Bacterial Species Exclusively Identified in Male Subjects

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Species Exclusively Identified in Male Subjects Supplementary Table 1: Bacterial species exclusively identified in male subjects Acholeplasma ales Clostridium magnum Lactobacillus ruminis Pseudomonas collierea Acholeplasma cavigenitalium Clostridium malenominatum Lactobacillus salivarius Pseudomonas jinjuensis Acholeplasma equifetale Clostridium nitrophenolicum Lactobacillus versmoldensis Pseudomonas luteola Acholeplasma granularum Clostridium paraputrificum Lactococcus lactis Pseudomonas panipatensis Acholeplasma hippikon Clostridium perfringens Legionella fallonii Pseudomonas poae Acidaminobacter hydrogenoformans Clostridium proteolyticum Legionella taurinensis Pseudomonas tropicalis Acidaminococcus intestini Clostridium proteolyticus Legionella worsleiensis Pseudonocardia acaciae Clostridium Acidiphilium acidophilum saccharoperbutylacetonicum Lentzea californiensis Pseudonocardia asaccharolytica Pseudonocardia Acidiphilium organovorum Clostridium sulfidigenes Leptotrichia buccalis hydrocarbonoxydans Acidiphilium symbioticum Clostridium termitidis Leptotrichia shahii Pseudoxanthomonas mexicana Acidisoma tundrae Clostridium tetani Leptotrichia wadei Pullulanibacillus naganoensis Acidovorax facilis Clostridium thermoalcaliphilum Leucobacter albus Rhizobium mesoamericanum Acinetobacter indicus Clostridium tunisiense Lewinella marina Rhodanobacter thiooxydans Acinetobacter venetianus Cohnella fontinalis Luteimonas aquatica Rhodobacter blasticus Actinoallomurus luridus Cohnella laeviribosi Luteimonas mephitis Rhodobacter gluconicum Actinobacillus pleuropneumoniae Collinsella stercoris Lysobacter daejeonensis Rhodobium gokarnense Actinobaculum urinale Coprobacillus cateniformis Lysobacter enzymogenes Rhodococcus fascians Actinokineospora diospyrosa Corallococcus exiguus Lysobacter yangpyeongensis Rhodococcus zopfii Actinomadura cremea Coriobacterium glomerans Marichromatium gracile Rhodovulum imhoffii Actinomadura macra Corynebacterium auriscanis Marinobacter santoriniensis Rhodovulum iodosum Actinomyces georgiae Corynebacterium renale Marinobacterium stanieri Rhodovulum robiginosum Actinomyces suimastitidis Crocosphaera watsonii Marinococcus salidurans Rickettsia hulinii Actinoplanes auranticolor Cupriavidus gilardii Marinomonas pontica Rickettsia marmionii Actinoplanes garbadinensis Cupriavidus pauculus Meiothermus granaticius Rickettsia monacensis Actinopolyspora xinjiangensis Curtobacterium herbarum Mesonia algae Riemerella columbina Aequorivita crocea Cyanobacterium aponinum Mesorhizobium camelthorni Rikenella microfusus 1 Aerococcus sanguinicola Cyanobacterium stanieri Mesorhizobium opportunistum Rivularia atra Agrobacterium undicola Cycloclasticus oligotrophus Mesorhizobium septentrionale Roseateles depolymerans Agromyces allii Deinococcus aeria Methanobrevibacter acididurans Roseococcus suduntuyensis Agromyces fucosus Deinococcus aerius Methanobrevibacter woesei Roseomonas lacus Agromyces mediolanus Deinococcus alpinitundrae Methylobacillus flagellatus Roseospira visakhapatnamensis Alkalibacillus haloalkaliphilus Deinococcus deserti Methylobacterium adhaesivum Rothia dentocariosa Alkalibacterium subtropicum Deinococcus geothermalis Methylobacterium dankookense