Norms and Facts in Measurement

Total Page:16

File Type:pdf, Size:1020Kb

Norms and Facts in Measurement CORE Metadata, citation and similar papers at core.ac.uk Provided by Lirias Fundamenta/ measurement concepts Norms and facts in measurement J. van Brakel Foundations of Physics, Physics Laboratory, State University of Utrecht, PO Box 80.000, 3508 TA Utrecht, The Netherlands Publications concerned with the foundations of measurement often accept uncritically the theory/observation and the norm/fact distinction. However, measurement is measurement-in-a-context. This is analysed in the first part of the paper. Important aspects of this context are: the purpose of the particular measurement; everything we know; everything we can do; and the empirical world. Dichotomies, such as definition versus empirica//aw, are by themselves not very useful because the 'rules of measure- ment' are facts or norms depending on the context chosen or considered. In the second part of the paper, three methodological premises for a theory of measurement are advocated: reduce arbitrariness, against fundamentalism, and do not be afraid of realism. The problem of dichotomies • Extensive quantities are additive (mass, velocity, utility) • The empirical relation > (for mass, length, temperature, In the literature on the foundations of measurement, a ...) is transitive (Schleichert, 1966; Carnap, 1926; number of dichotomies are used in describing properties of Janich et al, 1974) statements about various aspects of measurement. One of • The existence of an absolute unit for velocity (a maxi- the most common distinctions is that between a convention mum velocity) (Wehl, 1949) and an empirical fact, or between an (a priori) definition • The existence of an absolute zero for temperature and an (a posterior/) empirical law. Some other dichotomies that roughly correspond to the two just mentioned are These are examples of statements for which it is not given in Table 1. The following are examples of statements self-evident whether they are true (or false) by agreement a to which these dichotomies have been applied: priori or true (or false) by virtue of inductive support obtained a posterior/. The references in brackets refer to • Electric conductivity is the inverse of electric resistance literature where we can find arguments supporting any of (Krantz et al, 1971) these sides. Some of the statements will be discussed in • Density is mass divided by volume (Krantz et al, 1971; more detail below. Grunstra, 1969; Osborne, 1976) A related set of dichotomies is used with respect to the • Force is mass times acceleration (Nagel, 1968; Palacios, status of quantities and the properties of their scales. Per- 1964; Gillies, 1973) haps the common denominator of this set of dichotomies is • Many cyclic processes in nature are isochronic (Christen- the distinction between what is basic (natural, necessary) sen, 1977; Roxburgh, 1977; Janich, 1969) and what are arbitrary (derived, inessential) additions. • All electrons have equal charge (Hanson, 1959) Some other related dichotomies are listed in Table 2. • A transported rod is of equal length everywhere What is there to be said about these dichotomies? What (Reichenbach, 1957; Jammer, 1959; Grtinbaum, 1968; is the meaning of the terms listed in the two tables in con- Balzer and Kamlah, 1980) nection with measurement? Along what lines should we • Physical quantities are continuous (Poincarr6, 1917; discuss the apparent disagreements about what is fact and Schleichert, 1966) what is norm, or about whether there is a need for basic, • Physical quantities are dimensionally homogeneous natural, absolute or fundamental quantities or units? What (Krantz et al, 1971; Palacios, 1964; Luce, 1976; is the relevance of worrying about this in the first place? It Roberts, 1980; Post, 1982) would be a terrible job to analyse all details of these dicho- • Coulomb's 'electrostatic density of charge' and Ohm's tomies. Moreover, it would be the wrong approach, I think, 'electroscopic force' refer to the same physical quantity because the primary question to ask is: what precisely is (Heidelberger, 1980) the subject of discourse in which these dichotomies appear? Superficial confusions can be cleared up by stating that TABLE 1: Dichotomies relating to the semantic or epistemological status of statements about (properties of) quantities measurement theory is a semantic theory. That is to say, measurement is considered as some sort of general/sat/on of a prior/ a posterior/ giving names. By distinguishing carefully between defining analytic synthetic normative, prescriptive descriptive, empirical TABLE 2: Dichotomies relating to quantities and rule, definition, principle empirical law special scale values (zero and unit) mathematical, logical, formal empirical coherence; form correspondence; content primary, basic fundamental secondary, derived convention, norm, value* fact independent, direct dependent, indirect convenient or rational choice inductive or empirical support absolute, natural arbitrary necessary convenient *Also: arbitraryL convention, pragmatic (convenient) convention, essential inessential ethical convention (or principle). Measurement Vol 2 No 1, Jan--Mar 1984 45 van Brake/ Fundamental measurement concepts the concept of measurement and carrying out measure- nature, suggest at once theoretical modifications (ad hoc or ments, some order can be created. However, this approach otherwise). It is therefore a myth that numerical data are only clears up some structural (if you want, 'logical') very likely to produce new generalisations. It is already aspects of measurement. What