SIGMOD Flyer

Total Page:16

File Type:pdf, Size:1020Kb

SIGMOD Flyer DATES: Research paper SIGMOD 2006 abstracts Nov. 15, 2005 Research papers, 25th ACM SIGMOD International Conference on demonstrations, Management of Data industrial talks, tutorials, panels Nov. 29, 2005 June 26- June 29, 2006 Author Notification Feb. 24, 2006 Chicago, USA The annual ACM SIGMOD conference is a leading international forum for database researchers, developers, and users to explore cutting-edge ideas and results, and to exchange techniques, tools, and experiences. We invite the submission of original research contributions as well as proposals for demonstrations, tutorials, industrial presentations, and panels. We encourage submissions relating to all aspects of data management defined broadly and particularly ORGANIZERS: encourage work that represent deep technical insights or present new abstractions and novel approaches to problems of significance. We especially welcome submissions that help identify and solve data management systems issues by General Chair leveraging knowledge of applications and related areas, such as information retrieval and search, operating systems & Clement Yu, U. of Illinois storage technologies, and web services. Areas of interest include but are not limited to: at Chicago • Benchmarking and performance evaluation Vice Gen. Chair • Data cleaning and integration Peter Scheuermann, Northwestern Univ. • Database monitoring and tuning PC Chair • Data privacy and security Surajit Chaudhuri, • Data warehousing and decision-support systems Microsoft Research • Embedded, sensor, mobile databases and applications Demo. Chair Anastassia Ailamaki, CMU • Managing uncertain and imprecise information Industrial PC Chair • Peer-to-peer data management Alon Halevy, U. of • Personalized information systems Washington, Seattle • Query processing and optimization Panels Chair Christian S. Jensen, • Replication, caching, and publish-subscribe systems Aalborg University • Text search and database querying Tutorials Chair • Semi-structured data David DeWitt, U. of Storage and transaction management Wisconsin, Madison • Proceedings Chair • Web services Neoklis Polyzotis, UC, Santa Cruz Submission Guidelines: E-Proc. Chair All aspects of the submission and notification process will be handled electronically. Research papers will be judged Vagelis Hristidis, Florida through double-blind reviewing. The industrial program will consist of invited presentations as well as talks selected Int. University from submitted proposals for presentation. Detailed submission instructions for research papers, industrial talk Publicity Chairs proposals, demonstrations, panels and tutorials will be published on the conference web site, accessible through K. Selçuk Candan, Arizona http://www.umich.edu/sigmod06 State Univ. Agnes Voisard, Fraunhofer Program Committee: ISST & FU Berlin Serge Abiteboul INRIA Hans-Peter Kriegel, Ludwig-Maximilians-U. München Ashraf Aboulnaga, University of Waterloo Guy Lohman, IBM Almaden Xiaofeng Meng, Renmin Rakesh Agrawal, IBM Almaden Heikki Mannila, Helsinki U. of Technology University, China Walid Aref, Purdue University Yossi Matias, Tel Aviv University Ricardo Baeza-Yates, U. of Brian Babcock, Stanford University Tova Milo, Tel Aviv University Chile Hari Balakrishnan, MIT C. Mohan, IBM Almaden Nico Bruno, Microsoft Research Rajeev Motwani, Stanford University Workshops Local Peter Buneman, University of Edinburgh Jeff Naughton, Uof Wisconsin, Madison Arrangements Chair Mike Carey, BEA Raymond Ng, U. of British Columbia Kevin Chang, UIUC Stefano Ceri, Politecnico di Milano Patrick ONeil, Boston University Web Chairs Rada Chirkova, North Carolina State U Beng Chin Ooi, National Univ.of Singapore Junghoo Cho, UC Los Angeles Meral Özsoyoglu, Case Western Reserve Univ. Dragomir Radev and Ali Chris Clifton, Purdue University Dimitris Papadias, Hong Kong U.of Scince and Tech. Hakim, U. of Michigan, Brian Cooper, Georgia Institute of Tech. Yannis Papakonstantinou, UCSD Ann Arbor Bruce Croft, U, of Massachusetts, Amherst Calton Pu, Georgia Institute of Tech. Local Org. Chairs Amol Deshpande, U. of Maryland, College Park Prabhakar Raghavan, Yahoo Research Alin Deutsch, UCSD Erhard Rahm, Universität Leipzig Aris Ouksel and Oliver Yu, Alin Dobra, U. of Florida, Gainesville Raghu Ramakrishnan, U. of Wisconsin, Madison U. of Illinois at Chicago Christos Faloutsos, CMU Rajeev Rastogi, Bell Laboratories Sponsors Chair Daniela Florescu, Oracle Nick Roussopoulos, U. of Maryland, College Park Ouri Wolfson, U. of Illinois Minos Garofalakis, Intel Research Sunita Sarawagi, IIT Bombay Johannes Gehrke, Cornell