Rubellimicrobium mesophilum Methylobacterium Alkaliphilus metalliredigens Deinococcus gobiensis mesophilicum Rubellimicrobium roseum Methylobacterium Alkaliphilus peptidifermentans Deinococcus murrayi organophilum Rubrobacter xylanophilus Allochromatium palmeri Deinococcus reticulitermitis Methylocella silvestris Ruminobacter amylophilus Methylophaga Aminobacter aganoensis Deinococcus yunweiensis aminisulfidivorans Ruminococcus callidus Aminobacter ciceronei Demequina salsinemoris Microbacterium aoyamense Saccharospirillum impatiens Aminobacterium colombiense Dermatophilus congolensis Microbacterium flavum Salisaeta longa Anaerofustis stercorihominis Desulfacinum subterraneum Microbacterium halotolerans Sarcina ventriculi Anaerospora hongkongensis Desulfitobacterium chlororespirans Microbacterium koreense Scardovia inopinata Anaerovibrio lipolyticus Desulfofrigus fragile Microbacterium terricola Schlegelella aquatica Ancylobacter aquaticus Desulfofrigus oceanense Microbacterium thalassium Scytonema hofmanni Aneurinibacillus danicus Desulfonatronovibrio Microbacterium xinjiangensis Sedimentibacter saalensis Desulfonatronovibrio Aquimarina macrocephali hydrogenovorans Micrococcus endophyticus Segetibacter aerophilus Arcanobacterium bernardiae Desulfosporosinus lacus Micromonospora aquatica Serratia nematodiphila Arthrobacter crystallopoietes Desulfotomaculum australicum Micromonospora fulvoviolacea Sharpea azabuensis Arthrobacter kerguelensis Desulfovibrio butyratiphilus Mobiluncus mulieris Shewanella amazonensis Azohydromonas australica Desulfovibrio caledoniensis Mogibacterium vescum Shewanella decolorationis Azospira restricta Desulfovibrio carbinolicus Moraxella equi Shewanella upenei Azospirillum palatum Desulfovibrio psychrotolerans Morganella psychrotolerans Shewanella vesiculosa Azospirillum zeae Desulfurispirillum indicum Muricauda lutimaris Shimazuella kribbensis Bacillus aerophilus Desulfuromonas thiophila Mycobacterium acapulcensis Shinella granuli Bacillus arbutinivorans Devosia chinhatensis Mycobacterium brasiliensis Sinorhizobium fredii 2 Bacillus butanolivorans Devosia ginsengisoli Mycobacterium fuerthensis Slackia heliotrinireducens Bacillus cereus Devosia hwasunensis Mycobacterium noviomagense Slackia piriformis Bacillus coagulans Devosia limi Mycobacterium obuense Sneathia sanguinegens Bacillus firmus Devosia riboflavina Mycoplasma auris Snowella rosea Bacillus flexus Dickeya dianthicola Mycoplasma coccoides Sodalis glossinidius Bacillus gibsonii Dietzia papillomatosis Mycoplasma edwardii Sphingobacterium thalpophilum Bacillus halodurans Dokdonella fugitiva Myroides profundi Sphingobium faniae Bacillus horikoshii Dolichospermum curvum Myxococcus xanthus Sphingobium olei Bacillus longiquaesitum Dyadobacter alkalitolerans Natronincola ferrireducens Sphingomonas abaci Bacillus marisflavi Ectothiorhodospira haloalkaliphila Neisseria cinerea Sphingomonas asaccharolytica Bacillus nealsonii Ectothiorhodospira imhoffii Neisseria flavescens Sphingomonas fennica Bacillus niabensis Edwardsiella hoshinae Niabella aurantiaca Sphingomonas hankookensis Bacillus olivae Eggerthella lenta Niabella soli Sphingomonas hunanensis Bacillus oryzae Eikenella corrodens Niastella koreensis Sphingomonas japonica Bacillus plakortidis Emticicia ginsengisoli Nisaea nitritireducens