Metamorphic Facies Metamorphic Facies

Total Page:16

File Type:pdf, Size:1020Kb

Metamorphic Facies Metamorphic Facies ERSC 3P21 Metamorphic Petrology II 24/08/2011 Metamorphic Facies • Facies – ____________________________ ____________________________________ ____________________________________ • There is a predictable and common correspondence between the __________ of each rock and its ______________________ • Mineral _____________ that define the metamorphic _______ indicate that a state of stable _________ has been ________ over a restricted T and P condition. ERSC 3P21 - Brock University Greg Finn Metamorphic Facies • Several different facies have been formally recognized and have been named according to distinct aspects of the facies – eg. greenschist = characterized by schists in which green chlorite, talc, serpentine, epidote and actinolite are predominant • Examine the mineralogical characteristics in metamorphosed mafic (basic) rocks subjected to prograde metamorphism ERSC 3P21 - Brock University Greg Finn Metamorphic Grade Calculated 14 Geothermal Water Gradient saturated 40 granite 12 solidus Diagenesis 10 30 Liquid 8 VERY LOW or+ab+q HIGH GRADE 20 GRADE Depth (km) 6 Pressure (kbar) LOW 4 GRADE MEDIUM 10 GRADE mu + q 2 or+Al2SiO5+H2O 100 200 300 400 500 600 700 800 900 1000 Temperature (C) ERSC 3P21 - Brock University Greg Finn 1 ERSC 3P21 Metamorphic Petrology II 24/08/2011 Metamorphic Facies Calculated 14 Geothermal Water Gradient saturated 40 Eclogite granite 12 solidus Diagenesis Glaucophane 30 10 Lawsonite 8 Granulite 20 Amphibolite Depth (km) 6 Prehnite Pressure (kbar) Greenschist Pumpellyite 4 10 Zeolite 2 Px Hornfels Hornfels Sanidinite 100 200 300 400 500 600 700 800 900 1000 Temperature (C) ERSC 3P21 - Brock University Greg Finn Zeolite Facies • Zeolites are a group of white to colourless _______ ________ silicates, analogous in 2005/gold2005/images/zeolite.jpg composition to __________ • Common Zeolites are: http://www.the-conference.com/ • Laumontite - Ca(Al2Si4)O12·4H2O • Heulandite – (Ca,Na)2(Al2Si7)O18·6H2O • Analcime – NaAlSi2O6·H2O • Assemblage qtz + heulandite + chlorite is diagnostic http://www.curiogrove.com/Zeolite/gfx/ze002.jpg ERSC 3P21 - Brock University Greg Finn Prehnite - Pumpellyite Facies • Prehnite and pumpellyite, along with the zeolites, commonly occur as _________ fillings in originally vesicular samples • Minerals present are: • Prehnite – Ca2Al2Si3O10(OH)2 • Pumpellyite – http://www.dsuper.net/~marcouet/images/prehnite.jpg Ca2MgAl2(SiO4)(Si2O7)(OH)2·H2O • Assemblage qtz + Prehnite + Pumpellyite is diagnostic http://www.asahi-net.or.jp/~ug7s-ktu/e_pumpel.htm ERSC 3P21 - Brock University Greg Finn 2 ERSC 3P21 Metamorphic Petrology II 24/08/2011 Glaucophane - Lawsonite Facies • AKA - ___________________ • Minerals present are blue in colour • Glaucophane - Na2MgAl2Si8O22(OH)2 • Lawsonite - CaAl2Si2O7(OH)2H2O • Jadeite – NaAlSi2O6 • Characteristic of regions of ______ and _________ metamorphism, near _____________ zones • Assemblage jadeite + qtz + aragonite is diagnostic ERSC 3P21 - Brock University Greg Finn http://geosciences.geol.u-psud.fr/ObjectifTerre/Mineralogie/mineropolarisant/Glaucophane/GlauLP.jpg http://ic.ucsc.edu/~rocks/eart005/Metamorphic/Green_Blue.htm