Logic Taking a Step Back Some Modeling Paradigms Outline

Total Page:16

File Type:pdf, Size:1020Kb

Logic Taking a Step Back Some Modeling Paradigms Outline Help Taking a step back Logic query Languages and expressiveness Propositional logic Specification of propositional logic data Learning model Inference Inference algorithms for propositional logic Inference in propositional logic with only definite clauses Inference in full propositional logic predictions First­order logic Specification of first­order logic Models describe how the world works (relevant to some task) Inference algorithms for first­order logic Inference in first­order logic with only definite clauses What type of models? Inference in full first­order logic Other logics Logic and probability CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 1 Some modeling paradigms Outline State space models: search problems, MDPs, games Languages and expressiveness Applications: route finding, game playing, etc. Propositional logic Specification of propositional logic Think in terms of states, actions, and costs Inference algorithms for propositional logic Variable­based models: CSPs, Markov networks, Bayesian Inference in propositional logic with only definite networks clauses Applications: scheduling, object tracking, medical diagnosis, etc. Inference in full propositional logic Think in terms of variables and factors First­order logic Specification of first­order logic Logical models: propositional logic, first­order logic Inference algorithms for first­order logic Applications: proving theorems, program verification, reasoning Inference in first­order logic with only definite clauses Think in terms of logical formulas and inference rules Inference in full first­order logic Other logics Logic and probability CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 2 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 3 Language Language is a mechanism for expressing models/knowledge/ideas. Natural languages: Desiderata: want a language than can represent complex facts English: even numbers about the world and allows for sophisticated reasoning about those German: geraden Zahlen facts... Programming languages: Python: def even(x): return x % 2 == 0 C++: bool even(int x) { return x % 2 == 0; } CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 4 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 5 Procedural programming languages Variable­based models Procedural languages represent knowledge using data structures, Variable­based models are a declarative language: define algorithms manipulates data structures. constraints/factors over variables; ask any query over variables. Implicit representation? def f(positions): All students work hard. distances = [dist(pos, me) for pos in positions] John is a student. minDistance = min(distances) Therefore, John works hard. return minDistance Variable­based models would explictly represent all the students — intuitively shouldn't be necessary. Easy query: Given positions, what is minDistance? Higher­order reasoning? Hard query: Given minDistance, what are positions? John believes it will rain. Will it rain? Need a declarative language ( ) Does John believe it will not rain (assuming John is logical)? Need something more expressive to represent... CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 6 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 7 Natural languages A puzzle A dime is better than a nickel. If John likes probability, then John likes logic. A nickel is better than a penny. Therefore, a dime is better than penny. If it is Thursday, then John likes probability or John likes logic. General rule (transitivity): if and , then . It is Thursday. A penny is better than nothing. Nothing is better than world peace. Does John like probability? Therefore, a penny is better than world peace??? Does John like logic? Natural language is not formal, can be slippery... CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 8 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 9 Notes A puzzle Propositional logic chat demo You get extra credit if you write a paper and you solve the Tell me some something or ask me something. I will try to convert your utterance into propositional logic and apply resolution to carry out your request. I have no personality. problems. Example: "If it rained, then the ground is wet.", "It rained.", "Is the ground wet?" Example: "(implies (or rain snow) wet)", "rain", "(or wet cold)?" You didn't get extra credit. You solve the problems. Did you write a paper? CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 10 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 11 Ingredients Syntax versus semantics Syntax: defines a set of valid formulas ( ) Syntax: what are valid expressions in the language? Semantics: Semantics: what do these expressions mean? A model describes a possible situation in the world An interpretation function mapping each Different syntax, same semantics: and model to a truth value x + y y + x Inference rules: what new formulas can be added without changing semantics ( )? Same syntax, different semantics: Inference algorithm: apply inference rules in some clever order to 3 / 2 (Python) 3 / 2 (Javascript) answer queries (is true?) CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 12 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 13 Outline Outline Languages and expressiveness Languages and expressiveness Propositional logic Propositional logic Specification of propositional logic Specification of propositional logic Inference algorithms for propositional logic Inference algorithms for propositional