2.5 the Unit Test Framework (UTF)

Total Page:16

File Type:pdf, Size:1020Kb

2.5 the Unit Test Framework (UTF) Masaryk University Faculty of Informatics C++ Unit Testing Frameworks Diploma Thesis Brno, January 2010 Miroslav Sedlák i Statement I declare that this thesis is my original work of authorship which I developed individually. I quote properly full reference to all sources I used while developing. ...…………..……… Miroslav Sedlák Acknowledgements I am grateful to RNDr. Jan Bouda, Ph.D. for his inspiration and productive discussion. I would like to thank my family and girlfriend for the encouragement they provided. Last, but not least, I would like to thank my friends Ing.Michal Bella who was very supportive in verifying the architecture of the extension of Unit Test Framework and Mgr. Irena Zigmanová who helped me with proofreading of this thesis. ii Abstract The aim of this work is to gather, clearly present and test the use of existing UTFs (CppUnit, CppUnitLite, CppUTest, CxxTest and other) and supporting tools for software project development in the programming language C++. We will compare the advantages and disadvantages of UTFs and theirs tools. Another challenge is to design effective solutions for testing by using one of the UTFs in dependence on the result of analysis. Keywords C++, Unit Test (UT), Test Framework (TF), Unit Test Framework (UTF), Test Driven Development (TDD), Refactoring, xUnit, Standard Template Library (STL), CppUnit, CppUnitLite, CppUTest Run-Time Type Information (RTTI), Graphical User Interface (GNU). iii Contents 1 Introduction ..................................................................................................................................... 2 2 The Software Testing ...................................................................................................................... 5 2.1 Types of Testing .................................................................................................................... 6 2.2 The Test Environment (TE) ................................................................................................... 8 2.3 The Unit Test (UT) ................................................................................................................ 9 2.4 The Test Framework (TF) .................................................................................................... 10 2.5 The Unit Test Framework (UTF) ......................................................................................... 10 2.6 The Test Driven Development (TDD) ................................................................................. 13 3 The Comparison of the Unit Test Frameworks ............................................................................. 16 3.1 The xUnit ............................................................................................................................. 17 3.2 The CppUnit ......................................................................................................................... 19 3.3 The CppUnitLite .................................................................................................................. 26 3.4 The CppUTest ...................................................................................................................... 28 3.5 The CxxTest ......................................................................................................................... 30 3.6 The Conclusion of Analysis ................................................................................................. 33 4 Programs for UTF ......................................................................................................................... 34 4.1 CppUnit Base Programs ....................................................................................................... 34 5 The Unit Test Envinronment (UTE) .............................................................................................. 38 5.1 The Framework Design ........................................................................................................ 39 5.2 Implementation of Extension CppUnit ................................................................................ 44 5.3 Implementation of UTE ....................................................................................................... 47 6 Conclusion ..................................................................................................................................... 55 7 Bibliography .................................................................................................................................. 57 8 Appendix ....................................................................................................................................... 58 8.1 Abbreviations ....................................................................................................................... 58 8.2 Glossary ............................................................................................................................... 58 8.3 Source code .......................................................................................................................... 