Prahladh Harsha
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Four Results of Jon Kleinberg a Talk for St.Petersburg Mathematical Society
Four Results of Jon Kleinberg A Talk for St.Petersburg Mathematical Society Yury Lifshits Steklov Institute of Mathematics at St.Petersburg May 2007 1 / 43 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 / 43 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 2 / 43 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 2 / 43 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 2 / 43 Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams 2 / 43 Part I History of Nevanlinna Prize Career of Jon Kleinberg 3 / 43 Nevanlinna Prize The Rolf Nevanlinna Prize is awarded once every 4 years at the International Congress of Mathematicians, for outstanding contributions in Mathematical Aspects of Information Sciences including: 1 All mathematical aspects of computer science, including complexity theory, logic of programming languages, analysis of algorithms, cryptography, computer vision, pattern recognition, information processing and modelling of intelligence. -
Some Hardness Escalation Results in Computational Complexity Theory Pritish Kamath
Some Hardness Escalation Results in Computational Complexity Theory by Pritish Kamath B.Tech. Indian Institute of Technology Bombay (2012) S.M. Massachusetts Institute of Technology (2015) Submitted to Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering & Computer Science at Massachusetts Institute of Technology February 2020 ⃝c Massachusetts Institute of Technology 2019. All rights reserved. Author: ............................................................. Department of Electrical Engineering and Computer Science September 16, 2019 Certified by: ............................................................. Ronitt Rubinfeld Professor of Electrical Engineering and Computer Science, MIT Thesis Supervisor Certified by: ............................................................. Madhu Sudan Gordon McKay Professor of Computer Science, Harvard University Thesis Supervisor Accepted by: ............................................................. Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science, MIT Chair, Department Committee on Graduate Students Some Hardness Escalation Results in Computational Complexity Theory by Pritish Kamath Submitted to Department of Electrical Engineering and Computer Science on September 16, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science & Engineering Abstract In this thesis, we prove new hardness escalation results in computational complexity theory; a phenomenon where hardness results against seemingly weak models of computation for any problem can be lifted, in a black box manner, to much stronger models of computation by considering a simple gadget composed version of the original problem. For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we show that a gadget-composed version of F is hard to refute in any proof system whose lines are computed by efficient communication protocols. -
Professor Shang-Hua Teng
Professor Shang-Hua Teng Department of Computer Science, University of Southern California 2054 N. New Hampshire Ave 941 Bloom Walk, SAL 300, Los Angeles, CA 90089 Los Angeles, CA 90027 (213) 440-4498, [email protected] (617) 440-4281 EMPLOYMENT: Seeley G. Mudd Professor and Chair (Computer Science) USC (Fall 2009 – ) Professor (Computer Science) Boston University (2002 – 2009) Research Affiliate Professor (Mathematics) MIT (1999 – Present) Visiting Research Scientist Microsoft Research Asia and New England (2004 – Present) Senior Research Scientist Akamai (1997 – Present) Visiting Professor (Computer Science) Tsinghua University (2004 – 2008) Professor (Computer Science)[Associate Professor before 1999] UIUC (2000 – 2002) Research Scientist IBM Almaden Research Center (1997 – 1999) Assistant Professor (Computer Science) Univ. of Minnesota (1994 – 1997) Research Scientist Intel Corporation (Summer 1994, 1995) Instructor (Mathematics) MIT (1992 – 1994) Computer Scientist NASA Ames Research Center (Summer 1993) Research Scientist Xerox Palo Alto Research Center (1991 – 1992) EDUCATION: Ph.D. (Computer Science) Carnegie Mellon University (1991) Thesis: “A Unified Geometric Approach to Graph Partitioning.” Advisor: Gary Lee Miller M.S. (Computer Science) University of Southern California (1988) Thesis: “Security, Verifiablity, and Universality in Distributed Computing”. Advised by Leonard Adleman and Ming-Deh Huang B.S. (Computer Science) & B.A. (Electrical Engineering) Shanghai Jiao-Tong University, China (1985) Thesis: “Efficient Methods for Implementing Logic Programs.” Advisor: Yixing Hou HONORS/AWARDS: 2011 ACM STOC Best Paper 2009 ACM Fellow, 2009 2009 Fulkerson Prize (American Mathematical Society/Mathematical Programming Society) 2008 G¨odel Prize (ACM-EATCS). 2003 The NSF’s 2003 Budget Request to Congress listed the Smoothed Analysis of Spielman-Teng as one of three most significant accomplishments funded by its computer science division. -
