The Best Nurturers in Computer Science Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Obituary: Amir Pnueli, 1941–2009 Krzysztof R. Apt and Lenore D. Zuck
Obituary: Amir Pnueli, 1941–2009 Krzysztof R. Apt and Lenore D. Zuck Amir Pnueli was born in Nahalal, Israel, on April 22, 1941 and passed away in New York City on November 2, 2009 as a result of a brain hemorrhage. Amir founded the computer science department in Tel-Aviv University in 1973. In 1981 he joined the department of mathematical sciences at the Weiz- mann Institute of Science, where he spent most of his career and where he held the Estrin family chair. In recent years, Amir was a faculty member at New York University where he was a NYU Silver Professor. Throughout his career, in spite of an impressive list of achievements, Amir remained an extremely modest and selfless researcher. His unique combination of excellence and integrity has set the tone in the large community of researchers working on specification and verification of programs and systems, program semantics and automata theory. Amir was devoid of any arrogance and those who knew him as a young promising researcher were struck how he maintained his modesty throughout his career. Amir has been an active and extremely hard working researcher till the last moment. His sudden death left those who knew him in a state of shock and disbelief. For his achievements Amir received the 1996 ACM Turing Award. The citation reads: “For seminal work introducing temporal logic into computing science and for outstanding contributions to program and system verification.” Amir also received, for his contributions, the 2000 Israel Award in the area of exact sciences. More recently, in 2007, he shared the ACM Software System Award. -
Pdf, 184.84 KB
Nir Piterman, Associate Professor Coordinates Email: fi[email protected] Homepage: www.cs.le.ac.uk/people/np183 Phone: +44-XX-XXXX-XXXX Research Interests My research area is formal verification. I am especially interested in algorithms for model checking and design synthesis. A major part of my work is on the automata-theoretic approach to verification and especially to model checking. I am also working on applications of formal methods to biological modeling. Qualifications Oct. 2000 { Mar. 2005 Ph.D. in the Department of Computer Science and Applied Mathe- matics at the Weizmann Institute of Science, Rehovot, Israel. • Research Area: Formal Verification. • Thesis: Verification of Infinite-State Systems. • Supervisor: Prof. Amir Pnueli. Oct. 1998 { Oct. 2000 M.Sc. in the Department of Computer Science and Applied Mathe- matics at the Weizmann Institute of Science, Rehovot, Israel. • Research Area: Formal Verification. • Thesis: Extending Temporal Logic with !-Automata. • Supervisor: Prof. Amir Pnueli and Prof. Moshe Vardi. Oct. 1994 { June 1997 B.Sc. in Mathematics and Computer Science in the Hebrew Univer- sity, Jerusalem, Israel. Academic Employment Mar. 2019 { Present Senior Lecturer/Associate Professor in the Department of Com- puter Science and Engineering in University of Gothenburg. Oct. 2012 { Feb. 2019 Reader/Associate Professor in the Department of Informatics in University of Leicester. Oct. 2010 { Sep. 2012 Lecturer in the Department of Computer Science in University of Leicester. Aug. 2007 { Sep. 2010 Research Associate in the Department of Computing in Imperial College London. Host: Dr. Michael Huth Oct. 2004 { July 2007 PostDoc in the school of Computer and Communication Sciences at the Ecole Polytechnique F´ed´eralede Lausanne. -
Butler Lampson, Martin Abadi, Michael Burrows, Edward Wobber