is still left out is that, in the clear from this very short analysis of the purpose of end, measurement is a social act. Measurement is carried measurement that an isolated measurement result has no out in a context and a measurer is just like any other deci- meaning: it is like an isolated 'fact' in history (Kushner, sion maker: he ought to select what best serves his 1972). purposes. Apart from the formal aspects of the metric used, measurement includes operational and teleological aspects (Churchman, 1949 ; Adams, 1979; Gonella, 1983). (b) The theoretical context of measurement We will find reason to refer to this dependence all through this paper: but only a few remarks at the outset. The context Although measurements produce 'statements of the first level', that is, 'here-thus-relations', which may suggest at Hence the crucial point is to start with the perspective once that what physics calls an object is nothing ultimately that measurement is a rational activity in a context. A num- but an aggregate of characteristic numbers, this is only one ber of aspects of this context are of prime importance: side of the coin. At this lower level, the higher theoretical (a) What is the purpose of the measurement (teleological levels are already implied or presupposed. As Cassirer aspect)? (1956) formulated it: all physical judgements, whether (b) What theoretical assumptions are given (theoretical empirical or theoretical, mutually condition and support aspect)? one another. Perhaps two categories of theoretical assump- (c) What are the limitations of human capabilities (opera- tions made in carrying out measurement can be distin- tional aspect)? guished: (d) What are the properties of the world around us (empiri- (i) Firstly, the normal situation is that a quantity is 'in- cal aspect?) vented' theoretically and described qualitatively This whole context is, of course, dependent on the (usually in terms of a set of ordering relationships) general historical and cultural context - but space does not before it is or can be measured. We could here make a permit a discussion of these aspects here. Aspects of (a)- distinction between quantitating, which is an armchair (d) together determine the rules of the game in the context occupation, and measuring, which is an empirical concerned. Let us see how the perspective of measurement- operation (Bunge, 1973). This might imply that the in-a-context elucidates some aspects of measurement. discovery and identification of quantities is logically independent of the discovery of a means of measure- ment, as is argued, for example, by Ellis (1966). (a) The purpose of measurement (ii) Secondly, very general assumptions are presupposed about the structure of the world. This may refer to a The purpose of measurement can be quite varied, particular case, as when we assume that melting ice although (without going into much detail) the following always represents the same, constant temperature. distinctions can be made (Kuhn, 1961): Also, they can be assumptions which bear on all (i) to gather factual information to be inserted in scienti- measurement: for example, the assumption of a parti- fic theories such as wavelengths and boiling points, but cular space-time structure. whose numerical outcome these theories to not predict; These two categories of assumptions together structure (ii) to develop possibilities of quantitative comparison of the idealised context in which measurement is carried out. observation by developing apparatus, reducing per- turbing effects, and so on; more generally: to improve the measure of 'reasonable agreement' and to establish (c) Limitations of our operational capabilities new measures of 'reasonable agreement' between theory and observation; We can roughly divide these limitations into three cate- (iii) to establish the exact quantitative relation between a gories: number of variables (of which it is already known or (i) Our capabilities of making and doing things. The logic hypothesised that
Recommended publications
  • CNPEM – Campus Map
    1 2 CNPEM – Campus Map 3 § SUMMARY 11 Presentation 12 Organizers | Scientific Committee 15 Program 17 Abstracts 18 Role of particle size, composition and structure of Co-Ni nanoparticles in the catalytic properties for steam reforming of ethanol addressed by X-ray spectroscopies Adriano H. Braga1, Daniela C. Oliveira2, D. Galante2, F. Rodrigues3, Frederico A. Lima2, Tulio R. Rocha2, 4 1 1 R. J. O. Mossanek , João B. O. Santos and José M. C. Bueno 19 Electro-oxidation of biomass derived molecules on PtxSny/C carbon supported nanoparticles A. S. Picco,3, C. R. Zanata,1 G. C. da Silva,2 M. E. Martins4, C. A. Martins5, G. A. Camara1 and P. S. Fernández6,* 20 3D Studies of Magnetic Stripe Domains in CoPd Multilayer Thin Films Alexandra Ovalle1, L. Nuñez1, S. Flewett1, J. Denardin2, J.Escrigr2, S. Oyarzún2, T. Mori3, J. Criginski3, T. Rocha3, D. Mishra4, M. Fohler4, D. Engel4, C. Guenther5, B. Pfau5 and S. Eisebitt6. 1 21 Insight into the activity of Au/Ti-KIT-6 catalysts studied by in situ spectroscopy during the epoxidation of propene reaction A. Talavera-López *, S.A. Gómez-Torres and G. Fuentes-Zurita 22 Nanosystems for nasal isoniazid delivery: small-angle x-ray scaterring (saxs) and rheology proprieties A. D. Lima1, K. R. B. Nascimento1 V. H. V. Sarmento2 and R. S. Nunes1 23 Assembly of Janus Gold Nanoparticles Investigated by Scattering Techniques Ana M. Percebom1,2,3, Juan J. Giner-Casares1, Watson Loh2 and Luis M. Liz-Marzán1 24 Study of the morphology exhibited by carbon nanotube from synchrotron small angle X-ray scattering 1 2 1 1 Ana Pacheli Heitmann , Iaci M.