http://www.tulane.edu/~sanelson/images/fransican.gif ERSC 3P21 - Brock University Greg Finn • Formation of Blueschists http://www.uwgb.edu/dutchs/graphic0/platetec/metzone.gif ERSC 3P21 - Brock University Greg Finn From: http://www.uwgb.edu/dutchs/platetec/orogeny.htm 3 ERSC 3P21 Metamorphic Petrology II 24/08/2011 Metamorphic Facies Calculated 14 Geothermal Water Gradient saturated 40 granite 12 solidus Diagenesis Glaucophane 10 30 Lawsonite 8 20 Depth (km) 6 Prehnite Pressure (kbar) Pumpellyite 4 10 Zeolite 2 100 200 300 400 500 600 700 800 900 1000 Temperature (C) ERSC 3P21 - Brock University Greg Finn Greenschist Facies • A _______ schist developed through the metamorphism of a ______-rich rock – basalt • Common minerals are: 3+ • Epidote – Ca2Fe Al2OSi2O7(SiO4)(OH) 2+ • Actinolite – Ca2(Mg,Fe )5Si8O22(OH)2 • Chlorite – (Mg,Al,Fe)3(Si,Al)4O10(OH)2·(Mg,Al,Fe)3(OH)6 • Albite + Epidote + Actinolite + Chlorite + Calcite in mafic rocks • Pyrophyllite in pelitic rocks ERSC 3P21 - Brock University Greg Finn ERSC 3P21 - Brock University Greg Finn 4 ERSC 3P21 Metamorphic Petrology II 24/08/2011 Amphibolite Facies • Abundant _____ and little ____, as such they do not produce quartz and micas • Named for abundant ____________ • Common minerals are: • Hornblende – Ca2(Mg,Fe,Al)5Si8O22(OH)2 • Plagioclase – (Ca,Na)2(Al,Si)AlSi2)O8 »>An20 2+ 3+ • Garnet – (Ca,Mg,Fe ,Mn)3(Al,Fe ,Cr)2(SiO4)3 • Kyanite (Al2SiO5) in pelites • Assemblage hornblende + plagioclase is diagnostic ERSC 3P21 - Brock University Greg Finn ERSC 3P21 - Brock University Greg Finn hb hb cpx cpx hb hb p p cpx cpx op p op p p p a b Sample 99-3 - Amphibolite (metamorphosed gabbro) under (a) plane light and (b) crossed polars. Minerals present include plagioclase (p), clinopyroxene (cpx) (note the variable colour (pleochroism) of the cpx brown and green), hornblende (hb) and opaques (op). (FOV = 8.5mm) ERSC 3P21 - Brock University Greg Finn 5 ERSC 3P21 Metamorphic Petrology II 24/08/2011 Metamorphic Facies Calculated 14 Geothermal Water Gradient saturated 40 granite 12 solidus Diagenesis Glaucophane 30 10 Lawsonite 8 20 Amphibolite Depth (km) 6 Prehnite Pressure (kbar) Greenschist Pumpellyite 4 10 Zeolite 2 100 200 300 400 500 600 700 800 900 1000 Temperature (C) ERSC 3P21 - Brock University Greg Finn Granulite Facies • Characteristic of _____________ • Cpx + Opx + Pl + (Fe,Mg) Garnet ERSC 3P21 - Brock University Greg Finn Eclogite Facies • Lower _____ or upper ______ (deepest material sampled on a regular basis) • Feldspar-free assemblage, • Jadeite + pyrope (Mg garnet) is diagnostic ERSC 3P21 - Brock University Greg Finn 6 ERSC 3P21 Metamorphic Petrology II 24/08/2011 cpx cpx clinopyroxene clinopyroxene garnet garnet gt gt cpx cpx garnet garnet cpx cpx cpx cpx 2.0 mm cpx 2.0 mm cpx Sample PT-279: Eclogite. This sample is equivalent to the basalt, gabbro and amphibolite, except that it has been metamorphosed to a higher degree (~500-700°C and >10 kbars). This sample consists of medium to coarse grained clinopyroxene (cpx) which exhibits a weak green pleochroism and garnet (gt), an isotropic mineral. Hornblende, light green to dark green pleochroism, is present in this sample (not visible in this view). Minor amounts of plagioclase and quartz make up the fine grained matrix. ERSC 3P21 - Brock