Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and Their Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jhep01(2020)007
Published for SISSA by Springer Received: March 27, 2019 Revised: November 15, 2019 Accepted: December 9, 2019 Published: January 2, 2020 Deformed graded Poisson structures, generalized geometry and supergravity JHEP01(2020)007 Eugenia Boffo and Peter Schupp Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany E-mail: [email protected], [email protected] Abstract: In recent years, a close connection between supergravity, string effective ac- tions and generalized geometry has been discovered that typically involves a doubling of geometric structures. We investigate this relation from the point of view of graded ge- ometry, introducing an approach based on deformations of graded Poisson structures and derive the corresponding gravity actions. We consider in particular natural deformations of the 2-graded symplectic manifold T ∗[2]T [1]M that are based on a metric g, a closed Neveu-Schwarz 3-form H (locally expressed in terms of a Kalb-Ramond 2-form B) and a scalar dilaton φ. The derived bracket formalism relates this structure to the generalized differential geometry of a Courant algebroid, which has the appropriate stringy symme- tries, and yields a connection with non-trivial curvature and torsion on the generalized “doubled” tangent bundle E =∼ TM ⊕ T ∗M. Projecting onto TM with the help of a natural non-isotropic splitting of E, we obtain a connection and curvature invariants that reproduce the NS-NS sector of supergravity in 10 dimensions. Further results include a fully generalized Dorfman bracket, a generalized Lie bracket and new formulas for torsion and curvature tensors associated to generalized tangent bundles. -
From Topological Field Theory to Deformation Quantization and Reduction
Cattaneo, Alberto (2006). From topological field theory to deformation quantization and reduction. In: International Congress of Mathematicians. Vol. III. 339-365. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: 2006. International Congress of Mathematicians. Vol. III. 339-365. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2006 From topological field theory to deformation quantization and reduction Cattaneo, Alberto Cattaneo, Alberto (2006). From topological field theory to deformation quantization and reduction. In: International Congress of Mathematicians. Vol. III. 339-365. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: 2006. International Congress of Mathematicians. Vol. III. 339-365. From topological field theory to deformation quantization and reduction Alberto S. Cattaneo∗ Abstract. This note describes the functional-integral quantization of two-dimensional topolog- ical field theories together with applications to problems in deformation quantization of Poisson manifolds and reduction of certain submanifolds. A brief introduction to smooth graded mani- folds and to the Batalin–Vilkovisky formalism is included. Mathematics Subject Classification (2000). Primary 81T45; Secondary 51P05, 53D55, 58A50, 81T70. Keywords. Topological quantum field theory, BV formalism, graded manifolds, deformation quantization, formality, Poisson reduction, L∞- and A∞-algebras. 1. Introduction: a 2D TFT 0 1.1. The basic setting. Let be a smooth compact 2-manifold. On M1 := ()⊕ 1() one may define the following very simple action functional: S(ξ,η) := η dξ, ξ ∈ 0(), η ∈ 1(), (1.1) which is invariant under the distribution 0 ⊕ dβ, β ∈ 0(). -
Some Results in Supergeometry