    [Show full text]
  • Music Similarity: Learning Algorithms and Applications
    UC San Diego UC San Diego Electronic Theses and Dissertations Title More like this : machine learning approaches to music similarity Permalink https://escholarship.org/uc/item/8s90q67r Author McFee, Brian Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO More like this: machine learning approaches to music similarity A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Brian McFee Committee in charge: Professor Sanjoy Dasgupta, Co-Chair Professor Gert Lanckriet, Co-Chair Professor Serge Belongie Professor Lawrence Saul Professor Nuno Vasconcelos 2012 Copyright Brian McFee, 2012 All rights reserved. The dissertation of Brian McFee is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Co-Chair Co-Chair University of California, San Diego 2012 iii DEDICATION To my parents. Thanks for the genes, and everything since. iv EPIGRAPH I’m gonna hear my favorite song, if it takes all night.1 Frank Black, “If It Takes All Night.” 1Clearly, the author is lamenting the inefficiencies of broadcast radio programming. v TABLE OF CONTENTS Signature Page................................... iii Dedication...................................... iv Epigraph.......................................v Table of Contents.................................. vi List of Figures....................................x List of Tables...................................
    [Show full text]
  • MODULE 11: GLOSSARY and CONVERSIONS Cell Engines
    Hydrogen Fuel MODULE 11: GLOSSARY AND CONVERSIONS Cell Engines CONTENTS 11.1 GLOSSARY.......................................................................................................... 11-1 11.2 MEASUREMENT SYSTEMS .................................................................................. 11-31 11.3 CONVERSION TABLE .......................................................................................... 11-33 Hydrogen Fuel Cell Engines and Related Technologies: Rev 0, December 2001 Hydrogen Fuel MODULE 11: GLOSSARY AND CONVERSIONS Cell Engines OBJECTIVES This module is for reference only. Hydrogen Fuel Cell Engines and Related Technologies: Rev 0, December 2001 PAGE 11-1 Hydrogen Fuel Cell Engines MODULE 11: GLOSSARY AND CONVERSIONS 11.1 Glossary This glossary covers words, phrases, and acronyms that are used with fuel cell engines and hydrogen fueled vehicles. Some words may have different meanings when used in other contexts. There are variations in the use of periods and capitalization for abbrevia- tions, acronyms and standard measures. The terms in this glossary are pre- sented without periods. ABNORMAL COMBUSTION – Combustion in which knock, pre-ignition, run- on or surface ignition occurs; combustion that does not proceed in the nor- mal way (where the flame front is initiated by the spark and proceeds throughout the combustion chamber smoothly and without detonation). ABSOLUTE PRESSURE – Pressure shown on the pressure gauge plus at- mospheric pressure (psia). At sea level atmospheric pressure is 14.7 psia. Use absolute pressure in compressor calculations and when using the ideal gas law. See also psi and psig. ABSOLUTE TEMPERATURE – Temperature scale with absolute zero as the zero of the scale. In standard, the absolute temperature is the temperature in ºF plus 460, or in metric it is the temperature in ºC plus 273. Absolute zero is referred to as Rankine or r, and in metric as Kelvin or K.
