Chapter 7 Separation Properties

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 Separation Properties Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . It is immediately clear from the definitions that XÊXÊXÞ#"! Example 2.2 1) \X is a !BC space iff whenever BÁC, then aa Á that is, different points in \ have different neighborhood systems. 2) If l\l " and \ has the trivial topology, then \ is not a X! space. 3) A pseudometric space Ð\ß .Ñ is metric iff Ð\ß .Ñ is a X! space. 283 Clearly, a metric space is XÐ\ß.ÑXBÁCÞ!!. On the other hand, suppose is and that Then for some %%! either BÂFÐCÑ%% or CÂFÐBÑ. Either way, .ÐBßCÑ , so . is a metric. 4) In any topological space \BµCœwe can define an equivalence relation iffaaBC . and let 1 À \ Ä ] œ \Î µby 1ÐBÑ œ ÒBÓÞGive ] the quotient topology. Then 1 is continuous, onto, open (not automatic for a quotient map!) and the quotient is a X! space: If S\ is open in , we want to show that 1ÒSÓ] is open in , and because ] has the quotient topology this is true iff 1Ò1ÒSÓÓ" is open in \. But 1Ò1ÒSÓÓ " œ ÖB − \ À 1ÐBÑ − 1ÒSÓ× œ ÖB − \ Àfor some C − S, 1ÐBÑ œ 1ÐCÑ× œÖB−\À B is equivalent to some point C in SלS. If ÒBÓ Á ÒCÓ − ], then B is not equivalent to C, so there is an open set S © \ with (say) B − S and C  S. Since 1 is open, 1ÒSÓ is open in ] and ÒBÓ − 1ÒSÓ. Moreover, ÒCÓ Â 1ÒSÓ or else C would be equivalent to some point of S implying C − SÞ ]X is called the X!-identification of \ . This identification turns any space into a ! space by identifying points that have identical neighborhoods. If \X is a ! space to begin with, then 1""1 is and is a homeomorphism. Applied to a XX!! space, the -identification accomplishes nothing. If Ð\ß.Ñis a pseudometric space, the X!-identification is the same as the metric identification discussed in Example VI.5.6Àœ.ÐBßCÑœ!Þ in that caseaaBC iff ww 5) For 3 œ !ß "ß # Àif Ð\ßggg Ñ is a X3 space and ª is a new topology on \, then Ð\ß g Ñ is also a X3 space. Example 2.3 1) (Exercise) It is easy to check that a space \Xis a" space iff for each B−\, ÖB×is closed iff for each , is open and B−\ ÖBל ÖSÀ S B−S× 2) A finite X" space is discrete. 3) Sierpinski space \ œ Ö!ß "× with topology g œ Ögß Ö"×ß Ö!ß "××Ñ is X!" but not X: Ö"× is an open set that contains "! and not ; but there is no open set containing ! and not 1. 4) ‘‘, with the right-ray topology, is XXBC−SœÐBß∞Ñ!" but not : if , then is an open set that contains CB and not ; but there is no open set that contains BC and not . 5) With the cofinite topology, is XX"# but not : in an infinite cofinite space, any two nonempty open sets have nonempty intersection. These separation properties are very well-behaved with respect to subspaces and products. Theorem 2.4 For 3 œ !ß "ß #: 284 a) A subspace of a XX33 space is a space b) If , then is a space iff each is a space. \œα−E \αα Ág \ X33 \ X Proof All of the proofs are easy. We consider only the case 3œ", leaving the other cases as an exercise. w Suppose +Á,−E©\, where \ is a X" space. If Y is an open set in \ containing B but not C, then YœYw ∩E is an open set in E containing B but not C. Similarly we can find an open set Z in E containing CBÞEX but not Therefore is a " space. Suppose is a nonempty space. Each is homeomorphic to a subspace of , so \œα−E \αα X" \ \ each BXαααα is "" (by part a)). Conversely, suppose each \X is and that BÁC−\. Then BÁC for some α. Pick an open set Y\αα in containing B α but not C α. Then YœY α is an open set in \ containing BC but not . Similarly, we find an open set Z\CBin containing but not . Therefore \ is a Xñ" space. Exercise 2.5 Is a continuous image of a XX33 space necessarily a space? How about a quotient? A continuous open image? We now consider a slightly different kind of separation axiom for a space \À formally, the definition is “just like” the definition of X#, but with a closed set replacing one of the points. Definition 2.6 A topological space \JBÂJß is called regular if whenever is a closed set and containing BYZB−YJ©Z, there exist disjoint open sets and such that and . There are some easy variations on the definition of “regular” that are useful to recognize. Theorem 2.7 The following are equivalent for any space \: 285 i) \ is regular ii) if