logic Inference in propositional logic with only definite Inference in propositional logic with only definite clauses clauses Inference in full propositional logic Inference in full propositional logic First­order logic First­order logic Specification of first­order logic Specification of first­order logic Inference algorithms for first­order logic Inference algorithms for first­order logic Inference in first­order logic with only definite clauses Inference in first­order logic with only definite clauses Inference in full first­order logic Inference in full first­order logic Other logics Other logics Logic and probability Logic and probability CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 14 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 15 Syntax of propositional logic Syntax of propositional logic Propositional symbols: (think variables in CSPs); these are Formula: formulas Non­formula: Logical connectives: Build up formulas recursively—if and are formulas, so are the following: Negation: Note: formulas are just symbols — no meaning yet! Conjunction: Disjunction: Implication: Biconditional: CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 16 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 17 Model Interpretation function A model in propositional logic is an assignment of truth values Given a formula and a model , interpretation function to propositional symbols returns either true (1) or false (0). Example: Base case: 3 propositional symbols: For a propositional symbol (e.g., ): possible models : Recursive case: For any two formulas and : 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 18 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 19 Example Formulas represent sets of models Formula: Fach formula and model has an interpretation Model: Formula: Interpretation: Models with true interpretation : Point: formula is symbols that compactly represent a set of models. Think of formula as putting constraints on the world. CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 20 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 21 Types of formulas Knowledge base Validity: for all models (tautologies that provide no Let . information, e.g., ) Unsatisfiability: for all models (contradictions, e.g., ) Definition: Knowledge base A knowledge base is a set of formulas with . Contingent: neither valid nor unsatisfiable (provides information, e.g., ) Note: think conjunction: CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 22 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 23 Entailment Contradiction Intuition: contradicts what we know (captured in ). Intuition: added no information/constraints (it was already known). Example: contradicts Definition: Entailment entails (written ) iff . Relationship between entailment and contradiction: Example: entails ( ) iff is unsatisfiable CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 24 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 25 Contingency Interacting with a knowledge base or response Tell: It rained. ( ) Possible responses: Already knew that: entailment ( ) Don't believe that: contradiction ( ) Intuition: adds non­trivial information to Learned something new (update knowledge base): contingent Ask: Did it rain? ( ) Possible responses: Yes: entailment ( ) No: contradiction ( ) Example: and I don't know: contingent Everything boils down to entailment (checking satisfiability)... CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 26 CS221: Artificial Intelligence (Autumn 2012) ­ Percy Liang 27 Model checking Outline Checking satisfiability (SAT) is special case of solving CSPs Languages and expressiveness propositional symbol variable Propositional logic formula constraint Specification of propositional logic model assignment Inference algorithms for propositional logic
Recommended publications
  • On Basic Probability Logic Inequalities †
    mathematics Article On Basic Probability Logic Inequalities † Marija Boriˇci´cJoksimovi´c Faculty of Organizational Sciences, University of Belgrade, Jove Ili´ca154, 11000 Belgrade, Serbia; [email protected] † The conclusions given in this paper were partially presented at the European Summer Meetings of the Association for Symbolic Logic, Logic Colloquium 2012, held in Manchester on 12–18 July 2012. Abstract: We give some simple examples of applying some of the well-known elementary probability theory inequalities and properties in the field of logical argumentation. A probabilistic version of the hypothetical syllogism inference rule is as follows: if propositions A, B, C, A ! B, and B ! C have probabilities a, b, c, r, and s, respectively, then for probability p of A ! C, we have f (a, b, c, r, s) ≤ p ≤ g(a, b, c, r, s), for some functions f and g of given parameters. In this paper, after a short overview of known rules related to conjunction and disjunction, we proposed some probabilized forms of the hypothetical syllogism inference rule, with the best possible bounds for the probability of conclusion, covering simultaneously the probabilistic versions of both modus ponens and modus tollens rules, as already considered by Suppes, Hailperin, and Wagner. Keywords: inequality; probability logic; inference rule MSC: 03B48; 03B05; 60E15; 26D20; 60A05 1. Introduction The main part of probabilization of logical inference rules is defining the correspond- Citation: Boriˇci´cJoksimovi´c,M. On ing best possible bounds for probabilities of propositions. Some of them, connected with Basic Probability Logic Inequalities. conjunction and disjunction, can be obtained immediately from the well-known Boole’s Mathematics 2021, 9, 1409.