    [Show full text]
  • Thermodynamics Introduction and Basic Concepts
    Thermodynamics Introduction and Basic Concepts by Asst. Prof. Channarong Asavatesanupap Mechanical Engineering Department Faculty of Engineering Thammasat University 2 What is Thermodynamics? Thermodynamics is the study that concerns with the ways energy is stored within a body and how energy transformations, which involve heat and work, may take place. Conservation of energy principle , one of the most fundamental laws of nature, simply states that “energy cannot be created or destroyed” but energy can change from one form to another during an energy interaction, i.e. the total amount of energy remains constant. 3 Thermodynamic systems or simply system, is defined as a quantity of matter or a region in space chosen for study. Surroundings are physical space outside the system boundary. Surroundings System Boundary Boundary is the surface that separates the system from its surroundings 4 Closed, Open, and Isolated Systems The systems can be classified into (1) Closed system consists of a fixed amount of mass and no mass may cross the system boundary. The closed system boundary may move. 5 (2) Open system (control volume) has mass as well as energy crossing the boundary, called a control surface. Examples: pumps, compressors, and water heaters. 6 (3) Isolated system is a general system of fixed mass where no heat or work may cross the boundaries. mass No energy No An isolated system is normally a collection of a main system and its surroundings that are exchanging mass and energy among themselves and no other system. 7 Properties of a system Any characteristic of a system is called a property.
    [Show full text]
  • Insights Into the Unification of Forces
    Insights into the unification of forces John A. Macken Previously unknown simple equations are presented which show a close relationship between the gravitational force and the electromagnetic force. For example, the gravitational force can be expressed as the square of the electromagnetic force for a fundamental set of conditions. These equations also imply that the wave properties of particles are an important component in the generation of these forces. These insights contradict previously held assumptions about gravity. In response to the question “Which of our basic physical assumptions are wrong?” this article proposes that the following are erroneous assumptions about gravity: 1 Gravity is not a true force. For example, the standard model does not include gravity and general relativity characterizes gravity as resulting from the geometry of spacetime. Therefore general relativity does not consider gravity to be a true force. 2 Gravity was united with the other forces at the start of the Big Bang but today gravity is completely decoupled from the other forces. For example, at the start of the Big Bang fundamental particles could have energy close to Planck energy and the gravitational force between two such particles was comparable to the electrostatic force. However, today the gravitational force is vastly weaker than the other forces and is assumed to be completely different than the other forces. 3 The forces are transferred by messenger particles. For example, the electromagnetic force is believed to be transferred by virtual photons and the gravitational force is believed by many physicists to be transferred by gravitons. Gravity has always been the most mysterious of the forces 1 ‐ 3.
    [Show full text]
  • Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School
    European J of Physics Education Volume 5 Issue 1 2013 Bogacz & Pedziwiatr Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School Bogdan F. Bogacz Antoni T. Pędziwiatr M. Smoluchowski Institute of Physics Department of Methodics of Teaching and Methodology of Physics Jagiellonian University Reymonta 4, 30-059 Cracow, Poland E-mail: [email protected] (Received: 14.11. 2013, Accepted: 31.12.2013) Abstract A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain - by extrapolation to zero pressure - a reasonable value of absolute zero temperature. The proposed way of conducting experiment allows students to "discover" intuitively the existence of minimal possible temperature and thus to understand the reason for introducing the concept of absolute zero temperature and absolute temperature Kelvin scale. It is a convincing and straightforward method to enhance understanding the general concept of temperature and support teaching thermodynamics and heat - mainly at secondary schools. This experiment was used with our university students who are being prepared to teach physics in secondary schools. They prepared physics lesson based on this material and then discussed didactic value of this material both for pupils and for teachers. Keywords: Physics education, absolute temperature, absolute zero determination, air gas thermometer. Introduction Temperature is a thermodynamic concept characterizing the state of thermal equilibrium of a macroscopic system. Equality of temperatures is a necessary and sufficient condition for reaching thermal equilibrium.