University Hans Schek, ETH at Chicago Lisa Getoor, U. of Maryland, Collage Park Uri Shaft, Oracle Treasurer Phil Gibbons, Intel Research Kyuseok Shim, Seoul National University Prasad Sistla, U. of Illinois Goetz Graefe, Microsoft Rick Snodgrass, University of Arizona at Chicago Luis Gravano, Columbia University Divesh Srivastava, AT&T Research Jiawei Han, UIUC Dan Suciu, U. of Washington, Seattle Registration Chair Joe Hellerstein, UC, Berkeley S. Sudarshan, IIT Bombay Le Gruenwald, NSF Wei Hong, Intel Research Andrew Tomkins, Yahoo Research Exhibits Chair Ihab Ilyas, University of Waterloo Jeff Ullman, Stanford University Wai Gen Yee, Illinois Inst. Piotr Indyk, MIT Moshe Vardi, Rice University H.V. Jagadish, U. of Michigan, Ann Arbor Gerhard Weikum, Max Planck Institute of Technology Chris Jermaine, U. of Florida, Gainesville Marianne Winslett, UIUC Local Demo Chair Raghav Kaushik, Microsoft Research Andrew Witkowski, Oracle Bing Liu, University of Alfons Kemper, Technische Univ. München Philip Yu, IBM Watson Illinois at Chicago Martin Kersten, CWI Justin Zobel, RMIT University Masaru Kitsuregawa University of Tokyo .
Recommended publications
  • Challenges in Web Search Engines
    Challenges in Web Search Engines Monika R. Henzinger Rajeev Motwani* Craig Silverstein Google Inc. Department of Computer Science Google Inc. 2400 Bayshore Parkway Stanford University 2400 Bayshore Parkway Mountain View, CA 94043 Stanford, CA 94305 Mountain View, CA 94043 [email protected] [email protected] [email protected] Abstract or a combination thereof. There are web ranking optimiza• tion services which, for a fee, claim to place a given web site This article presents a high-level discussion of highly on a given search engine. some problems that are unique to web search en• Unfortunately, spamming has become so prevalent that ev• gines. The goal is to raise awareness and stimulate ery commercial search engine has had to take measures to research in these areas. identify and remove spam. Without such measures, the qual• ity of the rankings suffers severely. Traditional research in information retrieval has not had to 1 Introduction deal with this problem of "malicious" content in the corpora. Quite certainly, this problem is not present in the benchmark Web search engines are faced with a number of difficult prob• document collections used by researchers in the past; indeed, lems in maintaining or enhancing the quality of their perfor• those collections consist exclusively of high-quality content mance. These problems are either unique to this domain, or such as newspaper or scientific articles. Similarly, the spam novel variants of problems that have been studied in the liter• problem is not present in the context of intranets, the web that ature. Our goal in writing this article is to raise awareness of exists within a corporation.
    [Show full text]
  • Distance-Sensitive Hashing∗
    Distance-Sensitive Hashing∗ Martin Aumüller Tobias Christiani IT University of Copenhagen IT University of Copenhagen [email protected] [email protected] Rasmus Pagh Francesco Silvestri IT University of Copenhagen University of Padova [email protected] [email protected] ABSTRACT tight up to lower order terms. In particular, we extend existing Locality-sensitive hashing (LSH) is an important tool for managing LSH lower bounds, showing that they also hold in the asymmetric high-dimensional noisy or uncertain data, for example in connec- setting. tion with data cleaning (similarity join) and noise-robust search (similarity search). However, for a number of problems the LSH CCS CONCEPTS framework is not known to yield good solutions, and instead ad hoc • Theory of computation → Randomness, geometry and dis- solutions have been designed for particular similarity and distance crete structures; Data structures design and analysis; • Informa- measures. For example, this is true for output-sensitive similarity tion systems → Information retrieval; search/join, and for indexes supporting annulus queries that aim to report a point close to a certain given distance from the query KEYWORDS point. locality-sensitive hashing; similarity search; annulus query In this paper we initiate the study of distance-sensitive hashing (DSH), a generalization of LSH that seeks a family of hash functions ACM Reference Format: Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Francesco Silvestri. such that the probability of two points having the same hash value is 2018. Distance-Sensitive Hashing. In Proceedings of 2018 International Confer- a given function of the distance between them. More precisely, given ence on Management of Data (PODS’18).