    [Show full text]
  • 7.1 Rules of Implication I
    Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification.
    [Show full text]
  • Axiomatic Set Teory P.D.Welch
    Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L.
    [Show full text]
  • Propositional Logic
    Propositional Logic - Review Predicate Logic - Review Propositional Logic: formalisation of reasoning involving propositions Predicate (First-order) Logic: formalisation of reasoning involving predicates. • Proposition: a statement that can be either true or false. • Propositional variable: variable intended to represent the most • Predicate (sometimes called parameterized proposition): primitive propositions relevant to our purposes a Boolean-valued function. • Given a set S of propositional variables, the set F of propositional formulas is defined recursively as: • Domain: the set of possible values for a predicate’s Basis: any propositional variable in S is in F arguments. Induction step: if p and q are in F, then so are ⌐p, (p /\ q), (p \/ q), (p → q) and (p ↔ q) 1 2 Predicate Logic – Review cont’ Predicate Logic - Review cont’ Given a first-order language L, the set F of predicate (first-order) •A first-order language consists of: formulas is constructed inductively as follows: - an infinite set of variables Basis: any atomic formula in L is in F - a set of predicate symbols Inductive step: if e and f are in F and x is a variable in L, - a set of constant symbols then so are the following: ⌐e, (e /\ f), (e \/ f), (e → f), (e ↔ f), ∀ x e, ∃ s e. •A term is a variable or a constant symbol • An occurrence of a variable x is free in a formula f if and only •An atomic formula is an expression of the form p(t1,…,tn), if it does not occur within a subformula e of f of the form ∀ x e where p is a n-ary predicate symbol and each ti is a term.
    [Show full text]
  • First Order Logic and Nonstandard Analysis
    First Order Logic and Nonstandard Analysis Julian Hartman September 4, 2010 Abstract This paper is intended as an exploration of nonstandard analysis, and the rigorous use of infinitesimals and infinite elements to explore properties of the real numbers. I first define and explore first order logic, and model theory. Then, I prove the compact- ness theorem, and use this to form a nonstandard structure of the real numbers. Using this nonstandard structure, it it easy to to various proofs without the use of limits that would otherwise require their use. Contents 1 Introduction 2 2 An Introduction to First Order Logic 2 2.1 Propositional Logic . 2 2.2 Logical Symbols . 2 2.3 Predicates, Constants and Functions . 2 2.4 Well-Formed Formulas . 3 3 Models 3 3.1 Structure . 3 3.2 Truth . 4 3.2.1 Satisfaction . 5 4 The Compactness Theorem 6 4.1 Soundness and Completeness . 6 5 Nonstandard Analysis 7 5.1 Making a Nonstandard Structure . 7 5.2 Applications of a Nonstandard Structure . 9 6 Sources 10 1 1 Introduction The founders of modern calculus had a less than perfect understanding of the nuts and bolts of what made it work. Both Newton and Leibniz used the notion of infinitesimal, without a rigorous understanding of what they were. Infinitely small real numbers that were still not zero was a hard thing for mathematicians to accept, and with the rigorous development of limits by the likes of Cauchy and Weierstrass, the discussion of infinitesimals subsided. Now, using first order logic for nonstandard analysis, it is possible to create a model of the real numbers that has the same properties as the traditional conception of the real numbers, but also has rigorously defined infinite and infinitesimal elements.