    [Show full text]
  • Lect. 3 : Molec Energy, Temperature, and Pure Subst. Topic 1: Molecular
    ME 10.311 Thermo I Lect 3.docx Page 1 of 4 Lect. 3 : Molec Energy, Temperature, and Pure Subst. Delivery Notes: Class L.O.: 1. Initially draw the pressure scale 1. Able to describe what Energy is to a RU freshmen and describe three diagram, before primary forms of energy, from a molec. level. class starts 2. Able to describe what the temperature equality and zeroth law mean 3. Able to describe various temperature scales Temperature Scale “An upside down F” 4. Able to explain the temperature and volume behavior of a pure substance under constant pressure. 5. Able to interpret the various phase regions on a phase diagram 6. Able to explain and calculate quality Class M.Map: P_abs = P_atm +P_gauge 2. Lect 2 quick review. ALE = active learning exercise. TPS = think pair shair ALE Rowan Power Tour Minute Paper: Two ideas that “stuck” in your mind. Å Minute Paper Topic 1: Molecular forms of energy General Comments Regarding Energy • Energy = ability to produce an effect ( it’s a scalar!) How do you think • Energy is a mathematical abstraction – it only exists as it relates to other energy – at the variables we can measure – KE or PE, for example molecular level in a fluid - is stored? Î Chambers w/ Diff. Temperatures before & after mixing ME 10.311 Thermo I Lect 3.docx Page 2 of 4 PRIMARY FORMS OF INTERNAL ENERGY, symbol U or u Draw. monatomic: helium, neon, argon, krypton, xenon and radon. What forms of energy come to mind? hydrogen, nitrogen, oxygen, and carbon monoxide. 1.
    [Show full text]
  • Measuring Temperature
    PhyzGuide: Measuring Temperature THE THERMOSCOPE AND THE THERMOMETER Galileo is given credit for developing the first temperature-measuring device toward the end of the 1500s. Air in a tube with a bulb at the top is heated. The open end of the tube is immersed in water or wine. As the air in the tube cools, it contracts and is drawn into the tube. Once an equilibrium point is established, a rise in temperature increases the volume of the gas, forcing fluid back down; a fall in temperature reduces the volume of the gas, drawing more HOT COLD fluid into the tube. This device was Galileo’s thermoscope. Early in the 1700’s, Gabriel Daniel Fahrenheit developed a more reliable temperature measuring device. A thin glass tube holds a volume of mercury in a bulb at the bottom. When heated, the mercury expands upward in the tube. The tube could be sealed and allowed for accurate, reproducible temperature readings. Because this device could be reproduced and marked with a numerical scale, it was called a thermometer. FAHRENHEIT AND CELSIUS: UNRELATED RELATIVE SCALES As inventor of a reliable thermometer, Fahrenheit was afforded the luxury of developing a temperature scale to his liking. He defined a temperature scale on which 0 was the coldest temperature he could reproduce in the lab (the temperature of an ice-salt mixture) and 96 as human body temperature.The fact that 96 is divisible by 2, 3, and 4 made it easy to mark off increments on the glass tube between 0 and 96 once those endpoints were established.
    [Show full text]
  • Lesson 2: Temperature
    Lesson 2: Temperature Notes from Prof. Susskind video lectures publicly available on YouTube 1 Units of temperature and entropy Let’s spend a few minutes talking about units, in partic- ular the Boltzmann constant kB, a question about which last chapter ended with. What is the Boltzmann constant? Like many constants in physics, kB is a conversion factor. The speed of light is a conversion factor from distances to times. If something is going at the speed of light, and in a time t covers a distance x, then we have x = ct (1) And of course if we judiciously choose our units, we can set c = 1. Typically these constants are conversion factors from what we can call human units to units in some sense more fun- damental. Human units are convenient for scales and mag- nitudes of quantities which people can access reasonably easily. We haven’t talked about temperature yet, which is the sub- ject of this lesson. But let’s also say something about the units of temperature, and see where kB – which will simply be denoted k when there is no possible confusion – enters the picture. Units of temperature were invented by Fahren- heit1 and by Celsius2, in both cases based on physical phe- 1Daniel Gabriel Fahrenheit (1686 - 1736), Polish-born Dutch physicist and engineer. 2Anders Celsius (1701 - 1744), Swedish physicist and astronomer. 2 nomena that people could easily monitor. The units we use in physics laboratories nowadays are Kelvin3 units, which are Celsius or centrigrade degrees just shifted by an additive constant, so that the 0 °C of freezing water is 273:15 K and 0 K is absolute zero.