University Greg Finn Metamorphic Facies Calculated 14 Geothermal Water Gradient saturated 40 Eclogitegranite 12 solidus Diagenesis Glaucophane 30 10 Lawsonite 8 Granulite 20 Amphibolite Depth (km) 6 Prehnite Pressure (kbar) Greenschist Pumpellyite 4 10 Zeolite 2 Px Hornfels Hornfels Sanidinite 100 200 300 400 500 600 700 800 900 1000 Temperature (C) ERSC 3P21 - Brock University Greg Finn Characteristics of regionally metamorphsed mudstones Grade Rock Name Grain Size Key Minerals Features Protolith Mudstone Very fine grained, Clays, quartz Fissile, shale, bedding or clay sized massive, mudstone particles texture Very Low Slate Very Fine, Clays, chlorite, Bedding, slaty cleavage recrystallized quartz, Fe-oxides particles Low Phyllite Fine Micas, chlorite, Bedding, phyllitic foliation quartz, Fe-oxides Medium Schist Fine to medium, Micas, chlorite, Schistosity, with random quartz, plag, garnet, porphyroblasts, rare isolated large staurolite, kyanite, bedding porphyrobalsts Fe-Ti oxides High Schist/gneiss Medium to Biotite, quartz, plag., Schistosity or coarse garnet, cordierite, gneissosity, segregation sillimanite, Fe-Ti layering, porphyroblasts oxides Very Gneiss Medium to Biotite, quartz,plag., Gneissosity, segregation, coarse orthoclase, layering, porphyroblasts, High sillimanite, garnet, migmatitic layering cordierite, Fe-Ti ox. ERSC 3P21 - Brock University Greg Finn 7.
Recommended publications
  • Finding of Prehnite-Pumpellyite Facies Metabasites from the Kurosegawa Belt in Yatsushiro Area, Kyushu, Japan
    Journal ofPrehnite Mineralogical-pumpellyite and Petrological facies metabasites Sciences, in Yatsushiro Volume 107, area, page Kyushu 99─ 104, 2012 99 LETTER Finding of prehnite-pumpellyite facies metabasites from the Kurosegawa belt in Yatsushiro area, Kyushu, Japan * * ** Kenichiro KAMIMURA , Takao HIRAJIMA and Yoshiyuki FUJIMOTO *Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan ** Nittetsu-Kogyo Co., Ltd, 2-3-2 Marunouchi, Chiyoda, Tokyo 100-8377, Japan. Common occurrence of prehnite and pumpellyite is newly identified from metabasites of Tobiishi sub-unit in the Kurosegawa belt, Yatsushiro area, Kyushu, where Ueta (1961) had mapped as a greenschist facies area. Prehnite and pumpellyite are closely associated with chlorite, calcite and quartz, and they mainly occur in white colored veins or in amygdules in metabasites of the relevant area, but actinolite and epidote are rare in them. Pumpellyite is characterized by iron-rich composition (7.2-20.0 wt% as total iron as FeO) and its range almost overlaps with those in prehnite-pumpellyite facies metabasites of Ishizuka (1991). These facts suggest that the metabasites of the Tobiishi sub-unit suffered the prehnite-pumpellyite facies metamorphism, instead of the greenschist facies. Keywords: Prehnite-pumpellyite facies, Lawsonite-blueschist facies, Kurosegawa belt INTRODUCTION 1961; Kato et al., 1984; Maruyama et al., 1984; Tsujimori and Itaya, 1999; Tomiyoshi and Takasu, 2009). Until now, The subduction zone has an essential role for the global there is neither clear geological nor petrological evidence circulation of solid, fluid and volatile materials between suggesting what type of metamorphic rocks occupied the the surface and inside of the Earth at present.