    [Show full text]
  • Arxiv:2102.08942V1 [Cs.DB]
    A Survey on Locality Sensitive Hashing Algorithms and their Applications OMID JAFARI, New Mexico State University, USA PREETI MAURYA, New Mexico State University, USA PARTH NAGARKAR, New Mexico State University, USA KHANDKER MUSHFIQUL ISLAM, New Mexico State University, USA CHIDAMBARAM CRUSHEV, New Mexico State University, USA Finding nearest neighbors in high-dimensional spaces is a fundamental operation in many diverse application domains. Locality Sensitive Hashing (LSH) is one of the most popular techniques for finding approximate nearest neighbor searches in high-dimensional spaces. The main benefits of LSH are its sub-linear query performance and theoretical guarantees on the query accuracy. In this survey paper, we provide a review of state-of-the-art LSH and Distributed LSH techniques. Most importantly, unlike any other prior survey, we present how Locality Sensitive Hashing is utilized in different application domains. CCS Concepts: • General and reference → Surveys and overviews. Additional Key Words and Phrases: Locality Sensitive Hashing, Approximate Nearest Neighbor Search, High-Dimensional Similarity Search, Indexing 1 INTRODUCTION Finding nearest neighbors in high-dimensional spaces is an important problem in several diverse applications, such as multimedia retrieval, machine learning, biological and geological sciences, etc. For low-dimensions (< 10), popular tree-based index structures, such as KD-tree [12], SR-tree [56], etc. are effective, but for higher number of dimensions, these index structures suffer from the well-known problem, curse of dimensionality (where the performance of these index structures is often out-performed even by linear scans) [21]. Instead of searching for exact results, one solution to address the curse of dimensionality problem is to look for approximate results.
    [Show full text]
  • Stanford University's Economic Impact Via Innovation and Entrepreneurship
    Full text available at: http://dx.doi.org/10.1561/0300000074 Impact: Stanford University’s Economic Impact via Innovation and Entrepreneurship Charles E. Eesley Associate Professor in Management Science & Engineering W.M. Keck Foundation Faculty Scholar, School of Engineering Stanford University William F. Miller† Herbert Hoover Professor of Public and Private Management Emeritus Professor of Computer Science Emeritus and former Provost Stanford University and Faculty Co-director, SPRIE Boston — Delft Full text available at: http://dx.doi.org/10.1561/0300000074 Contents 1 Executive Summary2 1.1 Regional and Local Impact................. 3 1.2 Stanford’s Approach ..................... 4 1.3 Nonprofits and Social Innovation .............. 8 1.4 Alumni Founders and Leaders ................ 9 2 Creating an Entrepreneurial Ecosystem 12 2.1 History of Stanford and Silicon Valley ........... 12 3 Analyzing Stanford’s Entrepreneurial Footprint 17 3.1 Case Study: Google Inc., the Global Reach of One Stanford Startup ............................ 20 3.2 The Types of Companies Stanford Graduates Create .... 22 3.3 The BASES Study ...................... 30 4 Funding Startup Businesses 33 4.1 Study of Investors ...................... 38 4.2 Alumni Initiatives: Stanford Angels & Entrepreneurs Alumni Group ............................ 44 4.3 Case Example: Clint Korver ................. 44 5 How Stanford’s Academic Experience Creates Entrepreneurs 46 Full text available at: http://dx.doi.org/10.1561/0300000074 6 Changing Patterns in Entrepreneurial Career Paths 52 7 Social Innovation, Non-Profits, and Social Entrepreneurs 57 7.1 Case Example: Eric Krock .................. 58 7.2 Stanford Centers and Programs for Social Entrepreneurs . 59 7.3 Case Example: Miriam Rivera ................ 61 7.4 Creating Non-Profit Organizations ............. 63 8 The Lean Startup 68 9 How Stanford Supports Entrepreneurship—Programs, Cen- ters, Projects 77 9.1 Stanford Technology Ventures Program .........