    [Show full text]
  • Chapter 9: Answers and Comments Step 1 Exercises 1. Simplification. 2. Absorption. 3. See Textbook. 4. Modus Tollens. 5. Modus P
    Chapter 9: Answers and Comments Step 1 Exercises 1. Simplification. 2. Absorption. 3. See textbook. 4. Modus Tollens. 5. Modus Ponens. 6. Simplification. 7. X -- A very common student mistake; can't use Simplification unless the major con- nective of the premise is a conjunction. 8. Disjunctive Syllogism. 9. X -- Fallacy of Denying the Antecedent. 10. X 11. Constructive Dilemma. 12. See textbook. 13. Hypothetical Syllogism. 14. Hypothetical Syllogism. 15. Conjunction. 16. See textbook. 17. Addition. 18. Modus Ponens. 19. X -- Fallacy of Affirming the Consequent. 20. Disjunctive Syllogism. 21. X -- not HS, the (D v G) does not match (D v C). This is deliberate to make sure you don't just focus on generalities, and make sure the entire form fits. 22. Constructive Dilemma. 23. See textbook. 24. Simplification. 25. Modus Ponens. 26. Modus Tollens. 27. See textbook. 28. Disjunctive Syllogism. 29. Modus Ponens. 30. Disjunctive Syllogism. Step 2 Exercises #1 1 Z A 2. (Z v B) C / Z C 3. Z (1)Simp. 4. Z v B (3) Add. 5. C (2)(4)MP 6. Z C (3)(5) Conj. For line 4 it is easy to get locked into line 2 and strategy 1. But they do not work. #2 1. K (B v I) 2. K 3. ~B 4. I (~T N) 5. N T / ~N 6. B v I (1)(2) MP 7. I (6)(3) DS 8. ~T N (4)(7) MP 9. ~T (8) Simp. 10. ~N (5)(9) MT #3 See textbook. #4 1. H I 2. I J 3.
    [Show full text]
  • Argument Forms and Fallacies
    6.6 Common Argument Forms and Fallacies 1. Common Valid Argument Forms: In the previous section (6.4), we learned how to determine whether or not an argument is valid using truth tables. There are certain forms of valid and invalid argument that are extremely common. If we memorize some of these common argument forms, it will save us time because we will be able to immediately recognize whether or not certain arguments are valid or invalid without having to draw out a truth table. Let’s begin: 1. Disjunctive Syllogism: The following argument is valid: “The coin is either in my right hand or my left hand. It’s not in my right hand. So, it must be in my left hand.” Let “R”=”The coin is in my right hand” and let “L”=”The coin is in my left hand”. The argument in symbolic form is this: R ˅ L ~R __________________________________________________ L Any argument with the form just stated is valid. This form of argument is called a disjunctive syllogism. Basically, the argument gives you two options and says that, since one option is FALSE, the other option must be TRUE. 2. Pure Hypothetical Syllogism: The following argument is valid: “If you hit the ball in on this turn, you’ll get a hole in one; and if you get a hole in one you’ll win the game. So, if you hit the ball in on this turn, you’ll win the game.” Let “B”=”You hit the ball in on this turn”, “H”=”You get a hole in one”, and “W”=”you win the game”.
    [Show full text]
  • The Development of Modus Ponens in Antiquity: from Aristotle to the 2Nd Century AD Author(S): Susanne Bobzien Source: Phronesis, Vol
    The Development of Modus Ponens in Antiquity: From Aristotle to the 2nd Century AD Author(s): Susanne Bobzien Source: Phronesis, Vol. 47, No. 4 (2002), pp. 359-394 Published by: BRILL Stable URL: http://www.jstor.org/stable/4182708 Accessed: 02/10/2009 22:31 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=bap. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. BRILL is collaborating with JSTOR to digitize, preserve and extend access to Phronesis. http://www.jstor.org The Development of Modus Ponens in Antiquity:' From Aristotle to the 2nd Century AD SUSANNE BOBZIEN ABSTRACT 'Aristotelian logic', as it was taught from late antiquity until the 20th century, commonly included a short presentationof the argumentforms modus (ponendo) ponens, modus (tollendo) tollens, modus ponendo tollens, and modus tollendo ponens.