Derandomizing the Ahlswede-Winter Matrix-Valued Chernoff Bound Using Pessimistic Estimators, and Applications
THEORY OF COMPUTING, Volume 4 (2008), pp. 53–76 http://theoryofcomputing.org Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications Avi Wigderson∗ David Xiao† Received: November 28, 2007; published: May 15, 2008. Abstract: Ahlswede and Winter [IEEE Trans. Inf. Th. 2002] introduced a Chernoff bound for matrix-valued random variables, which is a non-trivial generalization of the usual Chernoff bound for real-valued random variables. We present an efficient derandomization of their bound using the method of pessimistic estimators (see Raghavan [JCSS 1988]). As a consequence, we derandomize an efficient construction by Alon and Roichman [RSA 1994] of an expanding Cayley graph of logarithmic degree on any (possibly non-abelian) group. This gives an optimal solution to the homomorphism testing problem of Shpilka and Wigderson [STOC 2004]. We also apply these pessimistic estimators to the problem of solving semidefinite covering problems, thus giving a deterministic algorithm for the quantum hypergraph cover problem of Ahslwede and Winter. ∗Partially supported by NSF grant CCR-0324906 †Supported by an NDSEG Graduate Fellowship and a NSF Graduate Fellowship ACM Classification: G.3, G.2.2, F.2.1, F.1.2 AMS Classification: 68W20, 68R10, 60F10, 20D60, 81P68, 15A18 Key words and phrases: Chernoff bounds, matrix-valued random variables, derandomization, pes- simistic estimators Authors retain copyright to their work and grant Theory of Computing unlimited rights to publish the work electronically and in hard copy. Use of the work is permitted as long as the author(s) and the journal are properly acknowledged. For the detailed copyright statement, see http://theoryofcomputing.org/copyright.html. -
Mathematics People
Mathematics People information, sometimes even one incorrect bit can de- Chudnovsky and Spielman stroy the integrity of the data stream; adding verification Selected as MacArthur Fellows ‘codes’ to the data helps to test its accuracy. Spielman and collaborators developed several families of codes Maria Chudnovsky of Columbia University and Dan- that optimize speed and reliability, some approaching the iel Spielman of Yale University have been named Mac- theoretical limit of performance. One, an enhanced version Arthur Fellows for 2012. Each Fellow receives a grant of of low-density parity checking, is now used to broadcast US$500,000 in support, with no strings attached, over the and decode high-definition television transmissions. In a next five years. separate line of research, Spielman resolved an enduring Chudnovsky was honored for her work on the classifica- mystery of computer science: why a venerable algorithm tions and properties of graphs. The prize citation reads, for optimization (e.g., to compute the fastest route to the “Maria Chudnovsky is a mathematician who investigates airport, picking up three friends along the way) usually the fundamental principles of graph theory. In mathemat- works better in practice than theory would predict. He and ics, a graph is an abstraction that represents a set of similar a collaborator proved that small amounts of randomness things and the connections between them—e.g., cities and convert worst-case conditions into problems that can be the roads connecting them, networks of friendship among solved much faster. This finding holds enormous practi- people, websites and their links to other sites. When used cal implications for a myriad of calculations in science, to solve real-world problems, like efficient scheduling for engineering, social science, business, and statistics that an airline or package delivery service, graphs are usually depend on the simplex algorithm or its derivatives. -
Pairwise Independence and Derandomization
Pairwise Independence and Derandomization Pairwise Independence and Derandomization Michael Luby Digital Fountain Fremont, CA, USA Avi Wigderson Institute for Advanced Study Princeton, NJ, USA [email protected] Boston – Delft Foundations and TrendsR in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 A Cataloging-in-Publication record is available from the Library of Congress The preferred citation for this publication is M. Luby and A. Wigderson, Pairwise R Independence and Derandomization, Foundation and Trends in Theoretical Com- puter Science, vol 1, no 4, pp 237–301, 2005 Printed on acid-free paper ISBN: 1-933019-22-0 c 2006 M. Luby and A. Wigderson All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged. -