SB is an open set containing , then there exists an open set Y©\ such that B−Y©cl Y©S iii) at each point B−\ there exists a neighborhood base consisting of closed neighborhoods . Proof i)Ê\ ii) Suppose is regular and S is an open set with B−SÞJœ\SLetting , we use regularity to get disjoint open sets YßZ with B − Y and J © Z as illustrated below: Then B−Y©cl Y©S (since cl Y©\Z ). ii)ÊR−B−SœR iii) If aB, then int . By ii), we can find an open set Y so that B−Y©cl Y©S . Since cl Y is a neighborhood of B, the closed neighborhoods of B form a neighborhood base at B. iii)ÊJ i) Suppose is closed and BÂJ. By ii), there is a closed neighborhood OB of such that B−O©\J. We can choose Y œint O and Z œ\O to complete the proof that \ is regular. ñ Example 2.8 Every pseudometric space Ð\ß .Ñ is regular. Suppose +  Jand J is closed. We have a continuous function 0ÐBÑ œ .ÐBß J Ñ for which 0Ð+Ñ œ - ! and 0lJ œ !Þ This gives us disjoint "-- " open sets with +−Y œ0 ÒÐß∞ÑÓ##and J ©Z œ0 ÒÐ∞ß ÑÓ. Therefore \ is regular. At first glance, one might think that regularity is a stronger condition than X#. But this is false: if Ð\ß .Ñ is a pseudometric space but not a metric space, then \ is regular but not even X!. To bring things into line, we make the following definition. Definition 2.9 A topological space \X\ is called a $" space if is regular and X. It is easy to show that XÊX$# ( ÊXÊX "! ): suppose \ is X $ and BÁC−\. Then JœÖC× is closed so, by regularity, there are disjoint open sets YZ, with B−Y and C−ÖCשZ. 286 Caution The terminology varies from book to book. For some authors, the definition of “regular” includes XÀ" for them, “regular” means what we have called “ X$ .” Check the definitions when reading other books. Exercise 2.10 Show that a regular XX!$ space must be (so it would have been equivalent to use “X! ” instead of “XX"$ ” in the definition of “ ”). # Example 2.11 XÊ#$ÎX. We will put a new topology on the set \œ‘ . At each point B−\, let a neighborhood base UB consist of all sets R of the form R œ F% ÐBÑ Ða finite number of straight lines through BÑ ∪ ÖB× for some % !Þ (Check that the conditions in the Neighborhood Base Theorem III.5.2 are satisfied.) With the resulting topology, \FÐBÑ− is called the slotted plane. Note that % UB (because “! ” is a finite number ), so # each FÐBÑ% is among the basic neighborhoods in U‘B so the slotted plane topology on is contains the usual Euclidean topology. It follows that \X is #. The set J œ ÖÐBß !Ñ À B Á !× œ“the B-axis with the origin deleted” is a closed set in \ (why? ).
Recommended publications
  • Or Dense in Itself)Ifx Has No Isolated Points
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 11, Pages 3607{3616 S 0002-9939(03)06660-7 Article electronically published on February 24, 2003 TYCHONOFF EXPANSIONS BY INDEPENDENT FAMILIES WANJUN HU (Communicated by Alan Dow) Abstract. A method for Tychonoff expansions using independent families is introduced. Using this method we prove that every countable Tychonoff space which admits a partition into infinitely many open-hereditarily irre- solvable dense subspaces has a Tychonoff expansion that is !-resolvable but not strongly extraresolvable. We also show that, under Luzin's Hypothesis ! ! (2 1 =2 ), there exists an !-resolvable Tychonoff space of size !1 which is not maximally resolvable. Introduction A topological space X is called crowded (or dense in itself)ifX has no isolated points. E. Hewitt defined a resolvable space as a space which has two disjoint dense subsets (see [17]). A space is called κ-resolvable [3] if it admits κ-many pairwise disjoint dense sets. The cardinal ∆(X):=minfjUj : U is a non-empty open subset of Xg is called the dispersion character of the space X.ThespaceX is called maximally resolvable [2] if it is ∆(X)-resolvable; if every crowded subspace of X is not resolvable, then X is called hereditarily irresolvable (HI). Analogously, X is open-hereditarily irresolvable (or OHI) if every non-empty open subset of X is irresolvable. V.I. Malykhin introduced a similar concept of extraresolvable (see [20] + and [6]): a space is extraresolvable if there exists a family fDα : α<∆(X) g of dense susbets of X such that Dα \ Dβ is nowhere dense in X for distinct α and β.
