9. Stronger Separation Axioms
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Nearly Metacompact Spaces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 98 (1999) 191–201 Nearly metacompact spaces Elise Grabner a;∗, Gary Grabner a, Jerry E. Vaughan b a Department Mathematics, Slippery Rock University, Slippery Rock, PA 16057, USA b Department Mathematics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA Received 28 May 1997; received in revised form 30 December 1997 Abstract A space X is called nearly metacompact (meta-Lindelöf) provided that if U is an open cover of X then there is a dense set D ⊆ X and an open refinement V of U that is point-finite (point-countable) on D: We show that countably compact, nearly meta-Lindelöf T3-spaces are compact. That nearly metacompact radial spaces are meta-Lindelöf. Every space can be embedded as a closed subspace of a nearly metacompact space. We give an example of a countably compact, nearly meta-Lindelöf T2-space that is not compact and a nearly metacompact T2-space which is not irreducible. 1999 Elsevier Science B.V. All rights reserved. Keywords: Metacompact; Nearly metacompact; Irreducible; Countably compact; Radial AMS classification: Primary 54D20, Secondary 54A20; 54D30 A space X is called nearly metacompact (meta-Lindelöf) provided that if U is an open cover of X then there is a dense set D ⊆ X and an open refinement V of U such that Vx DfV 2 V: x 2 V g is finite (countable) for all x 2 D. The class of nearly metacompact spaces was introduced in [8] as a device for constructing a variety of interesting examples of non orthocompact spaces. -
A Guide to Topology
i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition. -
1.1.5 Hausdorff Spaces
1. Preliminaries Proof. Let xn n N be a sequence of points in X convergent to a point x X { } 2 2 and let U (f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5 1 2F that f − (U) (x). Since xn n N converges to x,thereexistsN N s.t. 1 2F { } 2 2 xn f − (U) for all n N.Thenf(xn) U for all n N. Hence, f(xn) n N 2 ≥ 2 ≥ { } 2 converges to f(x). 1.1.5 Hausdor↵spaces Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa- rated) if any two distinct points of X have neighbourhoods without common points; or equivalently if: (T2) two distinct points always lie in disjoint open sets. In literature, the Hausdor↵space are often called T2-spaces and the axiom (T2) is said to be the separation axiom. Proposition 1.1.41. In a Hausdor↵space the intersection of all closed neigh- bourhoods of a point contains the point alone. Hence, the singletons are closed. Proof. Let us fix a point x X,whereX is a Hausdor↵space. Denote 2 by C the intersection of all closed neighbourhoods of x. Suppose that there exists y C with y = x. By definition of Hausdor↵space, there exist a 2 6 neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x) V (y)= . \ ; Therefore, y/U(x) because otherwise any neighbourhood of y (in particular 2 V (y)) should have non-empty intersection with U(x). -
The Non-Hausdorff Number of a Topological Space
THE NON-HAUSDORFF NUMBER OF A TOPOLOGICAL SPACE IVAN S. GOTCHEV Abstract. We call a non-empty subset A of a topological space X finitely non-Hausdorff if for every non-empty finite subset F of A and every family fUx : x 2 F g of open neighborhoods Ux of x 2 F , \fUx : x 2 F g 6= ; and we define the non-Hausdorff number nh(X) of X as follows: nh(X) := 1 + supfjAj : A is a finitely non-Hausdorff subset of Xg. Using this new cardinal function we show that the following three inequalities are true for every topological space X d(X) (i) jXj ≤ 22 · nh(X); 2d(X) (ii) w(X) ≤ 2(2 ·nh(X)); (iii) jXj ≤ d(X)χ(X) · nh(X) and (iv) jXj ≤ nh(X)χ(X)L(X) is true for every T1-topological space X, where d(X) is the density, w(X) is the weight, χ(X) is the character and L(X) is the Lindel¨ofdegree of the space X. The first three inequalities extend to the class of all topological spaces d(X) Pospiˇsil'sinequalities that for every Hausdorff space X, jXj ≤ 22 , 2d(X) w(X) ≤ 22 and jXj ≤ d(X)χ(X). The fourth inequality generalizes 0 to the class of all T1-spaces Arhangel ski˘ı’s inequality that for every Hausdorff space X, jXj ≤ 2χ(X)L(X). It is still an open question if 0 Arhangel ski˘ı’sinequality is true for all T1-spaces. It follows from (iv) that the answer of this question is in the afirmative for all T1-spaces with nh(X) not greater than the cardianilty of the continuum. -
On Dimension and Weight of a Local Contact Algebra
Filomat 32:15 (2018), 5481–5500 Published by Faculty of Sciences and Mathematics, https://doi.org/10.2298/FIL1815481D University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Dimension and Weight of a Local Contact Algebra G. Dimova, E. Ivanova-Dimovaa, I. D ¨untschb aFaculty of Math. and Informatics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria bCollege of Maths. and Informatics, Fujian Normal University, Fuzhou, China. Permanent address: Dept. of Computer Science, Brock University, St. Catharines, Canada Abstract. As proved in [16], there exists a duality Λt between the category HLC of locally compact Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and appropriate morphisms between them. In this paper, we introduce the notions of weight wa and of dimension dima of a local contact algebra, and we prove that if X is a locally compact Hausdorff space then t t w(X) = wa(Λ (X)), and if, in addition, X is normal, then dim(X) = dima(Λ (X)). 1. Introduction According to Stone’s famous duality theorem [43], the Boolean algebra CO(X) of all clopen (= closed and open) subsets of a zero-dimensional compact Hausdorff space X carries the whole information about the space X, i.e. the space X can be reconstructed from CO(X), up to homeomorphism. It is natural to ask whether the Boolean algebra RC(X) of all regular closed subsets of a compact Hausdorff space X carries the full information about the space X (see Example 2.5 below for RC(X)). -
