A Guide to Topology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Directed Sets and Topological Spaces Definable in O-Minimal Structures
Directed sets and topological spaces definable in o-minimal structures. Pablo And´ujarGuerrero∗ Margaret E. M. Thomas ∗ Erik Walsbergy 2010 Mathematics Subject Classification. 03C64 (Primary), 54A20, 54A05, 54D30 (Secondary). Key words. o-minimality, directed sets, definable topological spaces. Abstract We study directed sets definable in o-minimal structures, show- ing that in expansions of ordered fields these admit cofinal definable curves, as well as a suitable analogue in expansions of ordered groups, and furthermore that no analogue holds in full generality. We use the theory of tame pairs to extend the results in the field case to definable families of sets with the finite intersection property. We then apply our results to the study of definable topologies. We prove that all de- finable topological spaces display properties akin to first countability, and give several characterizations of a notion of definable compactness due to Peterzil and Steinhorn [PS99] generalized to this setting. 1 Introduction The study of objects definable in o-minimal structures is motivated by the notion that o-minimality provides a rich but \tame" setting for the theories of said objects. In this paper we study directed sets definable in o-minimal structures, focusing on expansions of groups and fields. By \directed set" we mean a preordered set in which every finite subset has a lower (if downward ∗Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, U.S.A. E-mail addresses: [email protected] (And´ujarGuer- rero), [email protected] (Thomas) yDepartment of Mathematics, Statistics, and Computer Science, Department of Math- ematics, University of California, Irvine, 340 Rowland Hall (Bldg.# 400), Irvine, CA 92697-3875, U.S.A. -
Scott Spaces and the Dcpo Category
SCOTT SPACES AND THE DCPO CATEGORY JORDAN BROWN Abstract. Directed-complete partial orders (dcpo’s) arise often in the study of λ-calculus. Here we investigate certain properties of dcpo’s and the Scott spaces they induce. We introduce a new construction which allows for the canonical extension of a partial order to a dcpo and give a proof that the dcpo introduced by Zhao, Xi, and Chen is well-filtered. Contents 1. Introduction 1 2. General Definitions and the Finite Case 2 3. Connectedness of Scott Spaces 5 4. The Categorical Structure of DCPO 6 5. Suprema and the Waybelow Relation 7 6. Hofmann-Mislove Theorem 9 7. Ordinal-Based DCPOs 11 8. Acknowledgments 13 References 13 1. Introduction Directed-complete partially ordered sets (dcpo’s) often arise in the study of λ-calculus. Namely, they are often used to construct models for λ theories. There are several versions of the λ-calculus, all of which attempt to describe the ‘computable’ functions. The first robust descriptions of λ-calculus appeared around the same time as the definition of Turing machines, and Turing’s paper introducing computing machines includes a proof that his computable functions are precisely the λ-definable ones [5] [8]. Though we do not address the λ-calculus directly here, an exposition of certain λ theories and the construction of Scott space models for them can be found in [1]. In these models, computable functions correspond to continuous functions with respect to the Scott topology. It is thus with an eye to the application of topological tools in the study of computability that we investigate the Scott topology. -
Open 3-Manifolds Which Are Simply Connected at Infinity
OPEN 3-MANIFOLDS WHICH ARE SIMPLY CONNECTED AT INFINITY C H. EDWARDS, JR.1 A triangulated open manifold M will be called l-connected at infin- ity il each compact subset C of M is contained in a compact poly- hedron P in M such that M—P is connected and simply connected. Stallings has shown that, if M is a contractible open combinatorial manifold which is l-connected at infinity and is of dimension ra^5, then M is piecewise-linearly homeomorphic to Euclidean re-space E" [5]. Theorem 1. Let M be a contractible open 3-manifold, each of whose compact subsets can be imbedded in £3. If M is l-connected at infinity, then M is homeomorphic to £3. Notice that, in order to prove the 3-dimensional Poincaré conjec- ture, it would suffice to prove Theorem 1 without the hypothesis that each compact subset of M can be imbedded in £3. For, if M is a simply connected closed 3-manifold and p is a point of M, then M —p is a contractible open 3-manifold which is clearly l-connected at infinity. Conversely, if the 3-dimensional Poincaré conjecture were known, then the hypothesis that each compact subset of M can be imbedded in £3 would be unnecessary. All spaces and mappings in this paper are considered in the poly- hedral or piecewise-linear sense, unless otherwise stated. As usual, by an open re-manifold is meant a noncompact connected space triangu- lated by a countable simplicial complex without boundary, such that the link of each vertex is piecewise-linearly homeomorphic to the usual (re—1)-sphere. -
On Dimension and Weight of a Local Contact Algebra
Filomat 32:15 (2018), 5481–5500 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL1815481D University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Dimension and Weight of a Local Contact Algebra G. Dimova, E. Ivanova-Dimovaa, I. D ¨untschb aFaculty of Math. and Informatics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria bCollege of Maths. and Informatics, Fujian Normal University, Fuzhou, China. Permanent address: Dept. of Computer Science, Brock University, St. Catharines, Canada Abstract. As proved in [16], there exists a duality Λt between the category HLC of locally compact Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and appropriate morphisms between them. In this paper, we introduce the notions of weight wa and of dimension dima of a local contact algebra, and we prove that if X is a locally compact Hausdorff space then t t w(X) = wa(Λ (X)), and if, in addition, X is normal, then dim(X) = dima(Λ (X)). 1. Introduction According to Stone’s famous duality theorem [43], the Boolean algebra CO(X) of all clopen (= closed and open) subsets of a zero-dimensional compact Hausdorff space X carries the whole information about the space X, i.e. the space X can be reconstructed from CO(X), up to homeomorphism. It is natural to ask whether the Boolean algebra RC(X) of all regular closed subsets of a compact Hausdorff space X carries the full information about the space X (see Example 2.5 below for RC(X)). -
