David Karger Rajeev Motwani Y Madhu Sudan Z

Total Page:16

File Type:pdf, Size:1020Kb

David Karger Rajeev Motwani Y Madhu Sudan Z Approximate Graph Coloring by Semidenite Programming y z David Karger Rajeev Motwani Madhu Sudan Abstract We consider the problem of coloring k colorable graphs with the fewest p ossible colors We present a randomized p olynomial time algorithm which colors a colorable graph on n vertices 12 12 13 14 with minfO log log n O n log ng colors where is the maximum degree of any vertex Besides giving the b est known approximation ratio in terms of n this marks the rst nontrivial approximation result as a function of the maximum degree This result can 12 12k b e generalized to k colorable graphs to obtain a coloring using minfO log log n 12 13(k +1) O n log ng colors Our results are inspired by the recent work of Go emans and Williamson who used an algorithm for semidenite optimization problems which generalize lin ear programs to obtain improved approximations for the MAX CUT and MAX SAT problems An intriguing outcome of our work is a duality relationship established b etween the value of the optimum solution to our semidenite program and the Lovasz function We show lower b ounds on the gap b etween the optimum solution of our semidenite program and the actual chromatic numb er by duality this also demonstrates interesting new facts ab out the function MIT Lab oratory for Computer Science Cambridge MA Email kargermitedu URL httptheorylcsmitedukarger Supp orted by a Hertz Foundation Graduate Fellowship by NSF Young In vestigator Award CCR with matching funds from IBM Schlumb erger Foundation Shell Foundation and Xerox Corp oration and by NSF Career Award CCR y Department of Computer Science Stanford University Stanford CA rajeevcsstanfordedu Sup p orted by an Alfred P Sloan Research Fellowship an IBM Faculty Development Award and NSF Young Investigator Award CCR with matching funds from IBM Mitsubishi Schlumb erger Foundation Shell Foundation and Xerox Corp oration z MIT Lab oratory for Computer Science Cambridge MA Email madhulcsmitedu Work done when this author was at IBMs Thomas J Watson Research Center Yorktown Heights NY Intro duction A legal vertex coloring of a graph GV E is an assignment of colors to its vertices such that no two adjacent vertices receive the same color Equivalently a legal coloring of G by k colors is a partition of its vertices into k indep endent sets The minimum numb er of colors needed for such a coloring is called the chromatic numb er of G and is usually denoted by G Determining the chromatic numb er of a graph is known to b e NPhard cf Besides its theoretical signicance as a canonical NPhard problem graph coloring arises natu rally in a variety of applications such as register allo cation and timetableexamination scheduling In many applications which can b e formulated as graph coloring problems it suces to nd an approximately optimum graph coloringa coloring of the graph with a small though nonoptimum numb er of colors This along with the apparent imp ossibili ty of an exact solution has led to some interest in the problem of approximate graph coloring The analysis of approximation algorithms for graph coloring started with the work of Johnson who shows that a version of the greedy algorithm gives an O n log napproximation algorithm for k coloring k Wigderson improved this b ound by giving an elegant algorithm which uses O n colors to legally color a k colorable graph Subsequently other p olynomial time algorithms were provided by Blum which use O n log n colors to legally color an nvertex colorable graph This k result generalizes to coloring a k colorable graph with O n log n colors The b est known p erformance guarantee for general graphs is due to Halldorsson who provided a p oly nomial time algorithm using a numb er of colors which is within a factor of O nlog log n log n of the optimum Recent results in the hardness of approximations indicate that it may b e not p ossible to sub stantially improve the results describ ed ab ove Lund and Yannakakis used the results of Arora Lund Motwani Sudan and Szegedy and Feige Goldwasser Lovasz Safra and Szegedy to show that there exists a small constant such that no p olynomial time algorithm can approximate the chromatic numb er of a graph to within a ratio of n unless P NP The current hardness result for the approximation of the chromatic numb er is due to Feige and Kilian and Hastad who show that approximating it to within n for any would imply NPRP RP is the class of probabilistic p olynomial time algorithms making onesided error However none of these hardness results apply to the sp ecial case of the problem where the input graph is guaranteed to b e k colorable for some small k The b est hardness result in this direction is due to Khanna Linial and Safra who show that it is not p ossible to color a colorable graph with colors in p olynomial time unless P NP In this pap er we present improvements on the result of Blum In particular we provide a randomized p olynomial time algorithm which colors a colorable graph of maximum degree with min fO log log n O n log ng colors moreover this can b e generalized to k k k colorable graphs to obtain a coloring using O log log n or O n log n colors Besides giving the b est known approximations in terms of n our results are the rst nontrivial approximations given in terms of Our results are based on the recent work of Go emans and Williamson who used an algorithm for semidenite optimization problems cf to obtain improved approximations for the MAX CUT and MAX SAT problems We follow their basic paradigm of using algorithms for semidenite