Sphingomonas phyllosphaerae Bacillus pseudofirmus Emticicia oligotrophica Nitrosococcus watsoni Sphingomonas pruni Bacillus psychrosaccharolyticus Enterobacter aceae Nitrospira moscoviensis Sphingomonas roseiflava Bacillus thioparans Enterobacter cowanii Nocardia araoensis Sphingopyxis chilensis Bacteroides barnesiae Enterobacter ludwigii Nocardia harenae Sphingopyxis ginsengisoli Bacteroides chinchillae Enterobacter nickellidurans Nocardia higoensis Sphingopyxis granuli Bacteroides coprophilus Enterococcus columbae Nocardia jinanensis Sphingopyxis panaciterrae Bacteroides eggerthii Enterococcus italicus Nocardia novocastrensa Sphingopyxis witflariensis Bacteroides gallinarum Enterococcus rottae Nocardioides islandensis Spirosoma rigui Novosphingobium Bacteroides intestinalis Erwinia billingiae subterraneum Sporosarcina ureae Bacteroides salanitronis Erwinia oleae Oceanimonas smirnovii Staphylococcus delphini Oceanospirillum Bacteroides salyersiae Erwinia pyrifoliae multiglobuliferum Staphylococcus lentus Balneola vulgaris Erwinia rhapontici Ochrobactrum anthropi Stenotrophomonas nitritireducens Bdellovibrio bacteriovorus Erythrobacter flavus Ochrobactrum intermedium Steroidobacter denitrificans Bdellovibrio exovorus Erythromicrobium ramosum Olivibacter ginsengisoli Streptococcus dentapri 3 Bellilinea caldifistulae Eubacterium callanderi Olivibacter soli Streptococcus intermedius Bifidobacterium bombi Eubacterium cylindroides Oxalobacter formigenes Streptococcus marimammalium Bifidobacterium boum Facklamia hominis Paenibacillus amylolyticus Streptococcus massiliensis Bifidobacterium kashiwanohense Ferrimonas kyonanensis Paenibacillus barcinonensis Streptococcus minor Bifidobacterium magnum Fibrobacter intestinalis Paenibacillus chitinolyticus Streptococcus parasanguinis Bifidobacterium scardovii Filifactor alocis Paenibacillus donghaensis Streptococcus phocae Blastococcus aggregatus Filifactor villosus Paenibacillus ehimensis Streptococcus ursoris Brevibacillus ginsengisoli Frankia alni Paenibacillus filicis Streptomonospora halophila Bulleidia extructa Friedmanniella okinawensis Paenibacillus forsythiae Streptomyces aculeolatus Bulleidia moorei Frigoribacterium faeni Paenibacillus ginsengagri Streptomyces beijiangensis Burkholderia lata Fructobacillus fructosus Paenibacillus humicus Streptomyces espinosus Burkholderia multivorans Fusibacter paucivorans Paenibacillus illinoisensis Streptomyces eurythermus Burkholderia phenoliruptrix Fusobacterium canifelinum Paenibacillus mendelii Streptomyces griseoaurantiacus Burkholderia seminalis Fusobacterium simiae Paenibacillus pasadenensis Streptomyces noursei Burkholderia vietnamiensis Gallionella ferruginea Paenibacillus phyllosphaerae Streptomyces olivogriseus Butyricimonas synergistica Gemella bergeri Paenibacillus thailandensis Streptomyces panayensis Butyrivibrio hungatei Gemmatimonas aurantiaca Paenibacillus woosongensis Streptomyces pulcher Caldanaerobacter hydrothermalis Geobacillus thermoglucosidans Parabacteroides gordonii Streptomyces roseogilvus Caldicellulosiruptor bescii Geobacter grbiciae
Recommended publications
  • NCTC) Bacterial Strain Equivalents to American Type Culture Collection (ATCC) Bacterial Strains