    [Show full text]
  • A Guide to Topology
    i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition.
    [Show full text]
  • 1.1.5 Hausdorff Spaces
    1. Preliminaries Proof. Let xn n N be a sequence of points in X convergent to a point x X { } 2 2 and let U (f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5 1 2F that f − (U) (x). Since xn n N converges to x,thereexistsN N s.t. 1 2F { } 2 2 xn f − (U) for all n N.Thenf(xn) U for all n N. Hence, f(xn) n N 2 ≥ 2 ≥ { } 2 converges to f(x). 1.1.5 Hausdor↵spaces Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa- rated) if any two distinct points of X have neighbourhoods without common points; or equivalently if: (T2) two distinct points always lie in disjoint open sets. In literature, the Hausdor↵space are often called T2-spaces and the axiom (T2) is said to be the separation axiom. Proposition 1.1.41. In a Hausdor↵space the intersection of all closed neigh- bourhoods of a point contains the point alone. Hence, the singletons are closed. Proof. Let us fix a point x X,whereX is a Hausdor↵space. Denote 2 by C the intersection of all closed neighbourhoods of x. Suppose that there exists y C with y = x. By definition of Hausdor↵space, there exist a 2 6 neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x) V (y)= . \ ; Therefore, y/U(x) because otherwise any neighbourhood of y (in particular 2 V (y)) should have non-empty intersection with U(x).
    [Show full text]
  • On Dimension and Weight of a Local Contact Algebra
    Filomat 32:15 (2018), 5481–5500 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL1815481D University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Dimension and Weight of a Local Contact Algebra G. Dimova, E. Ivanova-Dimovaa, I. D ¨untschb aFaculty of Math. and Informatics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria bCollege of Maths. and Informatics, Fujian Normal University, Fuzhou, China. Permanent address: Dept. of Computer Science, Brock University, St. Catharines, Canada Abstract. As proved in [16], there exists a duality Λt between the category HLC of locally compact Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and appropriate morphisms between them. In this paper, we introduce the notions of weight wa and of dimension dima of a local contact algebra, and we prove that if X is a locally compact Hausdorff space then t t w(X) = wa(Λ (X)), and if, in addition, X is normal, then dim(X) = dima(Λ (X)). 1. Introduction According to Stone’s famous duality theorem [43], the Boolean algebra CO(X) of all clopen (= closed and open) subsets of a zero-dimensional compact Hausdorff space X carries the whole information about the space X, i.e. the space X can be reconstructed from CO(X), up to homeomorphism. It is natural to ask whether the Boolean algebra RC(X) of all regular closed subsets of a compact Hausdorff space X carries the full information about the space X (see Example 2.5 below for RC(X)).
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • 9 | Separation Axioms
    9 | Separation Axioms Separation axioms are a family of topological invariants that give us new ways of distinguishing between various spaces. The idea is to look how open sets in a space can be used to create “buffer zones” separating pairs of points and closed sets. Separations axioms are denoted by T1, T2, etc., where T comes from the German word Trennungsaxiom, which just means “separation axiom”. Separation axioms can be also seen as a tool for identifying how close a topological space is to being metrizable: spaces that satisfy an axiom Ti can be considered as being closer to metrizable spaces than spaces that do not satisfy Ti. 9.1 Definition. A topological space X satisfies the axiom T1 if for every points x; y ∈ X such that x =6 y there exist open sets U;V ⊆ X such that x ∈ U, y 6∈ U and y ∈ V , x 6∈ V . X U V x y 9.2 Example. If X is a space with the antidiscrete topology and X consists of more than one point then X does not satisfy T1. 9.3 Proposition. Let X be a topological space. The following conditions are equivalent: 1) X satisfies T1. 2) For every point x ∈ X the set {x} ⊆ X is closed. Proof. Exercise. 9.4 Definition. A topological space X satisfies the axiom T2 if for any points x; y ∈ X such that x =6 y 60 9. Separation Axioms 61 there exist open sets U;V ⊆ X such that x ∈ U, y ∈ V , and U ∩ V = ?. X U V x y A space that satisfies the axiom T2 is called a Hausdorff space.