Some results in supergeometry Harmonic maps from super Riemann surfaces and Automorphism supergroups of supermanifolds Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨atzu K¨oln vorgelegt von Dominik Ostermayr aus Dachau 2017 Berichterstatter: PD Dr. Alexander Alldridge Prof. Dr. George Marinescu Prof. Dr. Tilmann Wurzbacher Tag der m¨undlichen Pr¨ufung: 20. Januar 2017 Kurzzusammenfassung Die vorliegende Arbeit besteht aus zwei unabh¨angigenund eigenst¨andigen Teilen. Gegenstand des ersten Teils sind harmonische Abbildungen von super-Riemannschen Fl¨achen nach komplex-projektiven R¨aumenund projektiven R¨aumenbez¨uglich des Super- schiefk¨orpers D: In beiden F¨allenwird die Theorie der Gauß-Transformierten entwickelt und der Begriff der Isotropie studiert, insbesondere mit Hinblick auf den Zusammenhang zu holomorphen Differentialen auf der super-Riemannschen Fl¨ache. Uberdies¨ geben wir eine Definition f¨urharmonische Abbildungen endlichen Typs f¨ureine spezielle Klasse von n n+1 Abbildungen nach CP j und erhalten so eine Klassifikation bestimmter harmonischer super-Tori. Ferner untersuchen wir die Gleichungen, die von den unterliegenden Objek- ten erf¨ulltwerden und geben ein Beispiel eines harmonischen super-Torus in DP 2 dessen unterliegende Abbildung nicht harmonisch ist. Im zweiten Teil studieren wir einen klassischen Satz, der besagt, dass die Gruppe der Automorphismen einer Mannigfaltigkeit, die eine G-Struktur endlichen Typs erhalten, eine Lie-Gruppe bildet, im Kontext von Supermannigfaltigkeiten. Wir verallgemeinern dieses Theorem auf die Kategorie der cs Mannigfaltigkeiten und illustrieren es anhand einiger, sowohl klassische Objekte verallgemeinernder als auch genuin supergeometrischer, Beispiele. Insbesondere ist es n¨otigeine neue Klasse von Supermannigfaltigkeiten einzuf¨uhren - gemischte Supermannigfaltigkeiten. iii Abstract This thesis consists of two independent and self-contained parts. -
Graded-And-Microformal-Prop
The University of Manchester Research Graded Geometry, Q-Manifolds, and Microformal Geometry DOI: 10.1002/prop.201910023 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Voronov, T. (2019). Graded Geometry, Q-Manifolds, and Microformal Geometry: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory. Fortschritte der Physik. https://doi.org/10.1002/prop.201910023 Published in: Fortschritte der Physik Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:06. Oct. 2021 Graded geometry, Q-manifolds, and microformal geometry 1,2 Theodore Th. Voronov ¤ below), to which we give a brief introduction as well. We give an exposition of graded and microformal ge- “Thick morphisms” (defined for ordinary manifolds, ometry, and the language of Q-manifolds. Q-manifolds supermanifolds or graded manifolds) generalize ordinary are supermanifolds endowed with an odd vector field of maps or supermanifold morphisms, but are not maps square zero. -
Torsion Constraints in Supergeometry
Commun. Math. Phys. 133, 563-615(1990) Communications ΪΠ Mathematical Physics ©Springer-Verlagl990 Torsion Constraints in Supergeometry John Lott* I.H.E.S., F-91440 Bures-sur-Yvette, France Received November 9, 1989; in revised form April 2, 1990 Abstract. We derive the torsion constraints for superspace versions of supergravity theories by means of the theory of G-stmctures. We also discuss superconformal geometry and superKahler geometry. I. Introduction Supersymmetry is a now well established topic in quantum field theory [WB, GGRS]. The basic idea is that one can construct actions in ordinary spacetime which involve both even commuting fields and odd anticommuting fields, with a symmetry which mixes the two types of fields. These actions can then be interpreted as arising from actions in a superspace with both even and odd coordinates, upon doing a partial integration over the odd coordinates. A mathematical framework to handle the differential topology of supermanifolds, manifolds with even and odd coordinates, was developed by Berezin, Kostant and others. A very readable account of this theory is given in the book of Manin [Ma]. The right notion of differential geometry for supermanifolds is less clear. Such a geometry is necessary in order to write supergravity theories in superspace. One could construct a supergeometry by ΊL2 grading what one usually does in (pseudo) Riemannian geometry, to have supermetrics, super Levi-Civita connections, etc. The local frame group which would take the place of the orthogonal group in standard geometry would be the orthosymplectic group. However, it turns out that this would be physically undesirable. Such a program would give more fields than one needs for a minimal supergravity theory, i.e. -