On Finite-Dimensional Uniform Spaces
Pacific Journal of Mathematics ON FINITE-DIMENSIONAL UNIFORM SPACES JOHN ROLFE ISBELL Vol. 9, No. 1 May 1959 ON FINITE-DIMENSIONAL UNIFORM SPACES J. R. ISBELL Introduction* This paper has two nearly independent parts, con- cerned respectively with extension of mappings and with dimension in uniform spaces. It is already known that the basic extension theorems of point set topology are valid in part, and only in part, for uniformly continuous functions. The principal contribution added here is an affirmative result to the effect that every finite-dimensional simplicial complex is a uniform ANR, or ANRU. The complex is supposed to carry the uniformity in which a mapping into it is uniformly continuous if and only if its barycentric coordinates are equiuniformly continuous. (This is a metric uniformity.) The conclusion (ANRU) means that when- ever this space μA is embedded in another uniform space μX there exist a uniform neighborhood U of A (an ε-neighborhood with respect to some uniformly continuous pseudometric) and a uniformly continuous retrac- tion r : μU -> μA, It is known that the real line is not an ARU. (Definition obvious.) Our principal negative contribution here is the proof that no uniform space homeomorphic with the line is an ARU. This is also an indication of the power of the methods, another indication being provided by the failure to settle the corresponding question for the plane. An ARU has to be uniformly contractible, but it does not have to be uniformly locally an ANRU. (The counter-example is compact metric and is due to Borsuk [2]). -
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Chapter 7 Separation Properties
Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . -
Strong Shape of Uniform Spaces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 49 (1993) 237-249 237 North-Holland Strong shape of uniform spaces Jack Segal Department of Mathematics, University of Washington, Cl38 Padeljord Hall GN-50, Seattle, WA 98195, USA Stanislaw Spiei” Institute of Mathematics, PAN, Warsaw, Poland Bernd Giinther”” Fachbereich Mathematik, Johann Wolfgang Goethe-Universitiit, Robert-Mayer-Strafie 6-10, W-6000 Frankfurt, Germany Received 19 August 1991 Revised 16 March 1992 Abstract Segal, J., S. Spiei and B. Giinther, Strong shape of uniform spaces, Topology and its Applications 49 (1993) 237-249. A strong shape category for finitistic uniform spaces is constructed and it is shown, that certain nice properties known from strong shape theory of compact Hausdorff spaces carry over to this setting. These properties include a characterization of the new category as localization of the homotopy category, the product property and obstruction theory. Keywords: Uniform spaces, finitistic uniform spaces, strong shape, Cartesian products, localiz- ation, Samuel compactification, obstruction theory. AMS (MOS) Subj. Class.: 54C56, 54835, 55N05, 55P55, 55S35. Introduction In strong shape theory of topological spaces one encounters several instances, where the desired extension of theorems from compact spaces to more general ones either leads to difficult unsolved problems or is outright impossible. Examples are: Correspondence to: Professor J. Segal, Department of Mathematics, University of Washington, Seattle, WA 98195, USA. * This paper was written while this author was visiting the University of Washington. ** This paper was written while this author was visiting the University of Washington, and this visit was supported by a DFG fellowship. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local
Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local Topological Properties Exercise 7 of the problem set asked you to understand the notion of path compo- nents. We assume that knowledge here. We have done a little work in understanding the notions of connectedness, path connectedness, and compactness. It turns out that even if a space doesn't have these properties globally, they might still hold locally. Definition. A space X is locally path connected at x if for every neighborhood U of x, there is a path connected neighborhood V of x contained in U. If X is locally path connected at all of its points, then it is said to be locally path connected. Lemma 1.1. A space X is locally path connected if and only if for every open set V of X, each path component of V is open in X. Proof. Suppose that X is locally path connected. Let V be an open set in X; let C be a path component of V . If x is a point of V , we can (by definition) choose a path connected neighborhood W of x such that W ⊂ V . Since W is path connected, it must lie entirely within the path component C. Therefore C is open. Conversely, suppose that the path components of open sets of X are themselves open. Given a point x of X and a neighborhood V of x, let C be the path component of V containing x. Now C is path connected, and since it is open in X by hypothesis, we now have that X is locally path connected at x. -
Directed Sets and Cofinal Types by Stevo Todorcevic
transactions of the american mathematical society Volume 290, Number 2, August 1985 DIRECTED SETS AND COFINAL TYPES BY STEVO TODORCEVIC Abstract. We show that 1, w, ax, u x ux and ["iF" are the only cofinal types of directed sets of size S,, but that there exist many cofinal types of directed sets of size continuum. A partially ordered set D is directed if every two elements of D have an upper bound in D. In this note we consider some basic problems concerning directed sets which have their origin in the theory of Moore-Smith convergence in topology [12, 3, 19, 9]. One such problem is to determine "all essential kind of directed sets" needed for defining the closure operator in a given class of spaces [3, p. 47]. Concerning this problem, the following important notion was introduced by J. Tukey [19]. Two directed sets D and E are cofinally similar if there is a partially ordered set C in which both can be embedded as cofinal subsets. He showed that this is an equivalence relation and that D and E are cofinally similar iff there is a convergent map from D into E and also a convergent map from E into D. The equivalence classes of this relation are called cofinal types. This concept has been extensively studied since then by various authors [4, 13, 7, 8]. Already, from the first introduc- tion of this concept, it has been known that 1, w, ccx, w X cox and [w1]<" represent different cofinal types of directed sets of size < Kls but no more than five such types were known.