60 1 1 Introduction Today, large amount of software is developed for various purposes. Quality of software source code is measured by various factors, where the most important one is how the product fits customer’s requirements. Ensuring that it is so and that the customer is able to use the final product efficiently can be achieved through continuous testing, debugging and other techniques (see http://en.wikipedia.org/wiki/Software_quality, where different views of software quality are presented), that are out of scope of my thesis. Important phase of detection and localisation of a problem is testing, which increases the quality of developed software. The main purpose of testing is to reduce the risk of an error. There are many possibilities how to use testing during the development phase of an application. The most common is the possibility to create tests to verify functionality when software is developed. If tests have not revealed an error, we may assume that the application has no errors. However, the occurrence of errors should rather be expected, since it is known that no large-scale application is perfect. The process of testing can not verify everything, so we try to verify those parts of the system whose failure would affect the execution of the application. According to Kernigham, the most important rule of testing is to do testing as described in the book: The Practice of Programming [1]. The test can be created on different levels. This thesis is aimed at the first level of testing (Unit Testing), which is performed by developer of an application. The cornerstone for the first level of testing is development of tests and their automation for smallest units. Issues that affect source the code quality include ease of maintenance, testing, debugging, fixing, modification and portability. This involves usage of various software applications (also known as tools) exploited to assure these requirements. If we want to create an environment containing such a program, we must first choose a program, which might be difficult to combine with other programs. Creating this environment is very challenging because we must determine which of the programs is more difficult to relate with other programs. It is testing framework, because this program is developed in C ++ programming language. There are several ways how to include the functionality of other programs into the testing framework: Using program independently of the testing framework – for example running a binary test in a debugger Including programs into the testing framework – this is the subject of this thesis Implementing the functionality of a given software as a module/plug-in in the testing framework 2 Today, there are many test frameworks, but there is no environment to interconnect the test framework and programs. It is similar to IDE, which interconnects programs: a source code editor program a compiler and / or an interpreter program build automation programs a debugger program One of the goals of this thesis is to implement a software application that provides comprehensive facilities for the aforementioned issues of the software code quality. This environment should be configurable and extensible by developers according to their needs. In order to design environment correctly, first we have to use concepts related to software testing. Then we determine requirements of the test framework and compare it with the existing testing frameworks. On the basis of our analysis we select a test framework that will be used for our testing of developed software. Then a review of the programs that can be used to achieve the source code quality follows. We focus on the existing programs developed for the individual test framework as well. As we review later, there is no environment that allows additional programs to cooperate with the test framework, what forces us to define the requirements and implement a new environment. We also define functional requirements for the extension of the testing framework. Finally, we describe the implementation of the test framework extension and the environment. This thesis focuses on software testing methodology in the C++ programming language and comparison of existing testing systems (also known as frameworks) from the first-level testing point of view. Today, there are many of software testing methodologies and the choice depends on many factors.
Recommended publications
  • Towards a Taxonomy of Sunit Tests *
    Towards a Taxonomy of SUnit Tests ? Markus G¨alli a Michele Lanza b Oscar Nierstrasz a aSoftware Composition Group Institut f¨urInformatik und angewandte Mathematik Universit¨atBern, Switzerland bFaculty of Informatics University of Lugano, Switzerland Abstract Although unit testing has gained popularity in recent years, the style and granularity of individual unit tests may vary wildly. This can make it difficult for a developer to understand which methods are tested by which tests, to what degree they are tested, what to take into account while refactoring code and tests, and to assess the value of an existing test. We have manually categorized the test base of an existing object-oriented system in order to derive a first taxonomy of unit tests. We have then developed some simple tools to semi-automatically categorize tests according to this taxonomy, and applied these tools to two case studies. As it turns out, the vast majority of unit tests focus on a single method, which should make it easier to associate tests more tightly to the methods under test. In this paper we motivate and present our taxonomy, we describe the results of our case studies, and we present our approach to semi-automatic unit test categorization. 1 Key words: unit testing, taxonomy, reverse engineering 1 13th International European Smalltalk Conference (ESUG 2005) http://www.esug.org/conferences/thirteenthinternationalconference2005 ? We thank St´ephane Ducasse for his helpful comments and gratefully acknowledge the financial support of the Swiss National Science Foundation for the project “Tools and Techniques for Decomposing and Composing Software” (SNF Project No.
