On the Boundary Between Mereology and Topology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uniform Boundedness Principle for Unbounded Operators
UNIFORM BOUNDEDNESS PRINCIPLE FOR UNBOUNDED OPERATORS C. GANESA MOORTHY and CT. RAMASAMY Abstract. A uniform boundedness principle for unbounded operators is derived. A particular case is: Suppose fTigi2I is a family of linear mappings of a Banach space X into a normed space Y such that fTix : i 2 Ig is bounded for each x 2 X; then there exists a dense subset A of the open unit ball in X such that fTix : i 2 I; x 2 Ag is bounded. A closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings as consequences of this principle. Some applications of this principle are also obtained. 1. Introduction There are many forms for uniform boundedness principle. There is no known evidence for this principle for unbounded operators which generalizes classical uniform boundedness principle for bounded operators. The second section presents a uniform boundedness principle for unbounded operators. An application to derive Hellinger-Toeplitz theorem is also obtained in this section. A JJ J I II closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings in the third section as consequences of this principle. Go back Let us assume the following: Every vector space X is over R or C. An α-seminorm (0 < α ≤ 1) is a mapping p: X ! [0; 1) such that p(x + y) ≤ p(x) + p(y), p(ax) ≤ jajαp(x) for all x; y 2 X Full Screen Close Received November 7, 2013. 2010 Mathematics Subject Classification. Primary 46A32, 47L60. Key words and phrases. -
An Axiomatic Approach to Physical Systems
' An Axiomatic Approach $ to Physical Systems & % Januari 2004 ❦ ' Summary $ Mereology is generally considered as a formal theory of the part-whole relation- ship concerning material bodies, such as planets, pickles and protons. We argue that mereology can be considered more generally as axiomatising the concept of a physical system, such as a planet in a gravitation-potential, a pickle in heart- burn and a proton in an electro-magnetic field. We design a theory of sets and physical systems by extending standard set-theory (ZFC) with mereological axioms. The resulting theory deductively extends both `Mereology' of Tarski & L`esniewski as well as the well-known `calculus of individuals' of Leonard & Goodman. We prove a number of theorems and demonstrate that our theory extends ZFC con- servatively and hence equiconsistently. We also erect a model of our theory in ZFC. The lesson to be learned from this paper reads that not only is a marriage between standard set-theory and mereology logically respectable, leading to a rigorous vin- dication of how physicists talk about physical systems, but in addition that sets and physical systems interact at the formal level both quite smoothly and non- trivially. & % Contents 0 Pre-Mereological Investigations 1 0.0 Overview . 1 0.1 Motivation . 1 0.2 Heuristics . 2 0.3 Requirements . 5 0.4 Extant Mereological Theories . 6 1 Mereological Investigations 8 1.0 The Language of Physical Systems . 8 1.1 The Domain of Mereological Discourse . 9 1.2 Mereological Axioms . 13 1.2.0 Plenitude vs. Parsimony . 13 1.2.1 Subsystem Axioms . 15 1.2.2 Composite Physical Systems . -
Baire Category Theorem and Uniform Boundedness Principle)
Functional Analysis (WS 19/20), Problem Set 3 (Baire Category Theorem and Uniform Boundedness Principle) Baire Category Theorem B1. Let (X; k·kX ) be an innite dimensional Banach space. Prove that X has uncountable Hamel basis. Note: This is Problem A2 from Problem Set 1. B2. Consider subset of bounded sequences 1 A = fx 2 l : only nitely many xk are nonzerog : Can one dene a norm on A so that it becomes a Banach space? Consider the same question with the set of polynomials dened on interval [0; 1]. B3. Prove that the set L2(0; 1) has empty interior as the subset of Banach space L1(0; 1). B4. Let f : [0; 1) ! [0; 1) be a continuous function such that for every x 2 [0; 1), f(kx) ! 0 as k ! 1. Prove that f(x) ! 0 as x ! 1. B5.( Uniform Boundedness Principle) Let (X; k · kX ) be a Banach space and (Y; k · kY ) be a normed space. Let fTαgα2A be a family of bounded linear operators between X and Y . Suppose that for any x 2 X, sup kTαxkY < 1: α2A Prove that . supα2A kTαk < 1 Uniform Boundedness Principle U1. Let F be a normed space C[0; 1] with L2(0; 1) norm. Check that the formula 1 Z n 'n(f) = n f(t) dt 0 denes a bounded linear functional on . Verify that for every , F f 2 F supn2N j'n(f)j < 1 but . Why Uniform Boundedness Principle is not satised in this case? supn2N k'nk = 1 U2.( pointwise convergence of operators) Let (X; k · kX ) be a Banach space and (Y; k · kY ) be a normed space. -