    [Show full text]
  • What We Know About Subduction Zones from the Metamorphic Rock Record
    What we know about subduction zones from the metamorphic rock record Sarah Penniston-Dorland University of Maryland Subduction zones are complex We can learn a lot about processes occurring within active subduction zones by analysis of metamorphic rocks exhumed from ancient subduction zones Accreonary prism • Rocks are exhumed from a wide range of different parts of subduction zones. • Exhumed rocks from fossil subduction zones tell us about materials, conditions and processes within subduction zones • They provide complementary information to observations from active subduction systems Tatsumi, 2005 The subduction interface is more complex than we usually draw Mélange (Bebout, and Penniston-Dorland, 2015) Information from exhumed metamorphic rocks 1. Thermal structure The minerals in exhumed rocks of the subducted slab provide information about the thermal structure of subduction zones. 2. Fluids Metamorphism generates fluids. Fossil subduction zones preserve records of fluid-related processes. 3. Rheology and deformation Rocks from fossil subduction zones record deformation histories and provide information about the nature of the interface and the physical properties of rocks at the interface. 4. Geochemical cycling Metamorphism of the subducting slab plays a key role in the cycling of various elements through subduction zones. Thermal structure Equilibrium Thermodynamics provides the basis for estimating P-T conditions using mineral assemblages and compositions Systems act to minimize Gibbs Free Energy (chemical potential energy) Metamorphic facies and tectonic environment SubduconSubducon zone metamorphism zone metamorphism Regional metamorphism during collision Mid-ocean ridge metamorphism Contact metamorphism around plutons Determining P-T conditions from metamorphic rocks Assumption of chemical equilibrium Classic thermobarometry Based on equilibrium reactions for minerals in rocks, uses the compositions of those minerals and their thermodynamic properties e.g.
    [Show full text]
  • 12. Prehnite-Pumpellyite Facies Metamorphism in Oceanic Arc Basement from Site 791 in the Sumisu Rift, Western Pacific1
    Taylor, B., Fujioka, K., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 126 12. PREHNITE-PUMPELLYITE FACIES METAMORPHISM IN OCEANIC ARC BASEMENT FROM SITE 791 IN THE SUMISU RIFT, WESTERN PACIFIC1 Makoto Yuasa,2 Teruo Watanabe,3 Toshiaki Kuwajima,3 Tadao Hirama,4 and Kantaro Fujioka5 ABSTRACT Prehnite-pumpellyite facies metamorphism is described in the oceanic-arc basement rocks of Ocean Drilling Program Leg 126, Site 791 in the Sumisu Rift, western Pacific. Chemical variations of pumpellyite, epidote, chlorite, and prehnite are examined and paragenetic relations discussed. The metamorphism took place during the pre-rifting stage of an intraoceanic arc. During the backarc rifting stage, the geothermal gradient of the area was not as high as that of a spreading mid-oceanic ridge. INTRODUCTION The drill hole penetrated about 1100 m below the seafloor (mbsf) into basaltic basement (Shipboard Scientific Party, 1990). Studies of the metamorphism of the oceanic crust have advanced since the International Phase of Ocean Drilling (IPOD) project. Forearc "Ohmachi" Seamount According to the summary by Maruyama and Liou (1988), diversity in ocean-floor metamorphism reflects a difference in tectonics. For The Nishinoshima Trough has a rift morphology and obliquely cuts example, the fast-spreading Pacific Ocean has higher geothermal across the Izu-Bonin Arc between the Sofugan and Nishinoshima islands gradients than the slow-spreading Atlantic; and prehnite-pumpellyite (Fig. 1). The distance between the nearest islands is widest at about facies metamorphic rocks have not been collected from the Pacific 290 km here at the Shichito-Iwojima Ridge. There are nine large Ocean floor, but they have been obtained from the Atlantic Ocean and seamounts, some of which have parasitic highs, between the Sofugan and Philippine Sea floors where the geothermal gradient is rather low Nishinoshima islands.