    [Show full text]
  • Enhancement in Nunit Testing Framework by Binding Logging with Unit Testing
    International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 Enhancement in Nunit Testing Framework by binding Logging with Unit testing Viraj Daxini1, D. A. Parikh2 1Gujarat Technological University, L. D. College of Engineering, Ahmedabad, Gujarat, India 2Associate Professor and Head, Department of Computer Engineering, L. D. College of Engineering, Ahmadabad, Gujarat, India Abstract: This paper describes the new testing library named log4nunit testing library which is enhanced version of nunit testing library as it is binded to logging functionality. NUnit is similar to xunit testing family in all that cases are built directly to the code of the project. Log4NUnit testing library provides the capability to log the results of tests along with testing classes. It also provides the capability to log the messages from within the testing methods. It supplies extension of NUnit’s Test class method in terms of logging the results. It has functionality to log the entity of test cases, based on the Logging framework, to document the test settings which is done at the time of testing, test case execution and it’s results. Attractive feature of new library is that it will redirect the log message to console at runtime if Log4net library is not present in the class path. It will make easy for those users who do not want to download Logging framework and put it in their class path. Log4NUnit also include a Log4net logger methods and implements utility of logging methods such as info, debug, warn, fatal etc. This work was prompted due to lack of published results concerning the implementation of Log4NUnit.
    [Show full text]
  • Introduction to Unit Testing
    INTRODUCTION TO UNIT TESTING In C#, you can think of a unit as a method. You thus write a unit test by writing something that tests a method. For example, let’s say that we had the aforementioned Calculator class and that it contained an Add(int, int) method. Let’s say that you want to write some code to test that method. public class CalculatorTester { public void TestAdd() { var calculator = new Calculator(); if (calculator.Add(2, 2) == 4) Console.WriteLine("Success"); else Console.WriteLine("Failure"); } } Let’s take a look now at what some code written for an actual unit test framework (MS Test) looks like. [TestClass] public class CalculatorTests { [TestMethod] public void TestMethod1() { var calculator = new Calculator(); Assert.AreEqual(4, calculator.Add(2, 2)); } } Notice the attributes, TestClass and TestMethod. Those exist simply to tell the unit test framework to pay attention to them when executing the unit test suite. When you want to get results, you invoke the unit test runner, and it executes all methods decorated like this, compiling the results into a visually pleasing report that you can view. Let’s take a look at your top 3 unit test framework options for C#. MSTest/Visual Studio MSTest was actually the name of a command line tool for executing tests, MSTest ships with Visual Studio, so you have it right out of the box, in your IDE, without doing anything. With MSTest, getting that setup is as easy as File->New Project. Then, when you write a test, you can right click on it and execute, having your result displayed in the IDE One of the most frequent knocks on MSTest is that of performance.
    [Show full text]
  • Comparative Analysis of Junit and Testng Framework
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072 Comparative Analysis of JUnit and TestNG framework Manasi Patil1, Mona Deshmukh2 Student, Dept. of MCA, VES Institute of Technology, Maharashtra, India1 Professor, Dept. of MCA, VES Institute of Technology, Maharashtra, India2 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Testing is an important phase in SDLC, Testing It is flexible than Junit and supports parametrization, parallel can be manual or automated. Nowadays Automation testing is execution and data driven testing. widely used to find defects and to ensure the correctness and The Table – 1 compares different functionalities of TestNG completeness of the software. Open source framework can be and JUnit framework. used for automation testing such as Robotframework, Junit, Spock, NUnit, TestNG, Jasmin, Mocha etc. This paper compares Table -1: Functionality TestNG vs JUnit JUnit and TestNG based on their features and functionalities. Key Words: JUnit, TestNG, Automation Framework, Functionality TestNG JUnit Automation Testing, Selenium TestNG, Selenium JUnit Yes 1. INTRODUCTION Support Annotations Yes Yes Support Test Suit Initialization Yes Testing a software manually is tedious work, and takes lot of No time and efforts. Automation saves lot of time and money, Support for Tests groups Yes also it increases the test coverage
    [Show full text]
  • A Large-Scale Study on the Usage of Testing Patterns That Address Maintainability Attributes Patterns for Ease of Modification, Diagnoses, and Comprehension
    A Large-Scale Study on the Usage of Testing Patterns that Address Maintainability Attributes Patterns for Ease of Modification, Diagnoses, and Comprehension Danielle Gonzalez ∗, Joanna C.S. Santos∗, Andrew Popovich∗, Mehdi Mirakhorli∗, Mei Nagappany ∗Software Engineering Department, Rochester Institute of Technology, USA yDavid R. Cheriton School of Computer Science, University of Waterloo, Canada fdng2551,jds5109,ajp7560, [email protected], [email protected] Abstract—Test case maintainability is an important concern, studies [5], [10], [12], [21] emphasize that the maintainability especially in open source and distributed development envi- and readability attributes of the unit tests directly affect the ronments where projects typically have high contributor turn- number of defects detected in the production code. Further- over with varying backgrounds and experience, and where code ownership changes often. Similar to design patterns, patterns more, achieving high code coverage requires evolving and for unit testing promote maintainability quality attributes such maintaining a growing number of unit tests. Like source code, as ease of diagnoses, modifiability, and comprehension. In this poorly organized or hard-to-read test code makes test main- paper, we report the results of a large-scale study on the usage tenance and modification difficult, impacting defect identifi- of four xUnit testing patterns which can be used to satisfy these cation effectiveness. In “xUnit Test Patterns: Refactoring Test maintainability attributes. This is a first-of-its-kind study which developed automated techniques to investigate these issues across Code” George Meszaro [18] presents a set of automated unit 82,447 open source projects, and the findings provide more insight testing patterns, and promotes the idea of applying patterns to into testing practices in open source projects.