    [Show full text]
  • The Best Nurturers in Computer Science Research
    The Best Nurturers in Computer Science Research Bharath Kumar M. Y. N. Srikant IISc-CSA-TR-2004-10 http://archive.csa.iisc.ernet.in/TR/2004/10/ Computer Science and Automation Indian Institute of Science, India October 2004 The Best Nurturers in Computer Science Research Bharath Kumar M.∗ Y. N. Srikant† Abstract The paper presents a heuristic for mining nurturers in temporally organized collaboration networks: people who facilitate the growth and success of the young ones. Specifically, this heuristic is applied to the computer science bibliographic data to find the best nurturers in computer science research. The measure of success is parameterized, and the paper demonstrates experiments and results with publication count and citations as success metrics. Rather than just the nurturer’s success, the heuristic captures the influence he has had in the indepen- dent success of the relatively young in the network. These results can hence be a useful resource to graduate students and post-doctoral can- didates. The heuristic is extended to accurately yield ranked nurturers inside a particular time period. Interestingly, there is a recognizable deviation between the rankings of the most successful researchers and the best nurturers, which although is obvious from a social perspective has not been statistically demonstrated. Keywords: Social Network Analysis, Bibliometrics, Temporal Data Mining. 1 Introduction Consider a student Arjun, who has finished his under-graduate degree in Computer Science, and is seeking a PhD degree followed by a successful career in Computer Science research. How does he choose his research advisor? He has the following options with him: 1. Look up the rankings of various universities [1], and apply to any “rea- sonably good” professor in any of the top universities.
    [Show full text]
  • Lower Bounds on Lattice Sieving and Information Set Decoding
    Lower bounds on lattice sieving and information set decoding Elena Kirshanova1 and Thijs Laarhoven2 1Immanuel Kant Baltic Federal University, Kaliningrad, Russia [email protected] 2Eindhoven University of Technology, Eindhoven, The Netherlands [email protected] April 22, 2021 Abstract In two of the main areas of post-quantum cryptography, based on lattices and codes, nearest neighbor techniques have been used to speed up state-of-the-art cryptanalytic algorithms, and to obtain the lowest asymptotic cost estimates to date [May{Ozerov, Eurocrypt'15; Becker{Ducas{Gama{Laarhoven, SODA'16]. These upper bounds are useful for assessing the security of cryptosystems against known attacks, but to guarantee long-term security one would like to have closely matching lower bounds, showing that improvements on the algorithmic side will not drastically reduce the security in the future. As existing lower bounds from the nearest neighbor literature do not apply to the nearest neighbor problems appearing in this context, one might wonder whether further speedups to these cryptanalytic algorithms can still be found by only improving the nearest neighbor subroutines. We derive new lower bounds on the costs of solving the nearest neighbor search problems appearing in these cryptanalytic settings. For the Euclidean metric we show that for random data sets on the sphere, the locality-sensitive filtering approach of [Becker{Ducas{Gama{Laarhoven, SODA 2016] using spherical caps is optimal, and hence within a broad class of lattice sieving algorithms covering almost all approaches to date, their asymptotic time complexity of 20:292d+o(d) is optimal. Similar conditional optimality results apply to lattice sieving variants, such as the 20:265d+o(d) complexity for quantum sieving [Laarhoven, PhD thesis 2016] and previously derived complexity estimates for tuple sieving [Herold{Kirshanova{Laarhoven, PKC 2018].
