Mereotopological Connection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Topology
i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition. -
On Dimension and Weight of a Local Contact Algebra
Filomat 32:15 (2018), 5481–5500 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL1815481D University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Dimension and Weight of a Local Contact Algebra G. Dimova, E. Ivanova-Dimovaa, I. D ¨untschb aFaculty of Math. and Informatics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria bCollege of Maths. and Informatics, Fujian Normal University, Fuzhou, China. Permanent address: Dept. of Computer Science, Brock University, St. Catharines, Canada Abstract. As proved in [16], there exists a duality Λt between the category HLC of locally compact Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and appropriate morphisms between them. In this paper, we introduce the notions of weight wa and of dimension dima of a local contact algebra, and we prove that if X is a locally compact Hausdorff space then t t w(X) = wa(Λ (X)), and if, in addition, X is normal, then dim(X) = dima(Λ (X)). 1. Introduction According to Stone’s famous duality theorem [43], the Boolean algebra CO(X) of all clopen (= closed and open) subsets of a zero-dimensional compact Hausdorff space X carries the whole information about the space X, i.e. the space X can be reconstructed from CO(X), up to homeomorphism. It is natural to ask whether the Boolean algebra RC(X) of all regular closed subsets of a compact Hausdorff space X carries the full information about the space X (see Example 2.5 below for RC(X)). -
On the Boundary Between Mereology and Topology
On the Boundary Between Mereology and Topology Achille C. Varzi Istituto per la Ricerca Scientifica e Tecnologica, I-38100 Trento, Italy [email protected] (Final version published in Roberto Casati, Barry Smith, and Graham White (eds.), Philosophy and the Cognitive Sciences. Proceedings of the 16th International Wittgenstein Symposium, Vienna, Hölder-Pichler-Tempsky, 1994, pp. 423–442.) 1. Introduction Much recent work aimed at providing a formal ontology for the common-sense world has emphasized the need for a mereological account to be supplemented with topological concepts and principles. There are at least two reasons under- lying this view. The first is truly metaphysical and relates to the task of charac- terizing individual integrity or organic unity: since the notion of connectedness runs afoul of plain mereology, a theory of parts and wholes really needs to in- corporate a topological machinery of some sort. The second reason has been stressed mainly in connection with applications to certain areas of artificial in- telligence, most notably naive physics and qualitative reasoning about space and time: here mereology proves useful to account for certain basic relation- ships among things or events; but one needs topology to account for the fact that, say, two events can be continuous with each other, or that something can be inside, outside, abutting, or surrounding something else. These motivations (at times combined with others, e.g., semantic transpar- ency or computational efficiency) have led to the development of theories in which both mereological and topological notions play a pivotal role. How ex- actly these notions are related, however, and how the underlying principles should interact with one another, is still a rather unexplored issue. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Chapter 7 Separation Properties
Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . -
The Logic of Discrete Qualitative Relations
The Logic of Discrete Qualitative Relations Giulia Sindoni1 and John G. Stell2 1 School of Computing, University of Leeds, Leeds, UK [email protected] 2 School of Computing, University of Leeds, Leeds, UK [email protected] Abstract We consider a modal logic based on mathematical morphology which allows the expression of mereotopological relations between subgraphs. A specific form of topological closure between graphs is expressible in this logic, both as a combination of the negation ¬ and its dual ¬, and as modality, using the stable relation Q, which describes the incidence structure of the graph. This allows to define qualitative spatial relations between discrete regions, and to compare them with earlier works in mereotopology, both in the discrete and in the continuous space. 1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods Keywords and phrases Modal logic, Qualitative spatial reasoning, Discrete space Digital Object Identifier 10.4230/LIPIcs.COSIT.2017.1 1 Introduction Qualitative spatial relations have a long history with two major strands: the Region- Connection Calculus (RCC) of Randell et al. [10] and the 9-intersection approach of Egenhofer et al. [5]. These were initially intended to model ‘continuous’, or more precisely ‘dense’, space that can be subdivided indefinitely often. The RCC is defined in terms of first order axioms based on a primitive predicate of connection. The intersection-based theories, on the other hand, evaluate spatial scenarios through a matrix of statements that pairs of features of two regions have non-empty intersection. In the 9-intersection case a pair of regions A, B is given a spatial relationship by considering the interior, boundary, and exterior of each region and obtaining a matrix of truth values from the emptiness or non-emptiness of the 9 possible intersections between the three features of A and of B. -
DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V . -
A Generalization of Normal Spaces