A Translation Approach to Portable Ontology Specifications
Knowledge Systems Laboratory September 1992 Technical Report KSL 92-71 Revised April 1993 A Translation Approach to Portable Ontology Specifications by Thomas R. Gruber Appeared in Knowledge Acquisition, 5(2):199-220, 1993. KNOWLEDGE SYSTEMS LABORATORY Computer Science Department Stanford University Stanford, California 94305 A Translation Approach to Portable Ontology Specifications Thomas R. Gruber Knowledge System Laboratory Stanford University 701 Welch Road, Building C Palo Alto, CA 94304 [email protected] Abstract To support the sharing and reuse of formally represented knowledge among AI systems, it is useful to define the common vocabulary in which shared knowledge is represented. A specification of a representational vocabulary for a shared domain of discourse — definitions of classes, relations, functions, and other objects — is called an ontology. This paper describes a mechanism for defining ontologies that are portable over representation systems. Definitions written in a standard format for predicate calculus are translated by a system called Ontolingua into specialized representations, including frame-based systems as well as relational languages. This allows researchers to share and reuse ontologies, while retaining the computational benefits of specialized implementations. We discuss how the translation approach to portability addresses several technical problems. One problem is how to accommodate the stylistic and organizational differences among representations while preserving declarative content. Another is how -
FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality). -
The Joint Philosophical Program of Russell and Wittgenstein and Its Demise
The Joint Philosophical Program of Russell and Wittgenstein and Its Demise Abstract Between April and November 1912, Bertrand Russell and Ludwig Wittgenstein were en- gaged in a joint philosophical program. Wittgenstein‘s meeting with Gottlob Frege in De- cember 1912 led, however, to its dissolution – the joint program was abandoned. Section 2 of this paper outlines the key points of that program, identifying what Russell and Wittgenstein each contributed to it. The third section determines precisely those features of their collabora- tive work that Frege criticized. Finally, building upon the evidence developed in the preced- ing two sections, section 4 recasts along previously undeveloped lines Wittgenstein‘s logical– philosophical discoveries in the two years following his encounter with Frege in 1912. The paper concludes, in section 5, with an overview of the dramatic consequences the Frege- Wittgenstein critique had for Russell‘s philosophical development. 1. Introductory Remarks The subject of our investigation is the interaction between the three founding fathers of analytic philosophy, Russell, Wittgenstein and Frege, in a most important period of their philosophical development. We discuss the joint program that Russell and Wittgenstein worked on from April till November 1912, as well as its collapse after Wittgenstein visited Frege in Jena in December the same year. Frege‘s criticism of elements of the program underpinned and motivated Wittgenstein‘s attack on Russell‘s approach in philosophy that culminated in May and June 1913 when, facing Wittgenstein‘s criticism, Russell stopped writing the Theory of Knowledge book project. Frege‘s arguments also urged Wittgenstein to rethink and reformulate his own philosophical ideas. -
A Study of Optimization in Hilbert Space
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 1998 A study of optimization in Hilbert Space John Awunganyi Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Awunganyi, John, "A study of optimization in Hilbert Space" (1998). Theses Digitization Project. 1459. https://scholarworks.lib.csusb.edu/etd-project/1459 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. A STUDY OF OPTIMIZATIONIN HELBERT SPACE A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment ofthe Requirements for the Degree Master ofArts in Mathematics by John Awunganyi June 1998 A STUDY OF OPTIMIZATION IN HILBERT SPACE A Project Presented to the Faculty of California State University, San Bernardino by John Awunganyi June 1998 Approved by; Dr. Chetan Prakash, Chair, Mathematics Date r. Wenxang Wang Dr. Christopher Freiling Dr. Terry Hallett, Graduate Coordinator Dr. Peter Williams, Department Chair ABSTRACT The primary objective ofthis project is to demonstrate that a certain field ofoptimization can be effectively unified by afew geometric principles ofcomplete normed linear space theory. By employing these principles, important and complex finite - dimensional problems can be interpreted and solved by methods springing from geometric insight. Concepts such as distance, orthogonality, and convexity play a fundamental and indispensable role in this development. Viewed in these terms, seemingly diverse problems and techniques often are found to be closely related. -