    [Show full text]
  • Geology of Natural Zeolites and Zeolitic Rocks
    Pure &Appl.Chern., Vol.52, pp.2II5—2l3O. Pergamon Press Ltd. 1980. Printed in Great Britain. PlenaryPaper — Geology and Mineralogy GEOLOGY OF NATURAL ZEOLITES AND ZEOLITIC ROCKS Azumalijima Geological Institute, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113, Japan ABSTRACT Presentstatus, particularly development in the latest decade, of the geology of natural zeolites and zeolitic rocks has been overviewed. Emphases are focused on the classification of genetical occurrences and the synthesis deduced from the nature.. INTRODUCTION Nearly two centuries have passed since zeolite was discovered and named by Cronstedt in 1756. Collection and mineralogical description of pretty, coarse crystals were the primary studies of zeolites for a long time till early this century. It is a great monument that the concept of zeolite facies was established by Eskola in 1936 as the low— est grade of the metamorphic facies. The concept was greatly developed by Coombs in New Zealand, having further been visualized by lijima, Seki and Utada in Japan. Researches on zeolites in alkaline, saline lake deposits by Hay, Gude and Sheppard in USA made our eyes open to the zeolite formation at or near the Earth's surface. From deep—sea sediments zeolites were already reported by Murray and Renard in 1891. The Deep Sea Drilling Project (1968—1975) by the Glomar Challenger cruises shed light on the deep—sea zeolites. Our knowledge on natural zeolites and zeolitic rocks has rapidly expanded during the latest two decades. The growth of study on natural zeolites has been and will be stimulated by increasing needs of them as a potential natural resource, instead of synthetic zeolites, particularly in Africa, East and West Europe, Japan, USA and USSR.
    [Show full text]
  • Multiple Veining in a Paleo–Accretionary Wedge: the Metamorphic Rock Record of Prograde Dehydration and Transient High Pore- GEOSPHERE, V
    Research Paper THEMED ISSUE: Subduction Top to Bottom 2 GEOSPHERE Multiple veining in a paleo–accretionary wedge: The metamorphic rock record of prograde dehydration and transient high pore- GEOSPHERE, v. 16, no. 3 fluid pressures along the subduction interface (Western Series, https://doi.org/10.1130/GES02227.1 11 figures; 2 tables; 1 set of supplemental files central Chile) Jesús Muñoz-Montecinos1,2,*, Samuel Angiboust1,*, Aitor Cambeses3,*, and Antonio García-Casco2,4,* CORRESPONDENCE: 1 [email protected] Institut de Physique du Globe de Paris, Université de Paris, CNRS, F-75005 Paris, France 2Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18002 Granada, Spain 3Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum 44801, Germany CITATION: Muñoz-Montecinos, J., Angiboust, S., 4Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, Armilla, Granada 18100, Spain Cambeses, A., and García-Casco, A., 2020, Multiple veining in a paleo–accretionary wedge: The metamor- phic rock record of prograde dehydration and transient high pore-fluid pressures along the subduction inter- ABSTRACT that the formation of interlayered blueschist and fluid-rock interaction events (Zack and John, 2007). face (Western Series, central Chile): Geosphere, v. 16, greenschist layers in Pichilemu metavolcanics is a Textures recorded in veins yield information on no. 3, p. 765–786, https://doi.org/10.1130/GES02227.1. High pressure–low temperature metamorphic consequence of local bulk composition variations, crack aperture as well as crystal growth kinetics rocks from the late Paleozoic accretionary wedge and that greenschists are generally not formed due during each veining event (Cox and Etheridge, 1983; Science Editor: Shanaka de Silva exposed in central Chile (Pichilemu region) are to selective exhumation-related retrogression of Bons, 2001), while vein-filling mineral assemblages Guest Associate Editor: Gray E.