    [Show full text]
  • Theory of G-T G-Separation Axioms 1. Introduction Whether It Concerns The
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 July 2018 doi:10.20944/preprints201807.0095.v1 Theory of g-Tg-Separation Axioms Khodabocus m. i. and Sookia n. u. h. Abstract. Several specific types of ordinary and generalized separation ax- ioms of a generalized topological space have been defined and investigated for various purposes from time to time in the literature of topological spaces. Our recent research in the field of a new class of generalized separation axioms of a generalized topological space is reported herein as a starting point for more generalized classes. Key words and phrases. Generalized topological space, generalized sepa- ration axioms, generalized sets, generalized operations 1. Introduction Whether it concerns the theory of T -spaces or Tg-spaces, the idea of adding a 1 T T Tα or a g-Tα-axiom (with α =( 0, 1, 2,):::) to the axioms for a -space( T = (Ω); ) to obtain a T (α)-space T(α) = Ω; T (α) or a g-T (α)-space g-T(α) = Ω; g-T (α) or, the idea of adding a T or a -T -axiom (with α = 0, 1, 2, :::) to the axioms g,α g g,α ( ) T T T (α) (α) T (α) T (α) for a g-space T( g = (Ω; g)) to obtain a g -space Tg = Ω; g or a g- g - (α) T (α) space g-Tg = Ω; g- g has never played little role in Generalized Topology and Abstract Analysis [17, 19, 25]. Because the defining attributes of a T -space in terms of a collection of T -open or g-T -open sets or a Tg-space in terms of a collection of Tg-open or g-Tg-open sets, respectively, does little to guarantee that the points in the T -space T or the Tg-space Tg are somehow distinct or far apart.
    [Show full text]
  • METRIC SPACES and SOME BASIC TOPOLOGY
    Chapter 3 METRIC SPACES and SOME BASIC TOPOLOGY Thus far, our focus has been on studying, reviewing, and/or developing an under- standing and ability to make use of properties of U U1. The next goal is to generalize our work to Un and, eventually, to study functions on Un. 3.1 Euclidean n-space The set Un is an extension of the concept of the Cartesian product of two sets that was studied in MAT108. For completeness, we include the following De¿nition 3.1.1 Let S and T be sets. The Cartesian product of S and T , denoted by S T,is p q : p + S F q + T . The Cartesian product of any ¿nite number of sets S1 S2 SN , denoted by S1 S2 SN ,is j b ck p1 p2 pN : 1 j j + M F 1 n j n N " p j + S j . The object p1 p2pN is called an N-tuple. Our primary interest is going to be the case where each set is the set of real numbers. 73 74 CHAPTER 3. METRIC SPACES AND SOME BASIC TOPOLOGY De¿nition 3.1.2 Real n-space,denotedUn, is the set all ordered n-tuples of real numbers i.e., n U x1 x2 xn : x1 x2 xn + U . Un U U U U Thus, _ ^] `, the Cartesian product of with itself n times. nofthem Remark 3.1.3 From MAT108, recall the de¿nition of an ordered pair: a b a a b . def This de¿nition leads to the more familiar statement that a b c d if and only if a bandc d.
    [Show full text]
  • On Α-Normal and Β-Normal Spaces
    Comment.Math.Univ.Carolin. 42,3 (2001)507–519 507 On α-normal and β-normal spaces A.V. Arhangel’skii, L. Ludwig Abstract. We define two natural normality type properties, α-normality and β-normality, and compare these notions to normality. A natural weakening of Jones Lemma immedi- ately leads to generalizations of some important results on normal spaces. We observe that every β-normal, pseudocompact space is countably compact, and show that if X is a dense subspace of a product of metrizable spaces, then X is normal if and only if X is β-normal. All hereditarily separable spaces are α-normal. A space is normal if and only if it is κ-normal and β-normal. Central results of the paper are contained in Sections 3 and 4. Several examples are given, including an example (identified by R.Z. Buzyakova) of an α-normal, κ-normal, and not β-normal space, which is, in fact, a pseudocompact topological group. We observe that under CH there exists a locally compact Hausdorff hereditarily α-normal non-normal space (Theorem 3.3). This example is related to the main result of Section 4, which is a version of the famous Katˇetov’s theorem on metrizability of a compactum the third power of which is hereditarily normal (Corollary 4.3). We also present a Tychonoff space X such that no dense subspace of X is α-normal (Section 3). Keywords: normal, α-normal, β-normal, κ-normal, weakly normal, extremally discon- nected, Cp(X), Lindel¨of, compact, pseudocompact, countably compact, hereditarily sep- arable, hereditarily α-normal, property wD, weakly perfect, first countable Classification: 54D15, 54D65, 54G20 §0.
