensive field observation data gathered from the 2006 Java tsunami. In the relevant study area, where highly-resolved geometric data were recently made available and other related post- tsunami field data have been collected, the tsunami maximum run-up onto land and its marigram have been simulated and evaluated. Several plausible tsunami sources are proposed to adequately mimic the 2006 Java tsunami by including the influence of low rigidity material in the accretionary prism as well as its single-multi fault source type’s effect. Since it has a significant role on tsunami excitation, this parameter and other assumptions are then employed to study an estimated set of reasonable maximum magnitude earthquake-tsunami scenario and projected inundation areas for probable future tsunami on the South Java coastline. In a final step tentative technical mitigation measures are proposed and assessed to deal with adequate coastal protection issues by means of soft (greenbelt, etc.) and hard engineering (sand dunes, etc.) approaches. Their effectiveness in terms of reducing inundation area is assessed and general recommendations for coastal planning authorities are dealt with. Keywords: tsunami model, highly resolved data, accretionary prism, single-multi segment faults, and technical mitigation measures INTRODUCTION Past Events in Java Based on historical data, the number of earthquakes in Java’s subduction zone occurred within the time period of 1977-2007 in bounding coordinates depicted in Figure 1 with magnitudes greater than Ms 5.0 and hypocenter shallower than 40 km, is about 420 events.
    [Show full text]