Abstract 1. Russell As a Mereologist
THE 1900 TURN IN BERTRAND RUSSELL’S LOGIC, THE EMERGENCE OF HIS PARADOX, AND THE WAY OUT Prof. Dr. Nikolay Milkov, Universität Paderborn, [email protected] Abstract Russell‘s initial project in philosophy (1898) was to make mathematics rigorous reducing it to logic. Before August 1900, however, Russell‘s logic was nothing but mereology. First, his acquaintance with Peano‘s ideas in August 1900 led him to discard the part-whole logic and accept a kind of intensional predicate logic instead. Among other things, the predicate logic helped Russell embrace a technique of treating the paradox of infinite numbers with the help of a singular concept, which he called ‗denoting phrase‘. Unfortunately, a new paradox emerged soon: that of classes. The main contention of this paper is that Russell‘s new con- ception only transferred the paradox of infinity from the realm of infinite numbers to that of class-inclusion. Russell‘s long-elaborated solution to his paradox developed between 1905 and 1908 was nothing but to set aside of some of the ideas he adopted with his turn of August 1900: (i) With the Theory of Descriptions, he reintroduced the complexes we are acquainted with in logic. In this way, he partly restored the pre-August 1900 mereology of complexes and sim- ples. (ii) The elimination of classes, with the help of the ‗substitutional theory‘,1 and of prop- ositions, by means of the Multiple Relation Theory of Judgment,2 completed this process. 1. Russell as a Mereologist In 1898, Russell abandoned his short period of adherence to the Neo-Hegelian position in the philosophy of mathematics and replaced it with what can be called the ‗analytic philoso- phy of mathematics‘, substantiated by the logic of relations. -
The Logic of Discrete Qualitative Relations
The Logic of Discrete Qualitative Relations Giulia Sindoni1 and John G. Stell2 1 School of Computing, University of Leeds, Leeds, UK [email protected] 2 School of Computing, University of Leeds, Leeds, UK [email protected] Abstract We consider a modal logic based on mathematical morphology which allows the expression of mereotopological relations between subgraphs. A specific form of topological closure between graphs is expressible in this logic, both as a combination of the negation ¬ and its dual ¬, and as modality, using the stable relation Q, which describes the incidence structure of the graph. This allows to define qualitative spatial relations between discrete regions, and to compare them with earlier works in mereotopology, both in the discrete and in the continuous space. 1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods Keywords and phrases Modal logic, Qualitative spatial reasoning, Discrete space Digital Object Identifier 10.4230/LIPIcs.COSIT.2017.1 1 Introduction Qualitative spatial relations have a long history with two major strands: the Region- Connection Calculus (RCC) of Randell et al. [10] and the 9-intersection approach of Egenhofer et al. [5]. These were initially intended to model ‘continuous’, or more precisely ‘dense’, space that can be subdivided indefinitely often. The RCC is defined in terms of first order axioms based on a primitive predicate of connection. The intersection-based theories, on the other hand, evaluate spatial scenarios through a matrix of statements that pairs of features of two regions have non-empty intersection. In the 9-intersection case a pair of regions A, B is given a spatial relationship by considering the interior, boundary, and exterior of each region and obtaining a matrix of truth values from the emptiness or non-emptiness of the 9 possible intersections between the three features of A and of B. -
Mereology and the Sciences SYNTHESE LIBRARY