Outline • Chapter 19: Security (cont) • A Method for Obtaining Digital Signatures and Public-Key Cryptosystems Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Communications of the ACM 21,2 (Feb. 1978) – RSA Algorithm – First practical public key crypto system • Authentication in Distributed Systems: Theory and Practice, Butler Lampson, Martin Abadi, Michael Burrows, Edward Wobber – Butler Lampson (MSR) - He was one of the designers of the SDS 940 time-sharing system, the Alto personal distributed computing system, the Xerox 9700 laser printer, two-phase commit protocols, the Autonet LAN, and several programming languages – Martin Abadi (Bell Labs) – Michael Burrows, Edward Wobber (DEC/Compaq/HP SRC) Oct-21-03 CSE 542: Operating Systems 1 Encryption • Properties of good encryption technique: – Relatively simple for authorized users to encrypt and decrypt data. – Encryption scheme depends not on the secrecy of the algorithm but on a parameter of the algorithm called the encryption key. – Extremely difficult for an intruder to determine the encryption key. Oct-21-03 CSE 542: Operating Systems 2 Strength • Strength of crypto system depends on the strengths of the keys • Computers get faster – keys have to become harder to keep up • If it takes more effort to break a code than is worth, it is okay – Transferring money from my bank to my credit card and Citibank transferring billions of dollars with another bank should not have the same key strength Oct-21-03 CSE 542: Operating Systems 3 Encryption methods • Symmetric cryptography – Sender and receiver know the secret key (apriori ) • Fast encryption, but key exchange should happen outside the system • Asymmetric cryptography – Each person maintains two keys, public and private • M ≡ PrivateKey(PublicKey(M)) • M ≡ PublicKey (PrivateKey(M)) – Public part is available to anyone, private part is only known to the sender – E.g. -
A Comparison of On-Line Computer Science Citation Databases
A Comparison of On-Line Computer Science Citation Databases Vaclav Petricek1,IngemarJ.Cox1,HuiHan2, Isaac G. Councill3, and C. Lee Giles3 1 University College London, WC1E 6BT, Gower Street, London, United Kingdom [email protected], [email protected] 2 Yahoo! Inc., 701 First Avenue, Sunnyvale, CA, 94089 [email protected] 3 The School of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA [email protected] [email protected] Abstract. This paper examines the difference and similarities between the two on-line computer science citation databases DBLP and CiteSeer. The database entries in DBLP are inserted manually while the CiteSeer entries are obtained autonomously via a crawl of the Web and automatic processing of user submissions. CiteSeer’s autonomous citation database can be considered a form of self-selected on-line survey. It is important to understand the limitations of such databases, particularly when citation information is used to assess the performance of authors, institutions and funding bodies. We show that the CiteSeer database contains considerably fewer single author papers. This bias can be modeled by an exponential process with intuitive explanation. The model permits us to predict that the DBLP database covers approximately 24% of the entire literature of Computer Science. CiteSeer is also biased against low-cited papers. Despite their difference, both databases exhibit similar and signif- icantly different citation distributions compared with previous analysis of the Physics community. In both databases, we also observe that the number of authors per paper has been increasing over time. 1 Introduction Several public1 databases of research papers became available due to the advent of the Web [1,22,5,3,2,4,8] These databases collect papers in different scientific disciplines, index them and annotate them with additional metadata. -
Linking Educational Resources on Data Science
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19) Linking Educational Resources on Data Science Jose´ Luis Ambite,1 Jonathan Gordon,2∗ Lily Fierro,1 Gully Burns,1 Joel Mathew1 1USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, California 90292, USA 2Department of Computer Science, Vassar College, 124 Raymond Ave, Poughkeepsie, New York 12604, USA [email protected], [email protected], flfierro, burns, [email protected] Abstract linked data (Heath and Bizer 2011) with references to well- known entities in DBpedia (Auer et al. 2007), DBLP (Ley The availability of massive datasets in genetics, neuroimag- 2002), and ORCID (orcid.org). Here, we detail the meth- ing, mobile health, and other subfields of