programming to obtain an optimum solution to a relaxed version of the problem and a randomized strategy for rounding this solution to a feasible but approximate solution to the original problem Motwani and Naor have shown that the approximate graph coloring problem is closely related to the problem of nding a CUT COVER of the edges of a graph Our results can b e viewed as generalizing the MAX CUT approximation algorithm of Go emans and Williamson to the problem of nding an approximate CUT COVER In fact our techniques also lead to improved approximations for the MAX k CUT problem We also establish a duality relationship b etween the value of the optimum solution to our semidenite program and the Lovasz function We show lower b ounds on the gap b etween the optimum solution of our semidenite program and the actual chromatic numb er by duality this also demonstrates interesting new facts ab out the function Alon and Kahale use related techniques to devise a p olynomial time algorithm for coloring random graphs drawn from a hard distribution on the space of all colorable graphs Recently Frieze and Jerrum have used a semidenite programming formulation and randomized rounding strategy essentially the same as ours to obtain improved approximations for the MAX k CUT problem with large values of k Their results required a more sophisticated version of our analysis but for the coloring problem our results are tight up to p olylogarithmic factors and their analysis do es not help to improve our b ounds Semidenite programming relaxations are an extension of the linear programming relaxation approach to approximately solving NPcomplete problems We thus present our work in the style of the classical LPrelaxation approach We b egin in Section by dening a relaxed version of the coloring problem Since we use a more complex relaxation than standard linear programming we must show that the relaxed problem can b e solved this is done in Section We then show relationships b etween the relaxation and the original problem In Section we show that in a sense to b e dened later the value of the relaxation b ounds the value of the original problem Then in Sections and we show how a solution to the relaxation can b e rounded to make it a solution to the original problem Combining the last two arguments shows that we can nd a go o d approximation Section Section and Sections are in fact indep endent and can b e read in any order after the denitions in Section In Section we investigate the relationship b etween our fractional relaxations and the Lovasz function showing that they are in fact dual to one another We investigate the approximation error inherent in our formulation of the chromatic numb er via semidenite programming in Section A Vector Relaxation of Coloring In this section we describ e the relaxed coloring problem whose solution is in turn used to approx imate the solution to the coloring problem Instead of assigning colors to the vertices of a graph we consider assigning ndimensional unit vectors to the vertices To capture the prop erty of a coloring we aim for the vectors of adjacent vertices to b e dierent in a natural way The vector k coloring that we dene plays the role that a hyp othetical fractional k coloring would play in a classical linearprogramming relaxation approach to the problem Our relaxation is related to the concept of an orthonormal representation of a graph Denition Given a graph G V E on n vertices and a real number k a vector k n coloring of G is an assignment of unit vectors u from the space to each vertex i V such that i for any two adjacent vertices i and j the dot product of their vectors satises the inequality hu u i i j k The denition of an orthonormal representation requires that the given dot pro ducts b e equal to zero a weaker requirement than the one ab ove Solving the Vector Coloring Problem In this section we show how the vector coloring relaxation
Recommended publications
  • Challenges in Web Search Engines
    Challenges in Web Search Engines Monika R. Henzinger Rajeev Motwani* Craig Silverstein Google Inc. Department of Computer Science Google Inc. 2400 Bayshore Parkway Stanford University 2400 Bayshore Parkway Mountain View, CA 94043 Stanford, CA 94305 Mountain View, CA 94043 [email protected] [email protected] [email protected] Abstract or a combination thereof. There are web ranking optimiza• tion services which, for a fee, claim to place a given web site This article presents a high-level discussion of highly on a given search engine. some problems that are unique to web search en• Unfortunately, spamming has become so prevalent that ev• gines. The goal is to raise awareness and stimulate ery commercial search engine has had to take measures to research in these areas. identify and remove spam. Without such measures, the qual• ity of the rankings suffers severely. Traditional research in information retrieval has not had to 1 Introduction deal with this problem of "malicious" content in the corpora. Quite certainly, this problem is not present in the benchmark Web search engines are faced with a number of difficult prob• document collections used by researchers in the past; indeed, lems in maintaining or enhancing the quality of their perfor• those collections consist exclusively of high-quality content mance. These problems are either unique to this domain, or such as newspaper or scientific articles. Similarly, the spam novel variants of problems that have been studied in the liter• problem is not present in the context of intranets, the web that ature. Our goal in writing this article is to raise awareness of exists within a corporation.