    [Show full text]
  • Constraint Clustering and Parity Games
    Constrained Clustering Problems and Parity Games Clemens Rösner geboren in Ulm Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Bonn 2019 1. Gutachter: Prof. Dr. Heiko Röglin 2. Gutachterin: Prof. Dr. Anne Driemel Tag der mündlichen Prüfung: 05. September 2019 Erscheinungsjahr: 2019 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Abstract Clustering is a fundamental tool in data mining. It partitions points into groups (clusters) and may be used to make decisions for each point based on its group. We study several clustering objectives. We begin with studying the Euclidean k-center problem. The k-center problem is a classical combinatorial optimization problem which asks to select k centers and assign each input point in a set P to one of the centers, such that the maximum distance of any input point to its assigned center is minimized. The Euclidean k-center problem assumes that the input set P is a subset of a Euclidean space and that each location in the Euclidean space can be chosen as a center. We focus on the special case with k = 1, the smallest enclosing ball problem: given a set of points in m-dimensional Euclidean space, find the smallest sphere enclosing all the points. We combine known results about convex optimization with structural properties of the smallest enclosing ball to create a new algorithm. We show that on instances with rational coefficients our new algorithm computes the exact center of the optimal solutions and has a worst-case run time that is polynomial in the size of the input.
    [Show full text]
  • Practical Considerations in Benchmarking Digital Testing Systems
    Foreword The papers in these proceedings were presented at the 39th Annual Symposium on Foundations of Computer Science (FOCS ‘98), sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing. The conference was held in Palo Alto, California, November g-11,1998. The program committee consisted of Miklos Ajtai (IBM Almaden), Mihir Bellare (UC San Diego), Allan Borodin (Toronto), Edith Cohen (AT&T Labs), Sally Goldman (Washington), David Karger (MIT), Jon Kleinberg (Cornell), Rajeev Motwani (chair, Stanford)), Seffi Naor (Technion), Christos Papadimitriou (Berkeley), Toni Pitassi (Arizona), Dan Spielman (MIT), Eli Upfal (Brown), Emo Welzl (ETH Zurich), David Williamson (IBM TJ Watson), and Frances Yao (Xerox PARC). The program committee met on June 26-28, 1998, and selected 76 papers from the 204 detailed abstracts submitted. The submissions were not refereed, and many of them represent reports of continuing research. It is expected that most of these papers will appear in a more complete and polished form in scientific journals in the future. The program committee selected two papers to jointly receive the Machtey Award for the best student-authored paper. These two papers were: “A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem” by Kamal Jain, and “The Shortest Vector in a Lattice is Hard to Approximate to within Some Constant” by Daniele Micciancio. There were many excellent candidates for this award, each one deserving. At this conference we organized, for the first time, a set of three tutorials: “Geometric Computation and the Art of Sampling” by Jiri Matousek; “Theoretical Issues in Probabilistic Artificial Intelligence” by Michael Kearns; and, “Information Retrieval on the Web” by Andrei Broder and Monika Henzinger.
    [Show full text]
  • The Pagerank Citation Ranking: Bringing Order to the Web
    The PageRank Citation Ranking: Bringing Order to the Web Marlon Dias [email protected] Information Retrieval DCC/UFMG - 2017 Introduction Paper: The PageRank Citation Ranking: Bringing Order to the Web, 1999 Authors: Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd Page and Brin were MS students at Stanford They founded Google in September, 98. Most of this presentation is based on the original paper (link) The Initiative's focus is to dramatically “ advance the means to collect, store, and organize information in digital forms, and make it available for searching, retrieval, and processing via communication networks -- all in user-friendly ways. Stanford WebBase project Pagerank Motivation ▪ Web is vastly large and heterogeneous ▫ Original paper's estimation were over 150 M pages and 1.7 billion of links ▪ Pages are extremely diverse ▫ Ranging from "What does the fox say? " to journals about IR ▪ Web Page present some "structure" ▫ Pagerank takes advantage of links structure Pagerank Motivation ▪ Inspiration: Academic citation ▪ Papers ▫ are well defined units of work ▫ are roughly similar in quality ▫ are used to extend the body of knowledge ▫ can have their "quality" measured in number of citations Pagerank Motivation ▪ Web pages, on the other hand ▫ proliferate free of quality control or publishing costs ▫ huge numbers of pages can be created easily ▸ artificially inflating citation counts ▫ They vary on much wider scale than academic papers in quality, usage, citations and length Pagerank Motivation A research article A random archived about the effects of message posting cellphone use on asking an obscure driver attention is very question about an IBM different from an computer is very advertisement for a different from the IBM particular cellular home page provider The average web page quality experienced “ by a user is higher than the quality of the average web page.