    [Show full text]
  • Self-Similarity in the Foundations
    Self-similarity in the Foundations Paul K. Gorbow Thesis submitted for the degree of Ph.D. in Logic, defended on June 14, 2018. Supervisors: Ali Enayat (primary) Peter LeFanu Lumsdaine (secondary) Zachiri McKenzie (secondary) University of Gothenburg Department of Philosophy, Linguistics, and Theory of Science Box 200, 405 30 GOTEBORG,¨ Sweden arXiv:1806.11310v1 [math.LO] 29 Jun 2018 2 Contents 1 Introduction 5 1.1 Introductiontoageneralaudience . ..... 5 1.2 Introduction for logicians . .. 7 2 Tour of the theories considered 11 2.1 PowerKripke-Plateksettheory . .... 11 2.2 Stratifiedsettheory ................................ .. 13 2.3 Categorical semantics and algebraic set theory . ....... 17 3 Motivation 19 3.1 Motivation behind research on embeddings between models of set theory. 19 3.2 Motivation behind stratified algebraic set theory . ...... 20 4 Logic, set theory and non-standard models 23 4.1 Basiclogicandmodeltheory ............................ 23 4.2 Ordertheoryandcategorytheory. ...... 26 4.3 PowerKripke-Plateksettheory . .... 28 4.4 First-order logic and partial satisfaction relations internal to KPP ........ 32 4.5 Zermelo-Fraenkel set theory and G¨odel-Bernays class theory............ 36 4.6 Non-standardmodelsofsettheory . ..... 38 5 Embeddings between models of set theory 47 5.1 Iterated ultrapowers with special self-embeddings . ......... 47 5.2 Embeddingsbetweenmodelsofsettheory . ..... 57 5.3 Characterizations.................................. .. 66 6 Stratified set theory and categorical semantics 73 6.1 Stratifiedsettheoryandclasstheory . ...... 73 6.2 Categoricalsemantics ............................... .. 77 7 Stratified algebraic set theory 85 7.1 Stratifiedcategoriesofclasses . ..... 85 7.2 Interpretation of the Set-theories in the Cat-theories ................ 90 7.3 ThesubtoposofstronglyCantorianobjects . ....... 99 8 Where to go from here? 103 8.1 Category theoretic approach to embeddings between models of settheory .
    [Show full text]
  • Monadic Decomposition
    Monadic Decomposition Margus Veanes1, Nikolaj Bjørner1, Lev Nachmanson1, and Sergey Bereg2 1 Microsoft Research {margus,nbjorner,levnach}@microsoft.com 2 The University of Texas at Dallas [email protected] Abstract. Monadic predicates play a prominent role in many decid- able cases, including decision procedures for symbolic automata. We are here interested in discovering whether a formula can be rewritten into a Boolean combination of monadic predicates. Our setting is quantifier- free formulas over a decidable background theory, such as arithmetic and we here develop a semi-decision procedure for extracting a monadic decomposition of a formula when it exists. 1 Introduction Classical decidability results of fragments of logic [7] are based on careful sys- tematic study of restricted cases either by limiting allowed symbols of the lan- guage, limiting the syntax of the formulas, fixing the background theory, or by using combinations of such restrictions. Many decidable classes of problems, such as monadic first-order logic or the L¨owenheim class [29], the L¨ob-Gurevich class [28], monadic second-order logic with one successor (S1S) [8], and monadic second-order logic with two successors (S2S) [35] impose at some level restric- tions to monadic or unary predicates to achieve decidability. Here we propose and study an orthogonal problem of whether and how we can transform a formula that uses multiple free variables into a simpler equivalent formula, but where the formula is not a priori syntactically or semantically restricted to any fixed fragment of logic. Simpler in this context means that we have eliminated all theory specific dependencies between the variables and have transformed the formula into an equivalent Boolean combination of predicates that are “essentially” unary.