    This list shows National Collection of Type Cultures (NCTC) bacterial strain equivalents to American Type Culture Collection (ATCC) bacterial strains. NCTC Number CurrentName ATCC Number NCTC 7212 Acetobacter pasteurianus ATCC 23761 NCTC 10138 Acholeplasma axanthum ATCC 25176 NCTC 10171 Acholeplasma equifetale ATCC 29724 NCTC 10128 Acholeplasma granularum ATCC 19168 NCTC 10172 Acholeplasma hippikon ATCC 29725 NCTC 10116 Acholeplasma laidlawii ATCC 23206 NCTC 10134 Acholeplasma modicum ATCC 29102 NCTC 10188 Acholeplasma morum ATCC 33211 NCTC 10150 Acholeplasma oculi ATCC 27350 NCTC 10198 Acholeplasma parvum ATCC 29892 NCTC 8582 Achromobacter denitrificans ATCC 15173 NCTC 10309 Achromobacter metalcaligenes ATCC 17910 NCTC 10807 Achromobacter xylosoxidans subsp. xylosoxidans ATCC 27061 NCTC 10808 Achromobacter xylosoxidans subsp. xylosoxidans ATCC 17062 NCTC 10809 Achromobacter xylosoxidans subsp. xylosoxidans ATCC 27063 NCTC 12156 Acinetobacter baumannii ATCC 19606 NCTC 10303 Acinetobacter baumannii ATCC 17904 NCTC 7844 Acinetobacter calcoaceticus ATCC 15308 NCTC 12983 Acinetobacter calcoaceticus ATCC 23055 NCTC 8102 acinetobacter dna group 13 ATCC 17903 NCTC 10304 Acinetobacter genospecies 13 ATCC 17905 NCTC 10306 Acinetobacter haemolyticus ATCC 17907 NCTC 10305 Acinetobacter haemolyticus subsp haemolyticus ATCC 17906 NCTC 10308 Acinetobacter johnsonii ATCC 17909 NCTC 10307 Acinetobacter junii ATCC 17908 NCTC 5866 Acinetobacter lwoffii ATCC 15309 NCTC 12870 Actinobacillus delphinicola ATCC 700179 NCTC 8529 Actinobacillus equuli ATCC 19392
    [Show full text]
  • Case Report: Coinfection with Rickettsia Monacensis and Orientia Tsutsugamushi
    Am. J. Trop. Med. Hyg., 101(2), 2019, pp. 332–335 doi:10.4269/ajtmh.18-0631 Copyright © 2019 by The American Society of Tropical Medicine and Hygiene Case Report: Coinfection with Rickettsia monacensis and Orientia tsutsugamushi Seok Won Kim,1† Choon-Mee Kim,2† Dong-Min Kim,3* and Na Ra Yun3 1Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea; 2Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea; 3Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea Abstract. Rickettsia monacensis and Orientia tsutsugamushi are bacteria of the family Rickettsiaceae, which causes fever, rash, and eschar formation; outdoor activities are a risk factor for Rickettsiaceae infection. A 75-year-old woman presented with fever, rash, and eschar and was confirmed as being scrub typhus based on a nested-polymerase chain reaction (N-PCR) test for a 56-kDa gene of O. tsutsugamushi; the genome was identified as the Boryong genotype. In addition, a pan-Rickettsia real-time PCR test was positive and a N-PCR test using a Rickettsia-specific partial outer membrane protein A (rOmpA) confirmed R. monacensis. This is the first case wherein a patient suspected of having scrub typhus owing to the presence of rash and eschar was also found to be coinfected with O. tsutsugamushi and R. monacensis based on molecular testing. INTRODUCTION leukocyte count, 7,200/mm3; hemoglobin, 11.6 g/dL; platelet count, 232,000/mm3; and erythrocyte sedimentation rate, 31 Rickettsia monacensis is a pathogen that causes spotted mm/hours. C-reactive protein and procalcitonin levels were fever group rickettsial infection; the main symptoms of in- elevated at 9.26 mg/dL and 0.836 ng/mL (0–0.5 ng/mL), re- fection include fever, headache, and myalgia, as well as es- 1 spectively.