    [Show full text]
  • Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality
    THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 www.theoryofcomputing.org SPECIAL ISSUE IN HONOR OF RAJEEV MOTWANI Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality Sariel Har-Peled∗ Piotr Indyk † Rajeev Motwani ‡ Received: August 20, 2010; published: July 16, 2012. Abstract: We present two algorithms for the approximate nearest neighbor problem in d high-dimensional spaces. For data sets of size n living in R , the algorithms require space that is only polynomial in n and d, while achieving query times that are sub-linear in n and polynomial in d. We also show applications to other high-dimensional geometric problems, such as the approximate minimum spanning tree. The article is based on the material from the authors’ STOC’98 and FOCS’01 papers. It unifies, generalizes and simplifies the results from those papers. ACM Classification: F.2.2 AMS Classification: 68W25 Key words and phrases: approximate nearest neighbor, high dimensions, locality-sensitive hashing 1 Introduction The nearest neighbor (NN) problem is defined as follows: Given a set P of n points in a metric space defined over a set X with distance function D, preprocess P to efficiently answer queries for finding the point in P closest to a query point q 2 X. A particularly interesting case is that of the d-dimensional d Euclidean space where X = R under some `s norm. This problem is of major importance in several ∗Supported by NSF CAREER award CCR-0132901 and AF award CCF-0915984. †Supported by a Stanford Graduate Fellowship, NSF Award CCR-9357849 and NSF CAREER award CCF-0133849.
    [Show full text]
  • The Pagerank Citation Ranking: Bringing Order to the Web Paper Review
    The PageRank Citation Ranking: Bringing Order to the Web Paper Review Anand Singh Kunwar 1 Introduction The PageRank [1] algorithm decribes a way to compute ranks or ratings of web pages. This comes from a simple intuition. Consider the web to be a directed graph with each node being a web page. Each web page has certain links to it and certain links from it. Let these links be edges of our directed graph. Something like what we can see in the following graphical representation of 3 pages. a c b The pages a, b and c have some outgoing and incoming edges. We compute the total PageRank of these pages by iterating over the following algorithm. X Rank(v) Rank(u) = c + cE(u) Nv v2Lu Here Nv are number of pages being linked by v, Lu is the set of pages which have links to u, E(u) is some vector that correspond to the source of rank and c is the normalising constant. The reason why the E(u) was introduced was for cases when a loop has no out-edges. In this case, our ranks of nodes inside this loop would blow up. The paper also provides us with a real life intuition for this. Authors provide us with a random surfer model. This model states that a web surfer will click consecutive pages like a random walk on graphs. However, in case this surfer encounters a loop of webpages with no other outgoing webpage than the ones in the loop, it is highly unlikely that this surfer will continue.
    [Show full text]
  • David Karger Rajeev Motwani Y Madhu Sudan Z
    Approximate Graph Coloring by Semidenite Programming y z David Karger Rajeev Motwani Madhu Sudan Abstract We consider the problem of coloring k colorable graphs with the fewest p ossible colors We present a randomized p olynomial time algorithm which colors a colorable graph on n vertices 12 12 13 14 with minfO log log n O n log ng colors where is the maximum degree of any vertex Besides giving the b est known approximation ratio in terms of n this marks the rst nontrivial approximation result as a function of the maximum degree This result can 12 12k b e generalized to k colorable graphs to obtain a coloring using minfO log log n 12 13(k +1) O n log ng colors Our results are inspired by the recent work of Go emans and Williamson who used an algorithm for semidenite optimization problems which generalize lin ear programs to obtain improved approximations for the MAX CUT and MAX SAT problems An intriguing outcome of our work is a duality relationship established b etween the value of the optimum solution to our semidenite program and the Lovasz function We show lower b ounds on the gap b etween the optimum solution of our semidenite program and the actual chromatic numb er by duality this also demonstrates interesting new facts ab out the function MIT Lab oratory for Computer Science Cambridge MA Email kargermitedu URL httptheorylcsmitedukarger Supp orted by a Hertz Foundation Graduate Fellowship by NSF Young In vestigator Award CCR with matching funds from IBM Schlumb erger Foundation Shell Foundation and Xerox Corp oration
    [Show full text]