    [Show full text]
  • Four Results of Jon Kleinberg a Talk for St.Petersburg Mathematical Society
    Four Results of Jon Kleinberg A Talk for St.Petersburg Mathematical Society Yury Lifshits Steklov Institute of Mathematics at St.Petersburg May 2007 1 / 43 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 / 43 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 2 / 43 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 2 / 43 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 2 / 43 Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams 2 / 43 Part I History of Nevanlinna Prize Career of Jon Kleinberg 3 / 43 Nevanlinna Prize The Rolf Nevanlinna Prize is awarded once every 4 years at the International Congress of Mathematicians, for outstanding contributions in Mathematical Aspects of Information Sciences including: 1 All mathematical aspects of computer science, including complexity theory, logic of programming languages, analysis of algorithms, cryptography, computer vision, pattern recognition, information processing and modelling of intelligence.
    [Show full text]
  • Prahladh Harsha
    Prahladh Harsha Toyota Technological Institute, Chicago phone : +1-773-834-2549 University Press Building fax : +1-773-834-9881 1427 East 60th Street, Second Floor Chicago, IL 60637 email : [email protected] http://ttic.uchicago.edu/∼prahladh Research Interests Computational Complexity, Probabilistically Checkable Proofs (PCPs), Information Theory, Prop- erty Testing, Proof Complexity, Communication Complexity. Education • Doctor of Philosophy (PhD) Computer Science, Massachusetts Institute of Technology, 2004 Research Advisor : Professor Madhu Sudan PhD Thesis: Robust PCPs of Proximity and Shorter PCPs • Master of Science (SM) Computer Science, Massachusetts Institute of Technology, 2000 • Bachelor of Technology (BTech) Computer Science and Engineering, Indian Institute of Technology, Madras, 1998 Work Experience • Toyota Technological Institute, Chicago September 2004 – Present Research Assistant Professor • Technion, Israel Institute of Technology, Haifa February 2007 – May 2007 Visiting Scientist • Microsoft Research, Silicon Valley January 2005 – September 2005 Postdoctoral Researcher Honours and Awards • Summer Research Fellow 1997, Jawaharlal Nehru Center for Advanced Scientific Research, Ban- galore. • Rajiv Gandhi Science Talent Research Fellow 1997, Jawaharlal Nehru Center for Advanced Scien- tific Research, Bangalore. • Award Winner in the Indian National Mathematical Olympiad (INMO) 1993, National Board of Higher Mathematics (NBHM). • National Board of Higher Mathematics (NBHM) Nurture Program award 1995-1998. The Nurture program 1995-1998, coordinated by Prof. Alladi Sitaram, Indian Statistical Institute, Bangalore involves various topics in higher mathematics. 1 • Ranked 7th in the All India Joint Entrance Examination (JEE) for admission into the Indian Institutes of Technology (among the 100,000 candidates who appeared for the examination). • Papers invited to special issues – “Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding” (with Eli Ben- Sasson, Oded Goldreich, Madhu Sudan, and Salil Vadhan).