    [Show full text]
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • Legionella Survey in the Plumbing System of a Sparse Academic Campus: a Case Study at the University of Perugia
    Article Legionella Survey in the Plumbing System of a Sparse Academic Campus: A Case Study at the University of Perugia Ermanno Federici 1,*, Silvia Meniconi 2, Elisa Ceci 1, Elisa Mazzetti 2, Chiara Casagrande 1, Elena Montalbani 1, Stefania Businelli 3, Tatiana Mariani 3, Paolo Mugnaioli 3, Giovanni Cenci 1 and Bruno Brunone 2 1 Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; [email protected] (E.C.); [email protected] (C.C.); [email protected] (E.M.); [email protected] (G.C.) 2 Dipartimento di Ingegneria Civile ed Ambientale, University of Perugia, 06123 Perugia, Italy; [email protected] (S.M.); [email protected] (E.M.); [email protected] (B.B.) 3 Ripartizione Tecnica, University of Perugia, 06123 Perugia, Italy; [email protected] (S.B.); [email protected] (T.M.); [email protected] (P.M.) * Correspondence: [email protected]; Tel.: +39-075-5857330 Received: 30 June 2017; Accepted: 29 August 2017; Published: 1 September 2017 Abstract: We have monitored the presence of bacteria belonging to the genus Legionella in the plumbing of buildings at the University of Perugia (Italy). More than 300 water samples were collected from 156 control-point taps in 41 buildings comprised in the eight campuses of the University. Legionella was absent in most samples, while it was found in only 12 buildings (29% of the total). Molecular analysis indicated the presence of L. pneumophila (serogroups 1, 8 and 6–10), L. taurinensis and L. anisa. In only three cases contamination levels were above the limit at which remedial actions are required, according to international guidelines.
    [Show full text]
  • Metatranscriptomic Analysis of Community Structure And
    School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support.
    [Show full text]
  • Expansion of Tick-Borne Rickettsioses in the World
    microorganisms Review Expansion of Tick-Borne Rickettsioses in the World Mariusz Piotrowski * and Anna Rymaszewska Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century. Keywords: Tick-borne rickettsioses; Tick-borne diseases; Rickettsiales 1. Introduction Tick-borne rickettsioses are caused by obligate intracellular Gram-negative bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia.
    [Show full text]
  • Rickettsia Monacensis As a Cause of a Tick Bite
    a nonpruritic, disseminated maculopapular rash, with no Rickettsia inoculation eschar, of the trunk and lower extremities, in- cluding palms and soles. Other than a slightly low plate- monacensis let count (82,000/mm3), examination fi ndings were within normal limits. MSF was diagnosed, and serum and defi - and Human brinated blood samples were taken before a course of oral doxycycline (100 mg/12 h for 10 d) was initiated. Three Disease, Spain days later, fever and rash were gone without sequelae. Ad- Isabel Jado,* José A. Oteo,† Mikel Aldámiz,‡ ditional serial serum samples were taken during weeks 4, Horacio Gil,* Raquel Escudero,* 13, and 26 after onset and reserved for serologic analysis Valvanera Ibarra,† Joseba Portu,‡ (Table). Aranzazu Portillo,† María J. Lezaun,‡ Patient 2 was a 59-year-old woman from Basque Cristina García-Amil,* Isabel Rodríguez-Moreno,* Country, who sought medical attention on September 20, and Pedro Anda* 2003, 4 days after onset of fever (38ºC), headache, and an erythematous rash, with no inoculation eschar, at the site of We identifi ed Rickettsia monacensis as a cause of a tick bite. The patient reported a history of tick bites, most acute tickborne rickettsiosis in 2 humans. Its pathogenic recently 1 week before symptom onset. Blood cell counts role was assessed by culture and detection of the organism and other blood chemistry values were normal. MSF was in patients’ blood samples. This fi nding increases the num- ber of recognized human rickettsial pathogens and expands diagnosed, and oral doxycycline (100 mg/12 h for 10 d) the known geographic distribution of Mediterranean spotted was prescribed.