    [Show full text]
  • The Genesis of Zeolites
    Eur. J. Mineral. 1989,1,479-487 The genesis of zeolites GLAUCoGOTTARDIt* Istituto di Mineralogia e Petrologia, Università di Modena, via S. Eufemia 19,1-41100 Modena, Italy Abstract: The equilibrium diagrams of zeolites and the different possibilities of synthesizing zeolites starting from chemicals, minerals, and natural glasses are reviewed so to have a general picture of the conditions of crystallization of these minerals. Subsequently, a description and interpretation is given of the geological environments where zeolites crystallize in nature. Key-words: zeolite, diagenesis, very-low-grade metamorphism, hydrothermalism, volcanic glass. 1. Introduction and heulandite generally contain some M+ ca­ tions, which are almost absent in laumontite, yu­ This topic has been the subject of so many publi­ gawaralite and wairakite, so the alkali metal con­ cations (e.g. Hay, 1978, 1986; Iijima, 1978, 1980; centration in the system may influence the given Kastner & Stonecipher, 1978; Surdam & Shep- boundaries. Additional diagrams on these zeolites pard, 1978) over the last ten years, that one may can be found in the literature, but none is known wonder "Why another one?". As a matter of fact, to the author for zeolites other than those men­ all these previous studies give detailed informa­ tioned here. Field and laboratory evidence suggests tion on rock-forming zeolites, generally crystal­ that some other alkali zeolites may have a stabil­ lized from natural glasses during diagenesis, but ity field; this is certainly true for clinoptilolite, they omit any consideration of zeolites in veins the siliceous alkali-rich variant of heulandite, and and vugs of massive rocks. The author also aims is also probably true for natrolite and mordenite.
    [Show full text]
  • Prehnite-Pumpellyite Facies Metamorphism
    Andean Geology 37 (1): 54-77. January, 2010 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Prehnite-pumpellyite facies metamorphism in the Cenozoic Abanico Formation, Andes of central Chile (33º50'S): chemical and scale controls on mineral assemblages, reaction progress and the equilibrium state Marcia Muñoz1, Luis Aguirre1, Mario Vergara1, Alain Demant2, Francisco Fuentes3, Andrés Fock4 1 Departamento de Geología, Universidad de Chile, Casilla 13518, Correo 21, Santiago, Chile. [email protected]; [email protected]; [email protected] 2 Laboratoire de Pétrologie Magmatique Université Aix-Marseille III, 13397 Marseille Cedex 20, France. [email protected] 3 Los Acacios, Parcela 142-3, Paine, Chile. [email protected] 4 SQM Salar S.A., Aníbal Pinto 3228, Antofagasta, Chile. [email protected] ABSTRACT. In the El Volcán and Rodeo de los Bueyes areas, Andean Principal Cordillera (east of Santiago; 33º50'S), an Upper Oligocene-Lower Miocene volcanic series belonging to the Abanico Formation (Late Eocene-Early Miocene) is exposed. The rock successions outcropping in both areas, ca. 3,300 m total thickness, have been affected by very low-grade, non-deformative metamorphism in the prehnite-pumpellyite facies. This is represented by the widespread development of secondary mineral assemblages composed of epidote, mixed-layer chlorite-smectite, albite, quartz, white mica, and titanite. These mineral assemblages also contain pumpellyite, prehnite or prehnite+actinolite in a few samples. Chemical characteristics, such as low compositional variability of mixed-layer chlorite-smectite and actino- lite independent from the metadomain where these phases are hosted, along with a high proportion of chlorite layers in the former, suggest that these phases closely represent the whole rock effective bulk composition.