Mereology and the Sciences SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Editor-in-Chief LUCIANO FLORIDI, University of Oxford, Oxford Internet Institute, United Kingdom Editors THEO A.F. KUIPERS, University of Groningen Fac. Philosophy, The Netherlands TEDDY SEIDENFELD, Carnegie Mellon University Dept. Philosophy, USA PATRICK SUPPES, Stanford University Ctr. Study of Language & Information, USA JAN WOLEÑSKI, Jagiellonian University of Kraków Institute of Philosophy, Poland DIRK VAN DALEN, Utrecht University Department of Philosophy, The Netherlands VOLUME 371 For further volumes: http://www.springer.com/series/6607 Claudio Calosi Pierluigi Graziani Editors Mereology and the Sciences Parts and Wholes in the Contemporary Scientific Context 123 Editors Claudio Calosi Pierluigi Graziani Department of Basic Sciences and Department of Basic Sciences and Foundations Foundations University of Urbino University of Urbino Urbino Urbino Italy Italy ISBN 978-3-319-05355-4 ISBN 978-3-319-05356-1 (eBook) DOI 10.1007/978-3-319-05356-1 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014939928 c Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. -
Plurals and Mereology
Journal of Philosophical Logic (2021) 50:415–445 https://doi.org/10.1007/s10992-020-09570-9 Plurals and Mereology Salvatore Florio1 · David Nicolas2 Received: 2 August 2019 / Accepted: 5 August 2020 / Published online: 26 October 2020 © The Author(s) 2020 Abstract In linguistics, the dominant approach to the semantics of plurals appeals to mere- ology. However, this approach has received strong criticisms from philosophical logicians who subscribe to an alternative framework based on plural logic. In the first part of the article, we offer a precise characterization of the mereological approach and the semantic background in which the debate can be meaningfully reconstructed. In the second part, we deal with the criticisms and assess their logical, linguistic, and philosophical significance. We identify four main objections and show how each can be addressed. Finally, we compare the strengths and shortcomings of the mereologi- cal approach and plural logic. Our conclusion is that the former remains a viable and well-motivated framework for the analysis of plurals. Keywords Mass nouns · Mereology · Model theory · Natural language semantics · Ontological commitment · Plural logic · Plurals · Russell’s paradox · Truth theory 1 Introduction A prominent tradition in linguistic semantics analyzes plurals by appealing to mere- ology (e.g. Link [40, 41], Landman [32, 34], Gillon [20], Moltmann [50], Krifka [30], Bale and Barner [2], Chierchia [12], Sutton and Filip [76], and Champollion [9]).1 1The historical roots of this tradition include Leonard and Goodman [38], Goodman and Quine [22], Massey [46], and Sharvy [74]. Salvatore Florio [email protected] David Nicolas [email protected] 1 Department of Philosophy, University of Birmingham, Birmingham, United Kingdom 2 Institut Jean Nicod, Departement´ d’etudes´ cognitives, ENS, EHESS, CNRS, PSL University, Paris, France 416 S. -
Legal Theory Workshop UCLA School of Law Asya Passinsky
Legal Theory Workshop UCLA School of Law Asya Passinsky Visiting Assistant Professor, University of North Carolina at Chapel Hill “NORM AND OBJECT: A NORMATIVE HYLOMORPHIC THEORY OF SOCIAL OBJECTS” Thursday, March 4, 2021, 5:00-6:00 pm Via Zoom Draft, February 19, 2021. For UCLA Workshop. Please Don’t Cite Or Quote Without Permission. Norm and Object: A Normative Hylomorphic Theory of Social Objects Asya Passinsky ABSTRACT: This paper is an investigation into the metaphysics of social objects such as political borders, states, and organizations. I articulate a metaphysical puzzle concerning such objects and then propose a novel account of social objects that provides a solution to the puzzle. The basic idea behind the puzzle is that under appropriate circumstances, seemingly concrete social objects can apparently be created by acts of agreement, decree, declaration, or the like. Yet there is reason to believe that no concrete object can be created in this way. The central idea of my positive account is that social objects have a normative component to them, and seemingly concrete social objects have both normative and material components. I develop this idea more rigorously using resources from the Aristotelian hylomorphic tradition. The resulting normative hylomorphic account, I argue, solves the puzzle by providing a satisfying explanation of creation-by-agreement and the like, while at the same time avoiding the difficulties facing extant accounts of social objects. 1. Introduction This paper is an investigation into the metaphysics of social objects such as political borders, states, and organizations. Roughly speaking, social objects are things that can be created through the performance of social acts such as agreement, decree, declaration, or the like.