biology and ods applied to specific problems in building ERuDIte. First, medicine promises new insights but also poses significant we provide an overview of our project. In later sections, we challenges. To realize the potential of big data in biomedicine, the National Institutes of Health launched the Big Data to describe our resource collection effort, the resource schema, Knowledge (BD2K) initiative, funding several centers of ex- the topic ontology, our linkage approach, and the linked data cellence in biomedical data analysis and a Training Coordi- resource provided. nating Center (TCC) tasked with facilitating online and in- The National Institutes of Health (NIH) launched the Big person training of biomedical researchers in data science. A Data to Knowledge (BD2K) initiative to fulfill the promise major initiative of the BD2K TCC is to automatically identify, of biomedical “big data” (Ohno-Machado 2014). The NIH describe, and organize data science training resources avail- BD2K program funded 15 major centers to investigate how able on the Web and provide personalized training paths for data science can benefit diverse fields of biomedical research users. -
Rivest, Shamir, and Adleman Receive 2002 Turing Award, Volume 50
Rivest, Shamir, and Adleman Receive 2002 Turing Award Cryptography and Information Se- curity Group. He received a B.A. in mathematics from Yale University and a Ph.D. in computer science from Stanford University. Shamir is the Borman Profes- sor in the Applied Mathematics Department of the Weizmann In- stitute of Science in Israel. He re- Ronald L. Rivest Adi Shamir Leonard M. Adleman ceived a B.S. in mathematics from Tel Aviv University and a Ph.D. in The Association for Computing Machinery (ACM) has computer science from the Weizmann Institute. named RONALD L. RIVEST, ADI SHAMIR, and LEONARD M. Adleman is the Distinguished Henry Salvatori ADLEMAN as winners of the 2002 A. M. Turing Award, Professor of Computer Science and Professor of considered the “Nobel Prize of Computing”, for Molecular Biology at the University of Southern their contributions to public key cryptography. California. He earned a B.S. in mathematics at the The Turing Award carries a $100,000 prize, with University of California, Berkeley, and a Ph.D. in funding provided by Intel Corporation. computer science, also at Berkeley. As researchers at the Massachusetts Institute of The ACM presented the Turing Award on June 7, Technology in 1977, the team developed the RSA 2003, in conjunction with the Federated Computing code, which has become the foundation for an en- Research Conference in San Diego, California. The tire generation of technology security products. It award was named for Alan M. Turing, the British mathematician who articulated the mathematical has also inspired important work in both theoret- foundation and limits of computing and who was a ical computer science and mathematics. -
Benchmarks for IP Forwarding Tables
Reviewers James Abello Richard Cleve Vassos Hadzilacos Dimitris Achilioptas James Clippinger Jim Hafner Micah Adler Anne Condon Torben Hagerup Oswin Aichholzer Stephen Cook Armin Haken William Aiello Tom Cormen Shai Halevi Donald Aingworth Dan Dooly Eric Hansen Susanne Albers Oliver Duschka Refael Hassin Eric Allender Martin Dyer Johan Hastad Rajeev Alur Ran El-Yaniv Lisa Hellerstein Andris Ambainis David Eppstein Monika Henzinger Amihood Amir Jeff Erickson Tom Henzinger Artur Andrzejak Kousha Etessami Jeremy Horwitz Boris Aronov Will Evans Russell Impagliazzo Sanjeev Arora Guy Even Piotr Indyk Amotz Barnoy Ron Fagin Sandra Irani Yair Bartal Michalis Faloutsos Ken Jackson Julien Basch Martin Farach-Colton David Johnson Saugata Basu Uri Feige John Jozwiak Bob Beals Joan Feigenbaum Bala Kalyandasundaram Paul Beame Stefan Felsner Ming-Yang Kao Steve Bellantoni Faith Fich Haim Kaplan Micahel Ben-Or Andy Fingerhut Bruce Kapron Josh Benaloh Paul Fischer Michael Kaufmann Charles Bennett Lance Fortnow Michael Kearns Marshall Bern Steve Fortune Sanjeev Khanna Nikolaj Bjorner Alan Frieze Samir Khuller Johannes Blomer Anna Gal Joe Kilian Avrim Blum Naveen Garg Valerie King Dan Boneh Bernd Gartner Philip Klein Andrei Broder Rosario Gennaro Spyros Kontogiannis Nader Bshouty Ashish Goel Gilad Koren Adam Buchsbaum Michel Goemans Dexter Kozen Lynn Burroughs Leslie Goldberg Dina Kravets Ran Canetti Paul Goldberg S. Ravi Kumar Pei Cao Oded Goldreich Eyal Kushilevitz Moses Charikar John Gray Stephen Kwek Chandra Chekuri Dan Greene Larry Larmore Yi-Jen Chiang -