The Gödel Prize 2020 - Call for Nominatonn
The Gödel Prize 2020 - Call for Nominatonn Deadline: February 15, 2020 The Gödel Prize for outntanding papern in the area of theoretial iomputer niienie in nponnored jointly by the European Annoiiaton for Theoretial Computer Siienie (EATCS) and the Annoiiaton for Computng Maihinery, Speiial Innterent Group on Algorithmn and Computaton Theory (AC M SInGACT) The award in prenented annually, with the prenentaton taaing plaie alternately at the Innternatonal Colloquium on Automata, Languagen, and Programming (InCALP) and the AC M Symponium on Theory of Computng (STOC) The 28th Gödel Prize will be awarded at the 47th Innternatonal Colloquium on Automata, Languagen, and Programming to be held during 8-12 July, 2020 in Beijing The Prize in named in honour of Kurt Gödel in reiogniton of hin major iontributonn to mathematial logii and of hin interent, diniovered in a leter he wrote to John von Neumann nhortly before von Neumann’n death, in what han beiome the famoun “P vernun NP” quenton The Prize iniluden an award of USD 5,000 Award Committee: The 2020 Award Commitee ionnintn of Samnon Abramnay (Univernity of Oxford), Anuj Dawar (Chair, Univernity of Cambridge), Joan Feigenbaum (Yale Univernity), Robert Krauthgamer (Weizmann Innnttute), Daniel Spielman (Yale Univernity) and David Zuiaerman (Univernity of Texan, Auntn) Eligibility: The 2020 Prize rulen are given below and they nupernede any diferent interpretaton of the generii rule to be found on webniten of both SInGACT and EATCS Any renearih paper or nerien of papern by a ningle author or by -
David Karger Rajeev Motwani Y Madhu Sudan Z
Approximate Graph Coloring by Semidenite Programming y z David Karger Rajeev Motwani Madhu Sudan Abstract We consider the problem of coloring k colorable graphs with the fewest p ossible colors We present a randomized p olynomial time algorithm which colors a colorable graph on n vertices 12 12 13 14 with minfO log log n O n log ng colors where is the maximum degree of any vertex Besides giving the b est known approximation ratio in terms of n this marks the rst nontrivial approximation result as a function of the maximum degree This result can 12 12k b e generalized to k colorable graphs to obtain a coloring using minfO log log n 12 13(k +1) O n log ng colors Our results are inspired by the recent work of Go emans and Williamson who used an algorithm for semidenite optimization problems which generalize lin ear programs to obtain improved approximations for the MAX CUT and MAX SAT problems An intriguing outcome of our work is a duality relationship established b etween the value of the optimum solution to our semidenite program and the Lovasz function We show lower b ounds on the gap b etween the optimum solution of our semidenite program and the actual chromatic numb er by duality this also demonstrates interesting new facts ab out the function MIT Lab oratory for Computer Science Cambridge MA Email kargermitedu URL httptheorylcsmitedukarger Supp orted by a Hertz Foundation Graduate Fellowship by NSF Young In vestigator Award CCR with matching funds from IBM Schlumb erger Foundation Shell Foundation and Xerox Corp oration -
Nikhil Srivastava
NIKHIL SRIVASTAVA Contact 1035 Evans Hall Information Department of Mathematics email: [email protected] UC Berkeley, Berkeley CA 94720. url: http://math.berkeley.edu/∼nikhil Education Yale University, New Haven, CT. May '10 Ph.D. in Computer Science. Advisor: Daniel Spielman. Dissertation: \Spectral Sparsification and Restricted Invertibility." Union College, Schenectady, NY. Jun '05 B.S., summa cum laude, Mathematics and Computer Science. Minor in English. Phi Beta Kappa ('04), George H. Catlin Prize, Resch Prize in Mathematics, Williams Prize in Computer Science, Hale Prize in English ('04). Positions Held University of California, Berkeley, Berkeley, CA. Associate Professor of Mathematics Jul'20{ Assistant Professor of Mathematics Jan'15{Jun'20 Microsoft Research, Bangalore, India. Researcher, Algorithms Group Jul'12{Dec'14 Research Intern & Visitor, Algorithms Group Jul{Sep '08 & '10 Simons Institute for the Theory of Computing, Berkeley, CA. Microsoft Research India Fellow, Big Data Program. Sep{Dec'13 Princeton University, Princeton, NJ. Postdoctoral Researcher, Computer Science Department Jan{Jun'12 Mathematical Sciences Research Institute, Berkeley, CA. Postdoctoral Member, Quantitative Geometry Program. Aug{Dec'11 Institute for Advanced Study, Princeton, NJ. Member, School of Mathematics Sep '10{Jul '11 Microsoft Research, Mountain View, CA. Research Intern, Theory Group Jun{Aug '09 Awards NAS Held Prize, 2021. Alfred P. Sloan Research Fellowship, 2016. (USD 55,000) NSF CAREER Award, 2016. (USD 420,000 approx.) SIAM George P´olya Prize, 2014. Invited speaker, International Congress of Mathematicians, Seoul, 2014. Best paper award, IEEE Symposium on Foundations of Computer Science, 2013. Teaching & Doctoral Students Advised. All at UC Berkeley. Advising Nick Ryder, PhD 2019. -