    [Show full text]
  • Stanford University's Economic Impact Via Innovation and Entrepreneurship
    Full text available at: http://dx.doi.org/10.1561/0300000074 Impact: Stanford University’s Economic Impact via Innovation and Entrepreneurship Charles E. Eesley Associate Professor in Management Science & Engineering W.M. Keck Foundation Faculty Scholar, School of Engineering Stanford University William F. Miller† Herbert Hoover Professor of Public and Private Management Emeritus Professor of Computer Science Emeritus and former Provost Stanford University and Faculty Co-director, SPRIE Boston — Delft Full text available at: http://dx.doi.org/10.1561/0300000074 Contents 1 Executive Summary2 1.1 Regional and Local Impact................. 3 1.2 Stanford’s Approach ..................... 4 1.3 Nonprofits and Social Innovation .............. 8 1.4 Alumni Founders and Leaders ................ 9 2 Creating an Entrepreneurial Ecosystem 12 2.1 History of Stanford and Silicon Valley ........... 12 3 Analyzing Stanford’s Entrepreneurial Footprint 17 3.1 Case Study: Google Inc., the Global Reach of One Stanford Startup ............................ 20 3.2 The Types of Companies Stanford Graduates Create .... 22 3.3 The BASES Study ...................... 30 4 Funding Startup Businesses 33 4.1 Study of Investors ...................... 38 4.2 Alumni Initiatives: Stanford Angels & Entrepreneurs Alumni Group ............................ 44 4.3 Case Example: Clint Korver ................. 44 5 How Stanford’s Academic Experience Creates Entrepreneurs 46 Full text available at: http://dx.doi.org/10.1561/0300000074 6 Changing Patterns in Entrepreneurial Career Paths 52 7 Social Innovation, Non-Profits, and Social Entrepreneurs 57 7.1 Case Example: Eric Krock .................. 58 7.2 Stanford Centers and Programs for Social Entrepreneurs . 59 7.3 Case Example: Miriam Rivera ................ 61 7.4 Creating Non-Profit Organizations ............. 63 8 The Lean Startup 68 9 How Stanford Supports Entrepreneurship—Programs, Cen- ters, Projects 77 9.1 Stanford Technology Ventures Program .........
    [Show full text]
  • SIGMOD Flyer
    DATES: Research paper SIGMOD 2006 abstracts Nov. 15, 2005 Research papers, 25th ACM SIGMOD International Conference on demonstrations, Management of Data industrial talks, tutorials, panels Nov. 29, 2005 June 26- June 29, 2006 Author Notification Feb. 24, 2006 Chicago, USA The annual ACM SIGMOD conference is a leading international forum for database researchers, developers, and users to explore cutting-edge ideas and results, and to exchange techniques, tools, and experiences. We invite the submission of original research contributions as well as proposals for demonstrations, tutorials, industrial presentations, and panels. We encourage submissions relating to all aspects of data management defined broadly and particularly ORGANIZERS: encourage work that represent deep technical insights or present new abstractions and novel approaches to problems of significance. We especially welcome submissions that help identify and solve data management systems issues by General Chair leveraging knowledge of applications and related areas, such as information retrieval and search, operating systems & Clement Yu, U. of Illinois storage technologies, and web services. Areas of interest include but are not limited to: at Chicago • Benchmarking and performance evaluation Vice Gen. Chair • Data cleaning and integration Peter Scheuermann, Northwestern Univ. • Database monitoring and tuning PC Chair • Data privacy and security Surajit Chaudhuri, • Data warehousing and decision-support systems Microsoft Research • Embedded, sensor, mobile databases and applications Demo. Chair Anastassia Ailamaki, CMU • Managing uncertain and imprecise information Industrial PC Chair • Peer-to-peer data management Alon Halevy, U. of • Personalized information systems Washington, Seattle • Query processing and optimization Panels Chair Christian S. Jensen, • Replication, caching, and publish-subscribe systems Aalborg University • Text search and database querying Tutorials Chair • Semi-structured data David DeWitt, U.
    [Show full text]
  • The Best Nurturers in Computer Science Research
    The Best Nurturers in Computer Science Research Bharath Kumar M. Y. N. Srikant IISc-CSA-TR-2004-10 http://archive.csa.iisc.ernet.in/TR/2004/10/ Computer Science and Automation Indian Institute of Science, India October 2004 The Best Nurturers in Computer Science Research Bharath Kumar M.∗ Y. N. Srikant† Abstract The paper presents a heuristic for mining nurturers in temporally organized collaboration networks: people who facilitate the growth and success of the young ones. Specifically, this heuristic is applied to the computer science bibliographic data to find the best nurturers in computer science research. The measure of success is parameterized, and the paper demonstrates experiments and results with publication count and citations as success metrics. Rather than just the nurturer’s success, the heuristic captures the influence he has had in the indepen- dent success of the relatively young in the network. These results can hence be a useful resource to graduate students and post-doctoral can- didates. The heuristic is extended to accurately yield ranked nurturers inside a particular time period. Interestingly, there is a recognizable deviation between the rankings of the most successful researchers and the best nurturers, which although is obvious from a social perspective has not been statistically demonstrated. Keywords: Social Network Analysis, Bibliometrics, Temporal Data Mining. 1 Introduction Consider a student Arjun, who has finished his under-graduate degree in Computer Science, and is seeking a PhD degree followed by a successful career in Computer Science research. How does he choose his research advisor? He has the following options with him: 1. Look up the rankings of various universities [1], and apply to any “rea- sonably good” professor in any of the top universities.