    [Show full text]
  • CMSC 250 Discrete Structures
    CMSC 250 Discrete Structures Spring 2019 Recall Conditional Statement Definition A sentence of the form \If p then q" is symbolically donoted by p!q Example If you show up for work Monday morning, then you will get the job. p q p ! q T T T T F F F T T F F T Definitions for Conditional Statement Definition The contrapositive of p ! q is ∼q ! ∼p The converse of p ! q is q ! p The inverse of p ! q is ∼p ! ∼q Contrapositive Definition The contrapositive of a conditional statement is obtained by transposing its conclusion with its premise and inverting. So, Contrapositive of p ! q is ∼q ! ∼p. Example Original statement: If I live in Denver, then I live in Colorado. Contrapositive: If I don't live in Colorado, then I don't live in Denver. Theorem The contrapositive of an implication is equivalent to the original statement Converse Definition The Converse of a conditional statement is obtained by transposing its conclusion with its premise. So, Converse of p ! q is q ! p. Example Original statement: If I live in Denver, then I live in Colorado. Contrapositive: If I live in Colorado, then I live in Denver. The converse is NOT logically equivalent to the original. Inverse Definition The Inverse of a conditional statement is obtained by inverting its premise and conclusion. So, inverse of p ! q is ∼p ! ∼q. Example Original statement: If I live in Denver, then I live in Colorado. Contrapositive: If I do not live in Denver, then I do not live in Colorado.
    [Show full text]
  • Mathematical Logic
    Copyright c 1998–2005 by Stephen G. Simpson Mathematical Logic Stephen G. Simpson December 15, 2005 Department of Mathematics The Pennsylvania State University University Park, State College PA 16802 http://www.math.psu.edu/simpson/ This is a set of lecture notes for introductory courses in mathematical logic offered at the Pennsylvania State University. Contents Contents 1 1 Propositional Calculus 3 1.1 Formulas ............................... 3 1.2 Assignments and Satisfiability . 6 1.3 LogicalEquivalence. 10 1.4 TheTableauMethod......................... 12 1.5 TheCompletenessTheorem . 18 1.6 TreesandK¨onig’sLemma . 20 1.7 TheCompactnessTheorem . 21 1.8 CombinatorialApplications . 22 2 Predicate Calculus 24 2.1 FormulasandSentences . 24 2.2 StructuresandSatisfiability . 26 2.3 TheTableauMethod......................... 31 2.4 LogicalEquivalence. 37 2.5 TheCompletenessTheorem . 40 2.6 TheCompactnessTheorem . 46 2.7 SatisfiabilityinaDomain . 47 3 Proof Systems for Predicate Calculus 50 3.1 IntroductiontoProofSystems. 50 3.2 TheCompanionTheorem . 51 3.3 Hilbert-StyleProofSystems . 56 3.4 Gentzen-StyleProofSystems . 61 3.5 TheInterpolationTheorem . 66 4 Extensions of Predicate Calculus 71 4.1 PredicateCalculuswithIdentity . 71 4.2 TheSpectrumProblem . .. .. .. .. .. .. .. .. .. 75 4.3 PredicateCalculusWithOperations . 78 4.4 Predicate Calculus with Identity and Operations . ... 82 4.5 Many-SortedPredicateCalculus . 84 1 5 Theories, Models, Definability 87 5.1 TheoriesandModels ......................... 87 5.2 MathematicalTheories. 89 5.3 DefinabilityoveraModel . 97 5.4 DefinitionalExtensionsofTheories . 100 5.5 FoundationalTheories . 103 5.6 AxiomaticSetTheory . 106 5.7 Interpretability . 111 5.8 Beth’sDefinabilityTheorem. 112 6 Arithmetization of Predicate Calculus 114 6.1 Primitive Recursive Arithmetic . 114 6.2 Interpretability of PRA in Z1 ....................114 6.3 G¨odelNumbers ............................ 114 6.4 UndefinabilityofTruth. 117 6.5 TheProvabilityPredicate .
    [Show full text]