Avi Wigderson
On the Work of Madhu Sudan Avi Wigderson Madhu Sudan is the recipient of the 2002 Nevan- “eyeglasses” were key in this study of the no- linna Prize. Sudan has made fundamental contri- tions proof (again) and error correction. butions to two major areas of research, the con- • Theoretical computer science is an extremely nections between them, and their applications. interactive and collaborative community. The first area is coding theory. Established by Sudan’s work was not done in a vacuum, and Shannon and Hamming over fifty years ago, it is much of the background to it, conceptual and technical, was developed by other people. The the mathematical study of the possibility of, and space I have does not allow me to give proper the limits on, reliable communication over noisy credit to all these people. A much better job media. The second area is probabilistically check- has been done by Sudan himself; his homepage able proofs (PCPs). By contrast, it is only ten years (http://theory.lcs.mit.edu/~madhu/) con- old. It studies the minimal resources required for tains several surveys of these areas which give probabilistic verification of standard mathemati- proper historical accounts and references. In cal proofs. particular see [13] for a survey on PCPs and [15] My plan is to briefly introduce these areas, their for a survey on the work on error correction. motivation, and foundational questions and then to explain Sudan’s main contributions to each. Be- Probabilistic Checking of Proofs fore we get to the specific works of Madhu Sudan, One informal variant of the celebrated P versus let us start with a couple of comments that will set NP question asks, Can mathematicians, past and up the context of his work. -
Lecture Notes in Computer Science 4833 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan Van Leeuwen
Lecture Notes in Computer Science 4833 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Moshe Y. Vardi Rice University, Houston, TX, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Kaoru Kurosawa (Ed.) Advances in Cryptology – ASIACRYPT 2007 13th International Conference on the Theory and Application of Cryptology and Information Security Kuching, Malaysia, December 2-6, 2007 Proceedings 13 Volume Editor Kaoru Kurosawa Ibaraki University Department of Computer and Information Sciences 4-12-1 Nakanarusawa Hitachi, Ibaraki 316-8511, Japan E-mail: [email protected] Library of Congress Control Number: 2007939450 CR Subject Classification (1998): E.3, D.4.6, F.2.1-2, K.6.5, C.2, J.1, G.2 LNCS Sublibrary: SL 4 – Security and Cryptology ISSN 0302-9743 ISBN-10 3-540-76899-8 Springer Berlin Heidelberg New York ISBN-13 978-3-540-76899-9 Springer Berlin Heidelberg New York This work is subject to copyright. -
The Gödel Prize 2019 - Call for Nominations Deadline: February 15, 2019
The Gödel Prize 2019 - Call for Nominations Deadline: February 15, 2019 The Gödel Prize for outstanding papers in the area of theoretical computer science is sponsored jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery, Special Interest Group on Algorithms and Computation Theory (ACM SIGACT). The award is presented annually, with the presentation taking place alternately at the International Colloquium on Automata, Languages, and Programming (ICALP) and the ACM Symposium on Theory of Computing (STOC). The 27th Gödel Prize will be awarded at 51st Annual ACM Symposium on the Theory of Computing to be held during June 23-26, 2019 in Phoenix, AZ. The Prize is named in honor of Kurt Gödel in recognition of his major contributions to mathematical logic and of his interest, discovered in a letter he wrote to John von Neumann shortly before von Neumann’s death, in what has become the famous “P versus NP” question. The Prize includes an award of USD 5,000. Award Committee: The 2019 Award Committee consists of Anuj Dawar (Cambridge University), Robert Krauthgamer (Weizmann Institute), Joan Feigenbaum (Yale University), Giuseppe Persiano (Università di Salerno), Omer Reingold (Chair, Stanford University) and Daniel Spielman (Yale University). Eligibility: The 2019 Prize rules are given below and they supersede any different interpretation of the generic rule to be found on websites of both SIGACT and EATCS. Any research paper or series of papers by a single author or by a team of authors is deemed eligible if: - The main results were not published (in either preliminary or final form) in a journal or conference proceedings before January 1st, 2006.