    [Show full text]
  • A New Testing Framework for C-Programming Exercises
    Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 279 A new Testing Framework for C-Programming Exercises and Online-Assessments Dieter Pawelczak, Andrea Baumann, and David Schmudde Faculty of Electrical Engineering and Computer Science, Universitaet der Bundeswehr Muenchen (UniBw M), Neubiberg, Germany Abstract - Difficulties with learning a programming assessment and grading of programming assignments in the language are wide spread in engineering education. The use third year now. However the original aim to have many of a single integrated programming environment for coding, small accompanying programming exercises for self- debugging, automated testing and online assessment lowers learning could not be established yet, due to the high effort the initial burdens for novice programmers. We have for writing tests. In this paper we present a new testing developed the Virtual-C IDE especially for learning and framework, which enormously reduces the effort for test teaching the C programming language with an integrated development. Although this framework allows students to framework for program visualizations, programming exer- write their own tests, we do not plan to integrate test cises and online assessments. A new enhancement of the writing in the primer C programming course at the moment, IDE is a xUnit like testing framework allowing on the one as our curriculum covers software testing in the software hand larger sets of small, test-based programming exercises engineering courses in the major terms. and on the other hand simplifying the development of pro- gramming assignments. The integration of the new testing 2 Review of related work framework in the assessment system gives students a better and direct feedback on their programming achievements Software testing is a core topic in computer science.
    [Show full text]
  • Xunit Test Patterns and Smells Instructor Biography
    xUnit Test Patterns and Smells xUnit Test Patterns and Smells Improving Test Code and Testability Through Refactoring Gerard Meszaros [email protected] Tutorial exercises and solutions available at: http://tutorialslides.xunitpatterns.com http://tutorialexercises.xunitpatterns.com http://tutorialsolutions.xunitpatterns.com xUnit Patterns Tutorial V1 1 Copyright 2008 Gerard Meszaros xUnit Test Patterns and Smells Instructor Biography Gerard Meszaros is independent consultant specializing is agile development processes. Gerard built his first unit testing framework in 1996 and has been doing automated unit testing ever since. He is an expert in agile methods, test automation patterns, refactoring of software and tests, and design for testability. Gerard has applied automated unit and acceptance testing on projects ranging from full-on eXtreme Programming to traditional waterfall development and technologies ranging from Java, Smalltalk and Ruby to PLSQL stored procedures and SAP’s ABAP. He is the author of the book xUnit Test Patterns – Gerard Meszaros Refactoring Test Code. [email protected] xUnit Patterns Tutorial V1 2 Copyright 2008 Gerard Meszaros 1 xUnit Test Patterns and Smells Tutorial Background • Early XP projects suffered from – High Test Maintenance Cost – Obscure, Verbose Tests • Started documenting practices as Smells & Patterns at xunitpatterns.com • Clients requested Hands-on Training – 2 Day computer-based course – Available in Java, C#, C++ (other languages possible) • Condensed into half day & full day
    [Show full text]
  • Patterns of Test Oracles - a Testing Tool Perspective