Oracle Vs. Nosql Vs. Newsql Comparing Database Technology
Oracle vs. NoSQL vs. NewSQL Comparing Database Technology John Ryan Senior Solution Architect, Snowflake Computing Table of Contents The World has Changed . 1 What’s Changed? . 2 What’s the Problem? . .. 3 Performance vs. Availability and Durability . 3 Consistecy vs. Availability . 4 Flexibility vs . Scalability . 5 ACID vs. Eventual Consistency . 6 The OLTP Database Reimagined . 7 Achieving the Impossible! . .. 8 NewSQL Database Technology . 9 VoltDB . 10 MemSQL . 11 Which Applications Need NewSQL Technology? . 12 Conclusion . 13 About the Author . 13 ii The World has Changed The world has changed massively in the past 20 years. Back in the year 2000, a few million users connected to the web using a 56k modem attached to a PC, and Amazon only sold books. Now billions of people are using to their smartphone or tablet 24x7 to buy just about everything, and they’re interacting with Facebook, Twitter and Instagram. The pace has been unstoppable . Expectations have also changed. If a web page doesn’t refresh within seconds we’re quickly frustrated, and go elsewhere. If a web site is down, we fear it’s the end of civilisation as we know it. If a major site is down, it makes global headlines. Instant gratification takes too long! — Ladawn Clare-Panton Aside: If you’re not a seasoned Database Architect, you may want to start with my previous articles on Scalability and Database Architecture. Oracle vs. NoSQL vs. NewSQL eBook 1 What’s Changed? The above leads to a few observations: • Scalability — With potentially explosive traffic growth, IT systems need to quickly grow to meet exponential numbers of transactions • High Availability — IT systems must run 24x7, and be resilient to failure. -
The Declarative Imperative Experiences and Conjectures in Distributed Logic
The Declarative Imperative Experiences and Conjectures in Distributed Logic Joseph M. Hellerstein University of California, Berkeley [email protected] ABSTRACT The juxtaposition of these trends presents stark alternatives. The rise of multicore processors and cloud computing is putting Will the forecasts of doom and gloom materialize in a storm enormous pressure on the software community to find solu- that drowns out progress in computing? Or is this the long- tions to the difficulty of parallel and distributed programming. delayed catharsis that will wash away today’s thicket of im- At the same time, there is more—and more varied—interest in perative languages, preparing the ground for a more fertile data-centric programming languages than at any time in com- declarative future? And what role might the database com- puting history, in part because these languages parallelize nat- munity play in shaping this future, having sowed the seeds of urally. This juxtaposition raises the possibility that the theory Datalog over the last quarter century? of declarative database query languages can provide a foun- Before addressing these issues directly, a few more words dation for the next generation of parallel and distributed pro- about both crisis and opportunity are in order. gramming languages. 1.1 Urgency: Parallelism In this paper I reflect on my group’s experience over seven years using Datalog extensions to build networking protocols I would be panicked if I were in industry. and distributed systems. Based on that experience, I present — John Hennessy, President, Stanford University [35] a number of theoretical conjectures that may both interest the database community, and clarify important practical issues in The need for parallelism is visible at micro and macro scales. -
Are We Losing Our Ability to Think Critically?