1. Introduction in a Topological Space, the Closure Is Characterized by the Limits of the Ultrafilters
Pr´e-Publica¸c˜oes do Departamento de Matem´atica Universidade de Coimbra Preprint Number 08–37 THE ULTRAFILTER CLOSURE IN ZF GONC¸ALO GUTIERRES Abstract: It is well known that, in a topological space, the open sets can be characterized using filter convergence. In ZF (Zermelo-Fraenkel set theory without the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the ultrafilter convergence determines the open sets for every topological space if and only if the Ultrafilter Theorem holds. More, we can also prove that the Ultrafilter Theorem is equivalent to the fact that uX = kX for every topological space X, where k is the usual Kuratowski Closure operator and u is the Ultrafilter Closure with uX (A) := {x ∈ X : (∃U ultrafilter in X)[U converges to x and A ∈U]}. However, it is possible to built a topological space X for which uX 6= kX , but the open sets are characterized by the ultrafilter convergence. To do so, it is proved that if every set has a free ultrafilter then the Axiom of Countable Choice holds for families of non-empty finite sets. It is also investigated under which set theoretic conditions the equality u = k is true in some subclasses of topological spaces, such as metric spaces, second countable T0-spaces or {R}. Keywords: Ultrafilter Theorem, Ultrafilter Closure. AMS Subject Classification (2000): 03E25, 54A20. 1. Introduction In a topological space, the closure is characterized by the limits of the ultrafilters. Although, in the absence of the Axiom of Choice, this is not a fact anymore. -
Lecture 12: Matroids 12.1 Matroids: Definition and Examples
IE 511: Integer Programming, Spring 2021 4 Mar, 2021 Lecture 12: Matroids Lecturer: Karthik Chandrasekaran Scribe: Karthik Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publi- cations. Matroids are structures that can be used to model the feasible set of several combinatorial opti- mization problems. In this lecture, we will define matroids, consider some examples, introduce the matroid optimization problem and see its generality through some concrete optimization problems that it formulates, and see a BIP formulation of the matroid optimization problem. We will sub- sequently see that the LP-relaxation of the BIP formulation has an integral optimal solution (via the concept of TDI that we learnt in the previous lecture). This will ultimately broaden the family of IPs that can be solved by simply solving the LP relaxation. 12.1 Matroids: Definition and Examples Definition 1. Let N be a finite set and I ⊆ 2N (recall that 2N denotes the collection of all subsets of N, i.e., 2N := fS : S ⊆ Ng). 1. The pair (N; I) is an independence system if (i) ; 2 I and (ii) If A 2 I and B ⊆ A, then B 2 I (i.e., the set I has the hereditary property{see Figure 12.1). The sets in I are called independent sets. Figure 12.1: Hereditary property of independent sets: If A is an independent set and B is a subset of A, then B should also be an independent set. 2. An independence system (N; I) is a matroid if (iii) for all A; B 2 I with jBj > jAj there exists e 2 B n A such that A [ feg 2 I. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Chapter 7 Separation Properties
Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . -
Universality for and in Induced-Hereditary Graph Properties
Discussiones Mathematicae Graph Theory 33 (2013) 33–47 doi:10.7151/dmgt.1671 Dedicated to Mieczys law Borowiecki on his 70th birthday UNIVERSALITY FOR AND IN INDUCED-HEREDITARY GRAPH PROPERTIES Izak Broere Department of Mathematics and Applied Mathematics University of Pretoria e-mail: [email protected] and Johannes Heidema Department of Mathematical Sciences University of South Africa e-mail: [email protected] Abstract The well-known Rado graph R is universal in the set of all countable graphs , since every countable graph is an induced subgraph of R. We I study universality in and, using R, show the existence of 2ℵ0 pairwise non-isomorphic graphsI which are universal in and denumerably many other universal graphs in with prescribed attributes.I Then we contrast universality for and universalityI in induced-hereditary properties of graphs and show that the overwhelming majority of induced-hereditary properties contain no universal graphs. This is made precise by showing that there are 2(2ℵ0 ) properties in the lattice K of induced-hereditary properties of which ≤ only at most 2ℵ0 contain universal graphs. In a final section we discuss the outlook on future work; in particular the question of characterizing those induced-hereditary properties for which there is a universal graph in the property. Keywords: countable graph, universal graph, induced-hereditary property. 2010 Mathematics Subject Classification: 05C63. 34 I.Broere and J. Heidema 1. Introduction and Motivation In this article a graph shall (with one illustrative exception) be simple, undirected, unlabelled, with a countable (i.e., finite or denumerably infinite) vertex set. For graph theoretical notions undefined here, we generally follow [14]. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V .