    Patterns of Test Oracles - A Testing Tool Perspective YUNG-PIN CHENG, Dept. of CSIE, National Central University, TAIWAN TSUNG-LIN YANG, Dept. of CSIE, National Central University, TAIWAN Continuous integration (CI) has become a state-of-art software engineering practice in modern software industry. The key practice in CI is automatic test regression. A successful test automation can provide immediate feedback to developers and then encourages frequent code change to meet the spirit of agile methods. Unfortunately, the cost of building test automation varies significantly from different application domains. It is often inevitable to adopt testing tools of different levels to ensure the effectiveness of test regression. While adopting these testing tools, it is required to add test oracles by developers to determine whether a test is passed or failed. Nevertheless, there are dif- ferent kinds of test oracles to choose, understand, and apply. Sometimes, a testing tool may constrain the feasibility and selection of test oracles. It is important for developers to understand the pros and cons of test oracles in different testing tools. In this paper, patterns of test oracles are described, particularly from a testing-tool perspective in practice. These patterns are collected to clarify possible confusion and misunderstanding in building test oracles. Categories and Subject Descriptors: H.5.2 [Software and Its Engineering ]: Software testing and debugging—test oracles General Terms: Software Testing Additional Key Words and Phrases: Software Testing, Test Oracle, Test Automation, Regression Testing, Assertion ACM Reference Format: Cheng, Y.-P. and Yang, T.-L. 2017. Patterns of Test Oracles - A Testing Tool Perspective.
    [Show full text]
  • Test-Driven Development
    Test-Driven Development David Janzen Copyright ©2013 David S. Janzen Outline § What is TDD? ▪ An example ▪ Definitions § What is not TDD? § Where did TDD come from? § Why should I use TDD? § How can I apply TDD effectively? Copyright ©2013 David S. Janzen What is Test-Driven Development? § TDD is a design (and testing) approach involving short, rapid iterations of Unit tests are automated Unit Test Code Refactor Forces programmer to consider use of a method before implementation of the method Copyright ©2013 David S. Janzen TDD Example: Requirements § Ensure that passwords meet the following criteria: ▪ Between 6 and 10 characters long ▪ Contain at least one digit ▪ Contain at least one upper case letter Copyright ©2013 David S. Janzen TDD Example: Write a test import static org.junit.Assert.*; import org.junit.Test; public class TestPasswordValidator { @Test Needed for JUnit public void testValidLength() { PasswordValidator pv = new PasswordValidator(); assertEquals(true, pv.isValid("Abc123")); } } This is the teeth of the test Cannot even run test yet because PasswordValidator doesn’t exist! Copyright ©2013 David S. Janzen TDD Example: Write a test import static org.junit.Assert.*; import org.junit.Test; public class TestPasswordValidator { @Test public void testValidLength() { PasswordValidator pv = new PasswordValidator(); assertEquals(true, pv.isValid("Abc123")); } } Design decisions: class name, constructor, method name, parameters and return type Copyright ©2013 David S. Janzen TDD Example: Write the code public class PasswordValidator { public boolean isValid(String password) { if (password.length() >= 6 && password.length() <= 10) { return true; } else { return false; } } } Copyright ©2013 David S. Janzen TDD Example: Refactor import static org.junit.Assert.*; import org.junit.Test; public class TestPasswordValidator { @Test public void testValidLength() { PasswordValidator pv = new PasswordValidator(); assertEquals(true, pv.isValid("Abc123")); } } Do we really need an instance of PasswordValidator? Copyright ©2013 David S.