    [Show full text]
  • On Compactness in Locally Convex Spaces
    Math. Z. 195, 365-381 (1987) Mathematische Zeitschrift Springer-Verlag 1987 On Compactness in Locally Convex Spaces B. Cascales and J. Orihuela Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Murcia, E-30.001-Murcia-Spain 1. Introduction and Terminology The purpose of this paper is to show that the behaviour of compact subsets in many of the locally convex spaces that usually appear in Functional Analysis is as good as the corresponding behaviour of compact subsets in Banach spaces. Our results can be intuitively formulated in the following terms: Deal- ing with metrizable spaces or their strong duals, and carrying out any of the usual operations of countable type with them, we ever obtain spaces with their precompact subsets metrizable, and they even give good performance for the weak topology, indeed they are weakly angelic, [-14], and their weakly compact subsets are metrizable if and only if they are separable. The first attempt to clarify the sequential behaviour of the weakly compact subsets in a Banach space was made by V.L. Smulian [26] and R.S. Phillips [23]. Their results are based on an argument of metrizability of weakly compact subsets (see Floret [14], pp. 29-30). Smulian showed in [26] that a relatively compact subset is relatively sequentially compact for the weak to- pology of a Banach space. He also proved that the concepts of relatively countably compact and relatively sequentially compact coincide if the weak-* dual is separable. The last result was extended by J. Dieudonn6 and L. Schwartz in [-9] to submetrizable locally convex spaces.
    [Show full text]
  • On the Covering Dimension of Subspaces
    proceedings of the american mathematical society Volume 72, Number 3, December 1978 ON THE COVERINGDIMENSION OF SUBSPACES OF PRODUCT OF SORGENFREY LINES1 AU A. FORA Abstract. Let 5 denote the Sorgenfrey line. Then the following results are proved in this paper: (i) If X is a nonempty subspace of 5*°, then dim X = 0. (ii) For any nonempty separable space X c 5"°, dimA""1 = 0 for any cardinal m. 1. Introduction. The question of whether dimiA' X Y) < dim X + dim Y for topological spaces X and Y has long been considered (see e.g., [G, pp. 263 and 277]). By dim X, or the covering dimension of X, we mean the least integer, tj, such that each finite cozero cover of X has a finite cozero refinement of order n. (A cover is of order n if and only if each point of the space is contained in at most n + 1 elements of the cover. All spaces considered are completely regular.) Researchers have long worked on the above problem, and only recently Wage [W] and Przymusinski [P] constructed a Lindelöf space X such that dim X = 0 and X2 is normal but has dim X2 > 0. The aim of this paper is to prove that no product of subspaces of Sorgenfrey lines can serve as a counterexample to the product conjecture. Another aim is to give a full answer to one of the questions raised by Mrowka [Mr2J in the conference of 1972 which says: "We still do not know if subspaces of S" (n = 2, 3, .
    [Show full text]
  • Section 11.3. Countability and Separability
    11.3. Countability and Separability 1 Section 11.3. Countability and Separability Note. In this brief section, we introduce sequences and their limits. This is applied to topological spaces with certain types of bases. Definition. A sequence {xn} in a topological space X converges to a point x ∈ X provided for each neighborhood U of x, there is an index N such that n ≥ N, then xn belongs to U. The point x is a limit of the sequence. Note. We can now elaborate on some of the results you see early in a senior level real analysis class. You prove, for example, that the limit of a sequence of real numbers (under the usual topology) is unique. In a topological space, this may not be the case. For example, under the trivial topology every sequence converges to every point (at the other extreme, under the discrete topology, the only convergent sequences are those which are eventually constant). For an ad- ditional example, see Bonus 1 in my notes for Analysis 1 (MATH 4217/5217) at: http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf. In a Hausdorff space (as in a metric space), points can be separated and limits of sequences are unique. Definition. A topological space (X, T ) is first countable provided there is a count- able base at each point. The space (X, T ) is second countable provided there is a countable base for the topology. 11.3. Countability and Separability 2 Example. Every metric space (X, ρ) is first countable since for all x ∈ X, the ∞ countable collection of open balls {B(x, 1/n)}n=1 is a base at x for the topology induced by the metric.
    [Show full text]