    [Show full text]
  • Some Hardness Escalation Results in Computational Complexity Theory Pritish Kamath
    Some Hardness Escalation Results in Computational Complexity Theory by Pritish Kamath B.Tech. Indian Institute of Technology Bombay (2012) S.M. Massachusetts Institute of Technology (2015) Submitted to Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering & Computer Science at Massachusetts Institute of Technology February 2020 ⃝c Massachusetts Institute of Technology 2019. All rights reserved. Author: ............................................................. Department of Electrical Engineering and Computer Science September 16, 2019 Certified by: ............................................................. Ronitt Rubinfeld Professor of Electrical Engineering and Computer Science, MIT Thesis Supervisor Certified by: ............................................................. Madhu Sudan Gordon McKay Professor of Computer Science, Harvard University Thesis Supervisor Accepted by: ............................................................. Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science, MIT Chair, Department Committee on Graduate Students Some Hardness Escalation Results in Computational Complexity Theory by Pritish Kamath Submitted to Department of Electrical Engineering and Computer Science on September 16, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science & Engineering Abstract In this thesis, we prove new hardness escalation results in computational complexity theory; a phenomenon where hardness results against seemingly weak models of computation for any problem can be lifted, in a black box manner, to much stronger models of computation by considering a simple gadget composed version of the original problem. For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we show that a gadget-composed version of F is hard to refute in any proof system whose lines are computed by efficient communication protocols.
    [Show full text]
  • Practical Considerations in Benchmarking Digital Testing Systems
    Foreword The papers in these proceedings were presented at the 39th Annual Symposium on Foundations of Computer Science (FOCS ‘98), sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing. The conference was held in Palo Alto, California, November g-11,1998. The program committee consisted of Miklos Ajtai (IBM Almaden), Mihir Bellare (UC San Diego), Allan Borodin (Toronto), Edith Cohen (AT&T Labs), Sally Goldman (Washington), David Karger (MIT), Jon Kleinberg (Cornell), Rajeev Motwani (chair, Stanford)), Seffi Naor (Technion), Christos Papadimitriou (Berkeley), Toni Pitassi (Arizona), Dan Spielman (MIT), Eli Upfal (Brown), Emo Welzl (ETH Zurich), David Williamson (IBM TJ Watson), and Frances Yao (Xerox PARC). The program committee met on June 26-28, 1998, and selected 76 papers from the 204 detailed abstracts submitted. The submissions were not refereed, and many of them represent reports of continuing research. It is expected that most of these papers will appear in a more complete and polished form in scientific journals in the future. The program committee selected two papers to jointly receive the Machtey Award for the best student-authored paper. These two papers were: “A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem” by Kamal Jain, and “The Shortest Vector in a Lattice is Hard to Approximate to within Some Constant” by Daniele Micciancio. There were many excellent candidates for this award, each one deserving. At this conference we organized, for the first time, a set of three tutorials: “Geometric Computation and the Art of Sampling” by Jiri Matousek; “Theoretical Issues in Probabilistic Artificial Intelligence” by Michael Kearns; and, “Information Retrieval on the Web” by Andrei Broder and Monika Henzinger.
    [Show full text]
  • The Pagerank Citation Ranking: Bringing Order to the Web
    The PageRank Citation Ranking: Bringing Order to the Web Marlon Dias [email protected] Information Retrieval DCC/UFMG - 2017 Introduction Paper: The PageRank Citation Ranking: Bringing Order to the Web, 1999 Authors: Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd Page and Brin were MS students at Stanford They founded Google in September, 98. Most of this presentation is based on the original paper (link) The Initiative's focus is to dramatically “ advance the means to collect, store, and organize information in digital forms, and make it available for searching, retrieval, and processing via communication networks -- all in user-friendly ways. Stanford WebBase project Pagerank Motivation ▪ Web is vastly large and heterogeneous ▫ Original paper's estimation were over 150 M pages and 1.7 billion of links ▪ Pages are extremely diverse ▫ Ranging from "What does the fox say? " to journals about IR ▪ Web Page present some "structure" ▫ Pagerank takes advantage of links structure Pagerank Motivation ▪ Inspiration: Academic citation ▪ Papers ▫ are well defined units of work ▫ are roughly similar in quality ▫ are used to extend the body of knowledge ▫ can have their "quality" measured in number of citations Pagerank Motivation ▪ Web pages, on the other hand ▫ proliferate free of quality control or publishing costs ▫ huge numbers of pages can be created easily ▸ artificially inflating citation counts ▫ They vary on much wider scale than academic papers in quality, usage, citations and length Pagerank Motivation A research article A random archived about the effects of message posting cellphone use on asking an obscure driver attention is very question about an IBM different from an computer is very advertisement for a different from the IBM particular cellular home page provider The average web page quality experienced “ by a user is higher than the quality of the average web page.