    [Show full text]
  • Facies Series
    Metamorphic Facies Series M.Sc. Semester II M. K. Yadav Assistant Professor Department of Geology Lucknow University-226007 Email: [email protected] Facies Series • A metamorphic facies series is a sequence of facies that occurs across a metamorphic terrane due to differences in pressure and temperature (P/T) conditions. • Variations in P/T conditions are related to both space and time. • In order to describe a sequence of changing metamorphic conditions, geologists refer to pressure – temperature – time (P - T - t) relations in which the history of pressure and temperature changes over some period of time are inferred from the rock record. • Each facies series is characterized by the development of a particular sequence of individual facies, with each facies stable at a specific range of temperature and pressure conditions. Why is the concept of a facies series so important? • Facies series provide key information concerning the progressive P - T - t conditions as well as the tectonic setting in which metamorphism occurred. • Metamorphic facies series were defined (Miyashiro, 1994) on the basis of pressure and temperature gradients, both of which are related to the conditions of metamorphism and tectonic setting. Metamorphic facies series known so far • Five metamorphic facies series, assigned to three major groups, are recognized. ❖1. Low P/T series group: two low pressure and high temperature facies series are recognized: a) the very low P/T contact facies series, and b) the somewhat higher P/T Buchan or Abukuma facies series. ❖2. Moderate P/T series group: moderate P/T gradients characterize the Barrovian facies series. ❖3.
    [Show full text]
  • Introduction to Metamorphic Textures and Microstructures Introduction to Metamorphic Textures and Microstructures Second Edition A.J
    Introduction to Metamorphic Textures and Microstructures Introduction to Metamorphic Textures and Microstructures Second edition A.J. Barker Lecturer in Geology University of Southampton, UK Stanley Thornes (Publishers) Ltd © 1998 A.J. Barker The right of A.J. Barker to be identified as author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, of 90 Tottenham Court Road, London WIP OLP. First edition published in 1990 by Chapman & Hall, London Second edition published in 1998 by: Stanley Thomes (Publishers) Ltd Ellenborough House Wellington Street CHELTENHAM GLSO 1YW United Kingdom 98 99 00 01 02 / 10 9 8 7 6 5 4 3 2 A catalogue record for this book is available from the British Library. ISBN 978-1-4615-7293-0 ISBN 978-1-4615-7291-6 (eBook) DOl 10.1007/978-1-4615-7291-6 Typeset in Sabon 10.5/12.5 by Cambrian Typesetters, Frimley, Surrey Preface Technological advances over recent years, and examines interrelationships between deforma­ a wealth of new research providing refreshing tion and metamorphism. It includes an exten­ new interpretations on many metamorphic sive chapter on strain-related microstructures, microstructures, encouraged me to embark on and others on the controversial but important this considerably expanded and fully updated topics of porphyroblast-foliation relation­ second edition.
    [Show full text]
  • 4. Zeolite-Facies Metamorphism of Central Kerguelen Plateau Basalts1
    Wise, S. W., Jr., Schlich, R., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 120 4. ZEOLITE-FACIES METAMORPHISM OF CENTRAL KERGUELEN PLATEAU BASALTS1 J. H. Sevigny,2 H. Whitechurch,3 M. Storey,4 and V.J.M. Salters5 ABSTRACT Ocean Drilling Program Leg 120 recovered basement samples that consisted of zeolite-facies metabasalts at Sites 747, 749, and 750 on the Kerguelen Plateau. These basalts were metamorphosed in the low to intermediate zones of the zeolite facies, as indicated by the presence of diagnostic zeolites and the absence of chlorite, epidote, prehnite, pumpellyite, and wairakite. Chabazite, natrolite, thompsonite, mesolite, stilbite, huelandite, and smectites occur as amygduloidal fillings in basalts from Holes 747C and 750B, whereas only stilbite, laumontite, and pure and mixed-layered smectites were identified in amygduloidal basalts from Hole 749C. In the lower sections of Hole 749C, only laumontite and mixed-layered smectites coexist. Based on calculations with published experimental phase equilibria, the absence of wairakite in basalts from Hole 749C and of laumontite in basalts from Holes 747C and 750B suggests that metamorphic temperatures did not exceed approximately 225° and 120°C, respectively. The presence of well-developed zeolite mineral assemblages m tne • and the absence of carbonate and clay mineral assemblages restricts XCQ2 fluid to approximately 0.0075. Low- to intermediate-zone zeolite-facies mineral assemblages in basalts from the Kerguelen Plateau can be accounted for by metamorphism in an active geothermal area such as present-day Iceland. INTRODUCTION The important mesoscopic features of these basalts and their stratigraphic relations to the overlying sediments are summa- The zeolite facies is a low-temperature metamorphic facies rized below.
