Introduction to Unit Testing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Practical Unit Testing for Embedded Systems Part 1 PARASOFT WHITE PAPER
Practical Unit Testing for Embedded Systems Part 1 PARASOFT WHITE PAPER Table of Contents Introduction 2 Basics of Unit Testing 2 Benefits 2 Critics 3 Practical Unit Testing in Embedded Development 3 The system under test 3 Importing uVision projects 4 Configure the C++test project for Unit Testing 6 Configure uVision project for Unit Testing 8 Configure results transmission 9 Deal with target limitations 10 Prepare test suite and first exemplary test case 12 Deploy it and collect results 12 Page 1 www.parasoft.com Introduction The idea of unit testing has been around for many years. "Test early, test often" is a mantra that concerns unit testing as well. However, in practice, not many software projects have the luxury of a decent and up-to-date unit test suite. This may change, especially for embedded systems, as the demand for delivering quality software continues to grow. International standards, like IEC-61508-3, ISO/DIS-26262, or DO-178B, demand module testing for a given functional safety level. Unit testing at the module level helps to achieve this requirement. Yet, even if functional safety is not a concern, the cost of a recall—both in terms of direct expenses and in lost credibility—justifies spending a little more time and effort to ensure that our released software does not cause any unpleasant surprises. In this article, we will show how to prepare, maintain, and benefit from setting up unit tests for a simplified simulated ASR module. We will use a Keil evaluation board MCBSTM32E with Cortex-M3 MCU, MDK-ARM with the new ULINK Pro debug and trace adapter, and Parasoft C++test Unit Testing Framework. -
Dr. C#: a Pedagogic IDE for C# Featuring a Read-Eval-Print-Loop by Dennis Lu
RICE UNIVERSITY Dr. C#: A Pedagogic IDE for C# Featuring a Read-Eval-Print-Loop by Dennis Lu ATHESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Science APPROVED,THESIS COMMITTEE: Robert Cartwright, Chair Professor of Computer Science Joe Warren Professor of Computer Science Dan Wallach Assistant Professor of Computer Science Dung X. Nguyen Lecturer, Computer Science Houston, Texas April, 2003 Dr. C#: A Pedagogic IDE for C# Featuring a Read-Eval-Print-Loop Dennis Lu Abstract As the primary programming language of the Microsoft .NET platform, C# will play a significant role in software development for the foreseeable future. As the language rapidly gains popularity in industry, tools made for C# development fo- cus on the professional programmer, while leaving the beginning computer science student behind. To address this problem, we introduce Dr. C#, a simple lightweight develop- ment environment with an integrated, interactive Read-Eval-Print-Loop (REPL). Dr. C# helps flatten the learning curve of both the environment and the language, enabling students to quickly learn key elements of the language and focus more easily on concepts. Dr. C# thus serves not only as a learning tool for beginner students but also as a teaching tool for instructors. The editor is based on an open source IDE called SharpDevelop. This thesis describes the implementation of Dr. C# focusing primarily on building the REPL and integrating with SharpDevelop. Acknowledgments I would like to thank my advisor Professor Robert “Corky” Cartwright for giving me the opportunity and autonomy to develop Dr. C#. I would also like to thank Professor Dung Nguyen for acting as co-advisor and for his years of guidance and support. -
Towards a Taxonomy of Sunit Tests *
Towards a Taxonomy of SUnit Tests ? Markus G¨alli a Michele Lanza b Oscar Nierstrasz a aSoftware Composition Group Institut f¨urInformatik und angewandte Mathematik Universit¨atBern, Switzerland bFaculty of Informatics University of Lugano, Switzerland Abstract Although unit testing has gained popularity in recent years, the style and granularity of individual unit tests may vary wildly. This can make it difficult for a developer to understand which methods are tested by which tests, to what degree they are tested, what to take into account while refactoring code and tests, and to assess the value of an existing test. We have manually categorized the test base of an existing object-oriented system in order to derive a first taxonomy of unit tests. We have then developed some simple tools to semi-automatically categorize tests according to this taxonomy, and applied these tools to two case studies. As it turns out, the vast majority of unit tests focus on a single method, which should make it easier to associate tests more tightly to the methods under test. In this paper we motivate and present our taxonomy, we describe the results of our case studies, and we present our approach to semi-automatic unit test categorization. 1 Key words: unit testing, taxonomy, reverse engineering 1 13th International European Smalltalk Conference (ESUG 2005) http://www.esug.org/conferences/thirteenthinternationalconference2005 ? We thank St´ephane Ducasse for his helpful comments and gratefully acknowledge the financial support of the Swiss National Science Foundation for the project “Tools and Techniques for Decomposing and Composing Software” (SNF Project No. -