news Society | DOI:10.1145/1538788.1538796 Samuel Greengard Are We Losing Our Ability to Think Critically? Computer technology has enhanced lives in countless ways, but some experts believe it might be affecting people’s ability to think deeply. OCIETY HAS LONG cherished technology alters the way we see, hear, the ability to think beyond and assimilate our world—the act of the ordinary. In a world thinking remains decidedly human. where knowledge is revered and innovation equals Rethinking Thinking Sprogress, those able to bring forth Arriving at a clear definition for criti- greater insight and understanding are cal thinking is a bit tricky. Wikipedia destined to make their mark and blaze describes it as “purposeful and reflec- a trail to greater enlightenment. tive judgment about what to believe or “Critical thinking as an attitude is what to do in response to observations, embedded in Western culture. There experience, verbal or written expres- is a belief that argument is the way to sions, or arguments.” Overlay technolo- finding truth,” observes Adrian West, gy and that’s where things get complex. research director at the Edward de For better or worse, exposure to technology “We can do the same critical-reasoning Bono Foundation U.K., and a former fundamentally changes how people think. operations without technology as we computer science lecturer at the Uni- can with it—just at different speeds and versity of Manchester. “Developing our formation can easily overwhelm our with different ease,” West says. abilities to think more clearly, richly, reasoning abilities.” What’s more, What’s more, while it’s tempting fully—individually and collectively— it’s ironic that ever-growing piles of to view computers, video games, and is absolutely crucial [to solving world data and information do not equate the Internet in a monolithic good or problems].” to greater knowledge and better de- bad way, the reality is that they may To be sure, history is filled with tales cision-making. -
Analysis of Computer Science Communities Based on DBLP
Analysis of Computer Science Communities Based on DBLP Maria Biryukov1 and Cailing Dong1,2 1 Faculty of Science, Technology and Communications, MINE group, University of Luxembourg, Luxembourg [email protected] 2 School of Computer Science and Technology, Shandong University, Jinan, 250101, China cailing [email protected] Abstract. It is popular nowadays to bring techniques from bibliometrics and scientometrics into the world of digital libraries to explore mecha- nisms which underlie community development. In this paper we use the DBLP data to investigate the author’s scientific career, and analyze some of the computer science communities. We compare them in terms of pro- ductivity and population stability, and use these features to compare the sets of top-ranked conferences with their lower ranked counterparts.1 Keywords: bibliographic databases, author profiling, scientific commu- nities, bibliometrics. 1 Introduction Computer science is a broad and constantly growing field. It comprises various subareas each of which has its own specialization and characteristic features. While different in size and granularity, research areas and conferences can be thought of as scientific communities that bring together specialists sharing simi- lar interests. What is specific about conferences is that in addition to scope, par- ticipating scientists and regularity, they are also characterized by level. In each area there is a certain number of commonly agreed upon top ranked venues, and many others – with the lower rank or unranked. In this work we aim at finding out how the communities represented by different research fields and conferences are evolving and communicating to each other. To answer this question we sur- vey the development of the author career, compare various research areas to each other, and finally, try to identify features that would allow to distinguish between venues of different rank. -
Cryptography: DH And
1 ì Key Exchange Secure Software Systems Fall 2018 2 Challenge – Exchanging Keys & & − 1 6(6 − 1) !"#ℎ%&'() = = = 15 & 2 2 The more parties in communication, ! $ the more keys that need to be securely exchanged Do we have to use out-of-band " # methods? (e.g., phone?) % Secure Software Systems Fall 2018 3 Key Exchange ì Insecure communica-ons ì Alice and Bob agree on a channel shared secret (“key”) that ì Eve can see everything! Eve doesn’t know ì Despite Eve seeing everything! ! " (alice) (bob) # (eve) Secure Software Systems Fall 2018 Whitfield Diffie and Martin Hellman, 4 “New directions in cryptography,” in IEEE Transactions on Information Theory, vol. 22, no. 6, Nov 1976. Proposed public key cryptography. Diffie-Hellman key exchange. Secure Software Systems Fall 2018 5 Diffie-Hellman Color Analogy (1) It’s easy to mix two colors: + = (2) Mixing two or more colors in a different order results in + + = the same color: + + = (3) Mixing colors is one-way (Impossible to determine which colors went in to produce final result) https://www.crypto101.io/ Secure Software Systems Fall 2018 6 Diffie-Hellman Color Analogy ! # " (alice) (eve) (bob) + + $ $ = = Mix Mix (1) Start with public color ▇ – share across network (2) Alice picks secret color ▇ and mixes it to get ▇ (3) Bob picks secret color ▇ and mixes it to get ▇ Secure Software Systems Fall 2018 7 Diffie-Hellman Color Analogy ! # " (alice) (eve) (bob) $ $ Mix Mix = = Eve can’t calculate ▇ !! (secret keys were never shared) (4) Alice and Bob exchange their mixed colors (▇,▇) (5) Eve will