    [Show full text]
  • Molecular Detection and Identification of Rickettsiales Pathogens in Dog Ticks from Costa Rica
    Accepted Manuscript Title: Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Author: Liliana Campos-Calderon´ Leyda Abrego-S´ anchez´ Antony Solorzano-Morales´ Alberto Alberti Gessica Tore Rosanna Zobba Ana E. Jimenez-Rocha´ Gaby Dolz PII: S1877-959X(16)30120-0 DOI: http://dx.doi.org/doi:10.1016/j.ttbdis.2016.07.015 Reference: TTBDIS 700 To appear in: Received date: 29-2-2016 Revised date: 1-7-2016 Accepted date: 24-7-2016 Please cite this article as: Campos-Calderon,´ Liliana, Abrego-S´ anchez,´ Leyda, Solorzano-Morales,´ Antony, Alberti, Alberto, Tore, Gessica, Zobba, Rosanna, Jimenez-Rocha,´ Ana E., Dolz, Gaby, Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.Ticks and Tick-borne Diseases http://dx.doi.org/10.1016/j.ttbdis.2016.07.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Liliana Campos-Calderóna, Leyda Ábrego-Sánchezb, Antony Solórzano- Moralesa, Alberto Albertic, Gessica Torec, Rosanna Zobbac, Ana E. Jiménez- Rochaa, Gaby Dolza,b,* aEscuela de Medicina Veterinaria, Universidad Nacional, Campus Benjamín Núñez, Barreal de Heredia, Costa Rica ([email protected], [email protected], [email protected]).
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Rickettsia Spp. in Bats of Romania: High Prevalence of Rickettsia Monacensis in Two Insectivorous Bat Species Ioana A
    Matei et al. Parasites Vectors (2021) 14:107 https://doi.org/10.1186/s13071-021-04592-x Parasites & Vectors RESEARCH Open Access Rickettsia spp. in bats of Romania: high prevalence of Rickettsia monacensis in two insectivorous bat species Ioana A. Matei1*† , Alexandra Corduneanu2†, Attila D. Sándor2,3, Angela Monica Ionica2,4, Luciana Panait2, Zsuzsa Kalmár2, Talida Ivan5, Ionel Papuc5, Cosmina Bouari1, Nicodim Fit1 and Andrei Daniel Mihalca2 Abstract Background: Spotted fever group rickettsiae represent one of the most diverse groups of vector-borne bacteria, with several human pathogenic species showing an emerging trend worldwide. Most species are vectored by ticks (Ixodidae), with many zoonotic reservoir species among most terrestrial vertebrate groups. While the reservoir compe- tence of many diferent vertebrate species is well known (e.g. birds, rodents and dogs), studies on insectivorous bats have been rarely performed despite their high species diversity, ubiquitous urban presence and importance in har- boring zoonotic disease agents. Romania has a high diversity and ubiquity of bats. Moreover, seven out of eight SFG rickettsiae species with zoonotic potential were previously reported in Romania. Based on this, the aim of this study was to detect Rickettsia species in tissue samples in bats. Methods: Here we report a large-scale study (322 bats belonging to 20 species) on the presence of Rickettsia spp. in Romanian bat species. Tissue samples from insectivorous bats were tested for the presence of Rickettsia DNA using PCR detection amplifying a 381 bp fragment of the gltA gene. Positive results were sequenced to confrm the results. The obtained results were statistically analyzed by chi-squared independence test.
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]