ARCHIVUM MATHEMATICUM (BRNO) Tomus 44 (2008), 265–270 A GENERALIZATION OF NORMAL SPACES V. Renukadevi and D. Sivaraj Abstract. A new class of spaces which contains the class of all normal spaces is defined and its characterization and properties are discussed. 1. Introduction and preliminaries Ideals in topological spaces have been considered since 1930. This topic has won its importance by the paper of Vaidyanathaswamy [8]. An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological space (X, τ) with an ideal I on X and if ℘(X) is the set of all subsets of X, a set operator (·)? : ℘(X) → ℘(X), called the local function [4] of A with respect to τ and I, is defined as follows: for A ⊂ X, A?(I, τ) = x ∈ X | U ∩A 6∈ I for every U ∈ τ(x) where τ(x) = U ∈ τ | x ∈ U . A Kuratowski closure operator cl?(·) for a topology τ ?(I, τ), called the ?-topology, finer than τ is defined by cl?(A) = A ∪ A?(I, τ) [9]. When there is no chance for confusion, we will simply write A? for A?(I, τ). We will make use of the properties of the local function established in Theorem 2.3 of [3] without mentioning it explicitly. The aim of this paper is to introduce a new class of spaces called I-normal spaces which contains the class of all normal spaces and discuss some of its properties. -
On Α-Normal and Β-Normal Spaces
Comment.Math.Univ.Carolin. 42,3 (2001)507–519 507 On α-normal and β-normal spaces A.V. Arhangel’skii, L. Ludwig Abstract. We define two natural normality type properties, α-normality and β-normality, and compare these notions to normality. A natural weakening of Jones Lemma immedi- ately leads to generalizations of some important results on normal spaces. We observe that every β-normal, pseudocompact space is countably compact, and show that if X is a dense subspace of a product of metrizable spaces, then X is normal if and only if X is β-normal. All hereditarily separable spaces are α-normal. A space is normal if and only if it is κ-normal and β-normal. Central results of the paper are contained in Sections 3 and 4. Several examples are given, including an example (identified by R.Z. Buzyakova) of an α-normal, κ-normal, and not β-normal space, which is, in fact, a pseudocompact topological group. We observe that under CH there exists a locally compact Hausdorff hereditarily α-normal non-normal space (Theorem 3.3). This example is related to the main result of Section 4, which is a version of the famous Katˇetov’s theorem on metrizability of a compactum the third power of which is hereditarily normal (Corollary 4.3). We also present a Tychonoff space X such that no dense subspace of X is α-normal (Section 3). Keywords: normal, α-normal, β-normal, κ-normal, weakly normal, extremally discon- nected, Cp(X), Lindel¨of, compact, pseudocompact, countably compact, hereditarily sep- arable, hereditarily α-normal, property wD, weakly perfect, first countable Classification: 54D15, 54D65, 54G20 §0. -
Of a Compactification of a Space
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 30, No. 3, November 1971 PROPER MAPPINGS AND THE MINIMUM DIMENSION OF A COMPACTIFICATION OF A SPACE JAMES KEESLING Abstract. In this paper it is shown that for each positive inte- ger n there is a locally compact Hausdorff space X having the property that dim X = n and in addition having the property that if f(X) = Y is a proper mapping, then dim Fa». Using this result it is shown that there is a space Y having the property that min dim Y = n with a point />E Y with min dim Y — \p\ =0. Introduction. A proper mapping is a closed continuous function f'-X—*Y such that/_1(y) is compact for all yE Y. In this paper it is shown that for each positive integer n there is a locally compact Hausdorff space X having the property that dim X —n and in addi- tion has the property that if f(X) = Y is a proper mapping, then dim FS; n. For n = 2 such a space was shown to exist in [S] in answer to a question posed by Isbell [4, pp. 119-120]. Using this result it is then shown that for each positive integer n there is a space X having the property that the minimum dimension of a compactification for X is n and that there is a point pEX such that X— \p\ has a 0-dimensional compactification. In the terminol- ogy of Isbell [4, p. 97], min dim X —n with min dim X— \p\ =0. -
Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds. -
Parts, Wholes, and Part-Whole Relations: the Prospects of Mereotopology
PARTS, WHOLES, AND PART-WHOLE RELATIONS: THE PROSPECTS OF MEREOTOPOLOGY Achille C. Varzi Department of Philosophy, Columbia University (New York) (Published in Data and Knowledge Engineering 20 (1996), 259–286.) 1. INTRODUCTION This is a brief overview of formal theories concerned with the study of the notions of (and the relations between) parts and wholes. The guiding idea is that we can dis- tinguish between a theory of parthood (mereology) and a theory of wholeness (holology, which is essentially afforded by topology), and the main question exam- ined is how these two theories can be combined to obtain a unified theory of parts and wholes. We examine various non-equivalent ways of pursuing this task, mainly with reference to its relevance to spatio-temporal reasoning. In particular, three main strategies are compared: (i) mereology and topology as two independent (though mutually related) theories; (ii) mereology as a general theory subsuming topology; (iii) topology as a general theory subsuming mereology. This is done in Sections 4 through 6. We also consider some more speculative strategies and directions for further research. First, however, we begin with some preliminary outline of mereol- ogy (Section 2) and of its natural bond with topology (Section 3). 2. MEREOLOGY: A REVIEW The analysis of parthood relations (mereology, from the Greek meroV, ‘part’) has for a long time been a major focus of philosophical investigation, beginning as early as with atomists and continuing throughout the writings of ancient and medieval ontologists. It made its way into contemporary philosophy through the work of Brentano and of his pupils, most notably Husserl’s third Logical Investigation, and it has been subjected to formal treatment from the very first decades of this century.