    [Show full text]
  • Causal Factors, Benefits and Challenges of Test-Driven
    Full citation: Buchan, J., Li, L., & MacDonell, S.G. (2011) Causal Factors, Benefits and Challenges of Test-Driven Development: Practitioner Perceptions, in Proceedings of the 18th Asia-Pacific Software Engineering Conference (APSEC 2011). Hochiminh City, Vietnam, IEEE Computer Society Press, pp.405-413. doi: 10.1109/APSEC.2011.44 Causal Factors, Benefits and Challenges of Test-Driven Development: Practitioner Perceptions Jim Buchan, Ling Li, Stephen G. MacDonell SERL, School of Computing and Mathematical Sciences AUT University, Private Bag 92006 Auckland 1142, New Zealand [email protected], [email protected], [email protected] Abstract in improvements to code quality [3], testing quality [4], and application quality [5], compared to the traditional Test-Last This report describes the experiences of one organization’s (TL) approach. It has also been claimed to improve overall adoption of Test Driven Development (TDD) practices as development productivity, encourage early understanding of part of a medium-term software project employing Extreme the scope of requirements (user stories), as well as Programming as a methodology. Three years into this potentially leading to enhanced developer job satisfaction project the team’s TDD experiences are compared with and confidence [3]. their non-TDD experiences on other ongoing projects. The In contrast, critics claim that the frequent changes to tests in perceptions of the benefits and challenges of using TDD in TDD are more likely (than in TL) to cause test breakages, this context are gathered through five semi-structured leading to costly rework and loss of productivity [6]. Boehm interviews with key team members. Their experiences and Turner [6] also note that with TDD the consequences of indicate that use of TDD has generally been positive and the developers having inadequate testing skills may be reasons for this are explored to deepen the understanding of amplified, compared to the consequences for a TL approach.
    [Show full text]
  • Unittest Is Broken: Toward Composable, Shareable Test Framework Extensions
    unittest is Broken: Toward Composable, Shareable Test Framework Extensions Collin Winter Google, Inc [email protected] 0. Abstract In this paper I examine the shortcomings and core design flaws of JUnit and JUnit-derived test frameworks, such as Python's PyUnit (aka unittest), focusing specifically on the programmer's ability to extend the framework. I then discuss the requirements for an extensible testing framework and introduce test_harness, an alternative framework designed from the ground up to address these fundamental issues. Finally, examples drawn from real-world, PyUnit-based test suites are reformulated using test_harness to demonstrate the power of the new framework. 1. Introduction When writing test suites, it is often desirable to mix in additional functionality in order to augment the tests themselves, e.g., the ability to mark certain tests as "expected to fail" or to indicate that a given test should skipped in the presence of a given condition. While many testing frameworks exist that allow the creation of such augmentations and extensions, the design of these frameworks greatly limits the ability of the test writer to combine extensions in order to create the ideal testing environment for the current project. This lowers the incentive to share such framework extensions with the wider development community, thus both inhibiting software reuse and increasing the barriers to properly testing certain kinds of code. In this paper, I will explore the requirements for a testing framework that will allow extensions to be easily shared and combined, in the process contrasting these principles with those found in existing popular testing frameworks.
    [Show full text]
  • Unit Testing: Principles, Practices, and Patterns
    Principles, Practices, and Patterns Vladimir Khorikov MANNING Chapter Map Licensed toJorge Cavaco <[email protected]> Complexity (ch. 7) Fast feedback (ch. 4) Maximize Have high Domain model and Maintainability Maximize Unit tests Cover algorithms (ch. 4) (ch. 7) Protection against Test accuracy False negatives Defined by Tackled by regressions Maximize Integration tests (ch. 4) (ch. 4) (ch. 4) Cover Defined by Maximize Resistance to False positives Controllers Tackled by refactoring Used in (ch. 4) (ch. 7) (ch. 4) Damage if used incorrectly Have large number of Mocks (ch. 5) In-process dependencies Are Collaborators (ch. 2) (ch. 2) Managed dependencies Should not be used for (ch. 8) Are Out-of-process dependencies Are (ch. 2) Should be used for Unmanaged Are dependencies (ch. 8) Unit Testing: Principles, Practices, and Patterns VLADIMIR KHORIKOV MANNING SHELTER ISLAND Licensed to Jorge Cavaco <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. 20 Baldwin Road PO Box 761 Shelter Island, NY 11964 Email: [email protected] ©2020 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.
    [Show full text]