Parallel, Cross-Platform Unit Testing for Real-Time Embedded Systems
University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2017 Parallel, Cross-Platform Unit Testing for Real-Time Embedded Systems Tosapon Pankumhang University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Computer Sciences Commons Recommended Citation Pankumhang, Tosapon, "Parallel, Cross-Platform Unit Testing for Real-Time Embedded Systems" (2017). Electronic Theses and Dissertations. 1353. https://digitalcommons.du.edu/etd/1353 This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. PARALLEL, CROSS-PLATFORM UNIT TESTING FOR REAL-TIME EMBEDDED SYSTEMS __________ A Dissertation Presented to the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science University of Denver __________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy __________ by Tosapon Pankumhang August 2017 Advisor: Matthew J. Rutherford ©Copyright by Tosapon Pankumhang 2017 All Rights Reserved Author: Tosapon Pankumhang Title: PARALLEL, CROSS-PLATFORM UNIT TESTING FOR REAL-TIME EMBEDDED SYSTEMS Advisor: Matthew J. Rutherford Degree Date: August 2017 ABSTRACT Embedded systems are used in a wide variety of applications (e.g., automotive, agricultural, home security, industrial, medical, military, and aerospace) due to their small size, low-energy consumption, and the ability to control real-time peripheral devices precisely. These systems, however, are different from each other in many aspects: processors, memory size, develop applications/OS, hardware interfaces, and software loading methods. -
2.5 the Unit Test Framework (UTF)
Masaryk University Faculty of Informatics C++ Unit Testing Frameworks Diploma Thesis Brno, January 2010 Miroslav Sedlák i Statement I declare that this thesis is my original work of authorship which I developed individually. I quote properly full reference to all sources I used while developing. ...…………..……… Miroslav Sedlák Acknowledgements I am grateful to RNDr. Jan Bouda, Ph.D. for his inspiration and productive discussion. I would like to thank my family and girlfriend for the encouragement they provided. Last, but not least, I would like to thank my friends Ing.Michal Bella who was very supportive in verifying the architecture of the extension of Unit Test Framework and Mgr. Irena Zigmanová who helped me with proofreading of this thesis. ii Abstract The aim of this work is to gather, clearly present and test the use of existing UTFs (CppUnit, CppUnitLite, CppUTest, CxxTest and other) and supporting tools for software project development in the programming language C++. We will compare the advantages and disadvantages of UTFs and theirs tools. Another challenge is to design effective solutions for testing by using one of the UTFs in dependence on the result of analysis. Keywords C++, Unit Test (UT), Test Framework (TF), Unit Test Framework (UTF), Test Driven Development (TDD), Refactoring, xUnit, Standard Template Library (STL), CppUnit, CppUnitLite, CppUTest Run-Time Type Information (RTTI), Graphical User Interface (GNU). iii Contents 1 Introduction .................................................................................................................................... -
Unit Testing Is a Level of Software Testing Where Individual Units/ Components of a Software Are Tested. the Purpose Is to Valid
Unit Testing is a level of software testing where individual units/ components of a software are tested. The purpose is to validate that each unit of the software performs as designed. A unit is the smallest testable part of software. It usually has one or a few inputs and usually a single output. In procedural programming a unit may be an individual program, function, procedure, etc. In object-oriented programming, the smallest unit is a method, which may belong to a base/ super class, abstract class or derived/ child class. (Some treat a module of an application as a unit. This is to be discouraged as there will probably be many individual units within that module.) Unit testing frameworks, drivers, stubs, and mock/ fake objects are used to assist in unit testing. METHOD Unit Testing is performed by using the White Box Testing method. When is it performed? Unit Testing is the first level of testing and is performed prior to Integration Testing. BENEFITS Unit testing increases confidence in changing/ maintaining code. If good unit tests are written and if they are run every time any code is changed, we will be able to promptly catch any defects introduced due to the change. Also, if codes are already made less interdependent to make unit testing possible, the unintended impact of changes to any code is less. Codes are more reusable. In order to make unit testing possible, codes need to be modular. This means that codes are easier to reuse. Development is faster. How? If you do not have unit testing in place, you write your code and perform that fuzzy ‘developer test’ (You set some breakpoints, fire up the GUI, provide a few inputs that hopefully hit your code and hope that you are all set.) If you have unit testing in place, you write the test, write the code and run the test. -