    [Show full text]
  • The Current Status of Thermobarometry in Metamorphic Rocks E. J. Essene
    Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 The current status of thermobarometry in metamorphic rocks E. J. Essene S U MMA RY: Information on pressure (P) and temperature (T) is a fundamental aspect of research on metamorphic terrains. Unfortunately, many workers employ thermo- barometers that are not experimentally calibrated, are insensitive or too sensitive to P- T changes, depend on a priori assumptions of water pressure (such as most petrogenetic grids), or are rapidly reset on cooling. Many systems are based on inaccurate thermo- dynamic data, involve solids with inadequately characterized structural states, neglect effects of thermal expansion and compressibility, or require long extrapolations in P-T-X space. For instance, application of the widely used garnet-clinopyroxene KD thermometer may require extrapolation to temperatures where current thermodynamic models of pyroxenes and garnets remain uncertain. Current versions of the Mg/Fc exchange thermometer for biotite-garnet involve substantial compositional extrapolations for many applications and the biotite is easily reset while cooling from higher T. The most widely employed barometer is based on dilution of the reaction grossular + kyanite + quartz = anorthite, but failure to correct molar volumes for P- T-X may yield systematic errors of 1-2 kbar for barometry of crustal metamorphites. Application of this barometer to rocks equilibrated at T < 600-650°C is presently unwarranted in view of unknown a-X relations of garnets and plagioclases at these T. However, by careful selections, thermo- barometry may be accurate to +50°C and + 1 kbar in many metamorphic terrains if a variety of different equilibria can be applied.
    [Show full text]
  • Mineral Parageneses in Low-Grade Metabasites at Low Pressures and Consideration of the Sub-Greenschist Realm
    Mineral parageneses in low-grade metabasites at low pressures and consideration of the sub-greenschist realm Richard Bevins 1 and Doug Robinson 2 1 Department of Geology. National Museum of Wales. Cathays Park. Cardiff. UK. CF10 3NP 2 Department of Earth Sciences. University of Bristol. Wills Memorial Building. Bristol. UK. BS8 1RJ Introduction Many early reviews of metamorphism considered that true metamorphic conditions are only first encountered at the onset of the greenschist facies, with anything below that, in the sub- greenschist realm, not being truly metamorphic, instead being more related to diagenetic or other processes. This led to very confusing concepts such as `spilitization` and even the notion of original spilitic or keratophyric magmas. It was the studies of Coombs and others in the late 1950`s and early 1960`s (eg Coombs et al., 1959; Coombs, 1960) that started to identify a degree of order in rocks that are now accepted as belonging to the zeolite facies, based on intermediate to silicic volcaniclastic rocks in South Island, New Zealand. These rocks contained unstable volcanic glass along with relict high temperature primary igneous minerals and these components, combined with a high porosity, made them highly reactive in the presence of low temperature fluids. The type locality for the zeolite facies is the Taringatura Hills in South Island, New Zealand, and the term `burial metamorphism` was adopted in view of the fact that the rocks have not been deformed, instead appearing to vary in mineralogy with depth of burial. Subsequent studies by Boles and Coombs (1975) in the adjacent Hokonui Hills region demonstrated that the composition of the circulating fluids had an appreciable effect on the secondary minerals present.
    [Show full text]