    [Show full text]
  • Quantum Theory Without Planck's Constant Arxiv:1203.5557V1 [Hep-Ph]
    Quantum Theory without Planck’s Constant John P. Ralston Department of Physics & Astronomy The University of Kansas, Lawrence KS 66045 Abstract Planck’s constant was introduced as a fundamental scale in the early history of quantum mechanics. We find a modern approach where Planck’s constant is absent: it is unobservable except as a con- stant of human convention. Despite long reference to experiment, re- view shows that Planck’s constant cannot be obtained from the data of Ryberg, Davisson and Germer, Compton, or that used by Planck himself. In the new approach Planck’s constant is tied to macroscopic conventions of Newtonian origin, which are dispensable. The pre- cision of other fundamental constants is substantially improved by eliminating Planck’s constant. The electron mass is determined about 67 times more precisely, and the unit of electric charge determined 139 times more precisely. Improvement in the experimental value of the fine structure constant allows new types of experiment to be compared towards finding “new physics.” The long-standing goal of eliminating reliance on the artifact known as the International Proto- type Kilogram can be accomplished to assist progress in fundamental arXiv:1203.5557v1 [hep-ph] 25 Mar 2012 physics. 1 The Evolution of Physical Constants More than a century after Planck’s work, why are we still using Planck’s constant? The answer seems self-evident. Planck’s discovery led to quan- tum mechanics, which explains experimental data. Yet there exists a pic- 1 ture of quantum theory where Planck’s constant is spurious. It cannot by found by fitting quantum mechanics to data.
    [Show full text]
  • Habitat Mapping in Rugged Terrain Using Multispectral Ikonos Images
    06-088.qxd 10/11/08 3:48 AM Page 1325 Habitat Mapping in Rugged Terrain Using Multispectral Ikonos Images Janet Nichol and Man Sing Wong Abstract et al., 1993). Even with digital photography, large area Due to the significant time and cost requirements of coverage would require orthorectification of individual traditional mapping techniques, accurate and detailed images, resulting in potentially prohibitive costs. habitat maps for large areas are uncommon. This study The first ever habitat survey covering the whole 1,100 investigates the application of Ikonos Very High Resolution km2 of Hong Kong at 1:20 000 scale was undertaken by (VHR) images to habitat mapping in the rugged terrain of the Worldwide Fund for Nature in 1993 (Ashworth et al., Hong Kong’s country parks. A required mapping scale of 1993), using a combination of fieldwork and air photo 1:10 000, a minimum map object size of 150 m2 on the interpretation. The resulting accuracy was low (R. Corlett, ground, and a minimum accuracy level of 80 percent were personal communication), and the maps were little used. set as the mapping standards. Very high quality aerial Another such project, the 1:10 000 scale habitat survey photographs and digital topographic maps provided of Northumberland National Park, which was part of the accurate reference data for the image processing and Phase I national survey of Great Britain (Walton, 1993), was habitat classification. A comparison between manual carried out by air photo interpretation and required a total stereoscopic aerial photographic interpretation and image of 717 people-days. The exercise was deemed too expensive classification using pixel-based and object-based classifiers to be repeated (Mehner et al., 2004) given the low accuracy was carried out.
    [Show full text]
  • Ground Plane Based Absolute Scale Estimation for Monocular Visual Odometry Dingfu Zhou, Yuchao Dai, Member, IEEE, and Hongdong Li, Member, IEEE
    IEEE TRANSACTIONS ON XXXX XXXX 1 Ground Plane based Absolute Scale Estimation for Monocular Visual Odometry Dingfu Zhou, Yuchao Dai, Member, IEEE, and Hongdong Li, Member, IEEE Abstract—Recovering absolute metric scale from a monocular absolute scale, at least one piece of metric information is camera is a challenging but highly desirable problem for monoc- required. This cue may come from prior scene knowledge ular camera-based systems. By using different kinds of cues, var- (e.g., camera height, object size, vehicle speed, baseline of ious approaches have been proposed for scale estimation, such as camera height, object size etc. In this paper, firstly, we summarize stereo camera etc.) or from other sensors, such as IMU (Inertial different kinds of scale estimation approaches. Then, we propose Measurement Unit) or GPS (Global Positioning System) etc. If a robust divide and conquer absolute scale estimation method two cameras are provided, i.e. forming a binocular system, the based on the ground plane and camera height by analyzing the absolute scale can be recovered based on the baseline of two advantages and disadvantages of different approaches. By using cameras. Alternatively, the absolute scale can also be recovered the estimated scale, an effective scale correction strategy has been proposed to reduce the scale drift during the Monocular Visual by using IMU, GPS [5], [6] or wheel odometry [7], etc. Odometry (VO) estimation process. Finally, the effectiveness and Furthermore, prior geometric knowledge, such as the camera robustness of the proposed method have been verified on both height, object size, has also been employed for absolute scale public and self-collected image sequences.
    [Show full text]