Including Jquery Is Not an Answer! - Design, Techniques and Tools for Larger JS Apps
Including jQuery is not an answer! - Design, techniques and tools for larger JS apps Trifork A/S, Headquarters Margrethepladsen 4, DK-8000 Århus C, Denmark [email protected] Karl Krukow http://www.trifork.com Trifork Geek Night March 15st, 2011, Trifork, Aarhus What is the question, then? Does your JavaScript look like this? 2 3 What about your server side code? 4 5 Non-functional requirements for the Server-side . Maintainability and extensibility . Technical quality – e.g. modularity, reuse, separation of concerns – automated testing – continuous integration/deployment – Tool support (static analysis, compilers, IDEs) . Productivity . Performant . Appropriate architecture and design . … 6 Why so different? . “Front-end” programming isn't 'real' programming? . JavaScript isn't a 'real' language? – Browsers are impossible... That's just the way it is... The problem is only going to get worse! ● JS apps will get larger and more complex. ● More logic and computation on the client. ● HTML5 and mobile web will require more programming. ● We have to test and maintain these apps. ● We will have harder requirements for performance (e.g. mobile). 7 8 NO Including jQuery is NOT an answer to these problems. (Neither is any other js library) You need to do more. 9 Improving quality on client side code . The goal of this talk is to motivate and help you improve the technical quality of your JavaScript projects . Three main points. To improve non-functional quality: – you need to understand the language and host APIs. – you need design, structure and file-organization as much (or even more) for JavaScript as you do in other languages, e.g. -
Testing and Debugging Tools for Reproducible Research
Testing and debugging Tools for Reproducible Research Karl Broman Biostatistics & Medical Informatics, UW–Madison kbroman.org github.com/kbroman @kwbroman Course web: kbroman.org/Tools4RR We spend a lot of time debugging. We’d spend a lot less time if we tested our code properly. We want to get the right answers. We can’t be sure that we’ve done so without testing our code. Set up a formal testing system, so that you can be confident in your code, and so that problems are identified and corrected early. Even with a careful testing system, you’ll still spend time debugging. Debugging can be frustrating, but the right tools and skills can speed the process. "I tried it, and it worked." 2 This is about the limit of most programmers’ testing efforts. But: Does it still work? Can you reproduce what you did? With what variety of inputs did you try? "It's not that we don't test our code, it's that we don't store our tests so they can be re-run automatically." – Hadley Wickham R Journal 3(1):5–10, 2011 3 This is from Hadley’s paper about his testthat package. Types of tests ▶ Check inputs – Stop if the inputs aren't as expected. ▶ Unit tests – For each small function: does it give the right results in specific cases? ▶ Integration tests – Check that larger multi-function tasks are working. ▶ Regression tests – Compare output to saved results, to check that things that worked continue working. 4 Your first line of defense should be to include checks of the inputs to a function: If they don’t meet your specifications, you should issue an error or warning. -
The Art, Science, and Engineering of Fuzzing: a Survey
1 The Art, Science, and Engineering of Fuzzing: A Survey Valentin J.M. Manes,` HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz, and Maverick Woo Abstract—Among the many software vulnerability discovery techniques available today, fuzzing has remained highly popular due to its conceptual simplicity, its low barrier to deployment, and its vast amount of empirical evidence in discovering real-world software vulnerabilities. At a high level, fuzzing refers to a process of repeatedly running a program with generated inputs that may be syntactically or semantically malformed. While researchers and practitioners alike have invested a large and diverse effort towards improving fuzzing in recent years, this surge of work has also made it difficult to gain a comprehensive and coherent view of fuzzing. To help preserve and bring coherence to the vast literature of fuzzing, this paper presents a unified, general-purpose model of fuzzing together with a taxonomy of the current fuzzing literature. We methodically explore the design decisions at every stage of our model fuzzer by surveying the related literature and innovations in the art, science, and engineering that make modern-day fuzzers effective. Index Terms—software security, automated software testing, fuzzing. ✦ 1 INTRODUCTION Figure 1 on p. 5) and an increasing number of fuzzing Ever since its introduction in the early 1990s [152], fuzzing studies appear at major security conferences (e.g. [225], has remained one of the most widely-deployed techniques [52], [37], [176], [83], [239]). In addition, the blogosphere is to discover software security vulnerabilities. At a high level, filled with many success stories of fuzzing, some of which fuzzing refers to a process of repeatedly running a program also contain what we consider to be gems that warrant a with generated inputs that may be syntactically or seman- permanent place in the literature. -