    [Show full text]
  • Pairwise Independence and Derandomization
    Pairwise Independence and Derandomization Pairwise Independence and Derandomization Michael Luby Digital Fountain Fremont, CA, USA Avi Wigderson Institute for Advanced Study Princeton, NJ, USA [email protected] Boston – Delft Foundations and TrendsR in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 A Cataloging-in-Publication record is available from the Library of Congress The preferred citation for this publication is M. Luby and A. Wigderson, Pairwise R Independence and Derandomization, Foundation and Trends in Theoretical Com- puter Science, vol 1, no 4, pp 237–301, 2005 Printed on acid-free paper ISBN: 1-933019-22-0 c 2006 M. Luby and A. Wigderson All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • The Pagerank Citation Ranking: Bringing Order to the Web Paper Review
    The PageRank Citation Ranking: Bringing Order to the Web Paper Review Anand Singh Kunwar 1 Introduction The PageRank [1] algorithm decribes a way to compute ranks or ratings of web pages. This comes from a simple intuition. Consider the web to be a directed graph with each node being a web page. Each web page has certain links to it and certain links from it. Let these links be edges of our directed graph. Something like what we can see in the following graphical representation of 3 pages. a c b The pages a, b and c have some outgoing and incoming edges. We compute the total PageRank of these pages by iterating over the following algorithm. X Rank(v) Rank(u) = c + cE(u) Nv v2Lu Here Nv are number of pages being linked by v, Lu is the set of pages which have links to u, E(u) is some vector that correspond to the source of rank and c is the normalising constant. The reason why the E(u) was introduced was for cases when a loop has no out-edges. In this case, our ranks of nodes inside this loop would blow up. The paper also provides us with a real life intuition for this. Authors provide us with a random surfer model. This model states that a web surfer will click consecutive pages like a random walk on graphs. However, in case this surfer encounters a loop of webpages with no other outgoing webpage than the ones in the loop, it is highly unlikely that this surfer will continue.
    [Show full text]
  • Rajeev Motwani
    RAJEEV MOTWANI A Memorial Celebration Memorial Church, Stanford University ~ September 25, 2009 Memorial Church, Stanford University ~ September 25, 2009 Pre-Service Music Professor Donald Knuth, Organist Pastorale in F Major ~ J.S. Bach UÊ Adagio and Allegro for Mechanical Organ ~ Mozart Blue Rondo a la Turk ~ Dave Brubeck U Sonata I ~ Paul Hindemith U Toccata in D Minor ~ J.S. Bach Take Five ~ Paul Desmond Rabbi Patricia Karlin-Neumann, Senior Associate Dean for Religious Life Stanford University Welcome John L. Hennessy, President, Stanford University Opening Blessings Robert P. Goldman, Professor of Sanskrit, University of California Berkeley Music Song of the Soul ................................................................................................... Naitri Jadeja Family Introductions Ram Shriram Reflections Sergey Brin UÊ Jennifer Widom UÊ Sep Kamvar UÊ Gautam Bhargava UÊ Lakshmi Pratury Closing Prayer Robert P. Goldman, Professor of Sanskrit, University of California Berkeley Closing Remarks Ron Conway Music Grand Chœur Dialogué ~ E. Gigout Cover photo ©2009 Nicole Scarborough The Song of the Soul UÊ Ê>ÊÌÊÌ iÊ`]ÊÀÊÌiiVÌ]ÊÀÊi}]Ê UÊ Ê`ÊÌÊ >ÛiÊvi>ÀÊvÊ`i>Ì ]Ê>ÃÊÊ`ÊÌÊ >ÛiÊ`i>Ì ° nor the reflections of inner self; I am not the five senses I have no separation from my true self, I am beyond that. no doubt about my existence, I am not the earth, nor the fire, nor the wind nor have I discrimination on the basis of birth. I am, indeed, that eternal knowing and bliss, that I have no father or mother, nor did I have a birth. love and pure consciousness. I am not the relative, nor the friend, nor the guru, nor the disciple.
    [Show full text]