Enhancement in Nunit Testing Framework by Binding Logging with Unit Testing
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 Enhancement in Nunit Testing Framework by binding Logging with Unit testing Viraj Daxini1, D. A. Parikh2 1Gujarat Technological University, L. D. College of Engineering, Ahmedabad, Gujarat, India 2Associate Professor and Head, Department of Computer Engineering, L. D. College of Engineering, Ahmadabad, Gujarat, India Abstract: This paper describes the new testing library named log4nunit testing library which is enhanced version of nunit testing library as it is binded to logging functionality. NUnit is similar to xunit testing family in all that cases are built directly to the code of the project. Log4NUnit testing library provides the capability to log the results of tests along with testing classes. It also provides the capability to log the messages from within the testing methods. It supplies extension of NUnit’s Test class method in terms of logging the results. It has functionality to log the entity of test cases, based on the Logging framework, to document the test settings which is done at the time of testing, test case execution and it’s results. Attractive feature of new library is that it will redirect the log message to console at runtime if Log4net library is not present in the class path. It will make easy for those users who do not want to download Logging framework and put it in their class path. Log4NUnit also include a Log4net logger methods and implements utility of logging methods such as info, debug, warn, fatal etc. This work was prompted due to lack of published results concerning the implementation of Log4NUnit. -
Background Goal Unit Testing Regression Testing Automation
Streamlining a Workflow Jeffrey Falgout Daniel Wilkey [email protected] [email protected] Science, Discovery, and the Universe Bloomberg L.P. Computer Science and Mathematics Major Background Regression Testing Jenkins instance would begin running all Bloomberg L.P.'s main product is a Another useful tool to have in unit and regression tests. This Jenkins job desktop application which provides sufficiently complex systems is a suite would then report the results on the financial tools. Bloomberg L.P. of regression tests. Regression testing Phabricator review and signal the author employs many computer programmers allows you to test very high level in an appropriate way. The previous to maintain, update, and add new behavior which can detect low level workflow required manual intervention to features to this product. bugs. run tests. This new workflow only the The product the code base was developer to create his feature branch in implementing has a record/playback order for all tests to be run automatically. Goal feature. This was leveraged to create a Many of the tasks that a programmer regression testing framework. This has to perform as part of a team can be framework leveraged the unit testing automated. The goal of this project was framework wherever possible. to work with a team to automate tasks At various points during the playback, where possible and make them easier callback methods would be invoked. An example of the new workflow, where a Jenkins where impossible. These methods could have testing logic to instance will automatically run tests and update the make sure the application was in the peer review. -
Comparative Analysis of Junit and Testng Framework
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 05 | May-2018 www.irjet.net p-ISSN: 2395-0072 Comparative Analysis of JUnit and TestNG framework Manasi Patil1, Mona Deshmukh2 Student, Dept. of MCA, VES Institute of Technology, Maharashtra, India1 Professor, Dept. of MCA, VES Institute of Technology, Maharashtra, India2 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Testing is an important phase in SDLC, Testing It is flexible than Junit and supports parametrization, parallel can be manual or automated. Nowadays Automation testing is execution and data driven testing. widely used to find defects and to ensure the correctness and The Table – 1 compares different functionalities of TestNG completeness of the software. Open source framework can be and JUnit framework. used for automation testing such as Robotframework, Junit, Spock, NUnit, TestNG, Jasmin, Mocha etc. This paper compares Table -1: Functionality TestNG vs JUnit JUnit and TestNG based on their features and functionalities. Key Words: JUnit, TestNG, Automation Framework, Functionality TestNG JUnit Automation Testing, Selenium TestNG, Selenium JUnit Yes 1. INTRODUCTION Support Annotations Yes Yes Support Test Suit Initialization Yes Testing a software manually is tedious work, and takes lot of No time and efforts. Automation saves lot of time and money, Support for Tests groups Yes also it increases the test coverage