Introduction to Graded Geometry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector European Journal of Mathematics DOI 10.1007/s40879-017-0138-4 RESEARCH/REVIEW ARTICLE Introduction to graded geometry Maxime Fairon1 Received: 7 November 2016 / Revised: 1 March 2017 / Accepted: 8 March 2017 © The Author(s) 2017. This article is an open access publication Abstract This paper aims at setting out the basics of Z-graded manifolds theory. We introduce Z-graded manifolds from local models and give some of their properties. The requirement to work with a completed graded symmetric algebra to define functions is made clear. Moreover, we define vector fields and exhibit their graded local basis. The paper also reviews some correspondences between differential Z-graded manifolds and algebraic structures. Keywords Supergeometry · Graded manifold · Differential graded manifold · Q-manifold Mathematics Subject Classification 58A50 · 51-02 1 Introduction In the 70s, supermanifolds were introduced and studied to provide a geometric back- ground to the developing theory of supersymmetry. In the Berezin–Leites [2] and Kostant [11] approach, they are defined as Z2-graded locally ringed spaces. More pre- cisely, this means that a supermanifold is a pair (|N|, ON ) such that |N| is a topological space and ON is a sheaf of Z2-graded algebras which satisfies, for all sufficiently small open subsets U, ∞ m ON (U) CRn (U)⊗ R , B Maxime Fairon [email protected] 1 School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom 123 M. Fairon m where R is endowed with its canonical Z2-grading. -
Factorization Algebras in Quantum Field Theory Volume 2 (28 April 2016)
Factorization algebras in quantum field theory Volume 2 (28 April 2016) Kevin Costello and Owen Gwilliam Contents Chapter 1. Overview1 1.1. Classical field theory and factorization algebras1 1.2. Quantum field theory and factorization algebras2 1.3. The quantization theorem3 1.4. The rigid quantization conjecture4 Chapter 2. Structured factorization algebras and quantization7 2.1. Structured factorization algebras7 2.2. Commutative factorization algebras9 2.3. The P0 operad9 2.4. The Beilinson-Drinfeld operad 13 Part 1. Classical field theory 17 Chapter 3. Introduction to classical field theory 19 3.1. The Euler-Lagrange equations 19 3.2. Observables 20 3.3. The symplectic structure 20 3.4. The P0 structure 21 Chapter 4. Elliptic moduli problems 23 4.1. Formal moduli problems and Lie algebras 24 4.2. Examples of elliptic moduli problems related to scalar field theories 28 4.3. Examples of elliptic moduli problems related to gauge theories 30 4.4. Cochains of a local L¥ algebra 34 4.5. D-modules and local L¥ algebras 36 Chapter 5. The classical Batalin-Vilkovisky formalism 45 5.1. The classical BV formalism in finite dimensions 45 5.2. The classical BV formalism in infinite dimensions 47 5.3. The derived critical locus of an action functional 50 5.4. A succinct definition of a classical field theory 55 5.5. Examples of field theories from action functionals 57 5.6. Cotangent field theories 58 Chapter 6. The observables of a classical field theory 63 iii iv CONTENTS 6.1. The factorization algebra of classical observables 63 6.2. -
1604.00711.Pdf
LIE ALGEBROIDS AS L∞ SPACES RYAN GRADY AND OWEN GWILLIAM Abstract. In this paper, we relate Lie algebroids to Costello’s version of derived geometry. For instance, we show that each Lie algebroid—and the natural generalization to dg Lie algebroids— provides an (essentially unique) L∞ space. More precisely, we construct a faithful functor from the category of Lie algebroids to the category of L∞ spaces. Then we show that for each Lie algebroid L, there is a fully faithful functor from the category of representations up to homotopy of L to the category of vector bundles over the associated L∞ space. Indeed, this functor sends the adjoint complex of L to the tangent bundle of the L∞ space. Finally, we show that a shifted-symplectic structure on a dg Lie algebroid produces a shifted symplectic structure on the associated L∞ space. Contents 1. Introduction 1 2. Recollections on L∞ spaces 3 3. Recollections on Lie algebroids 11 4. Lie algebroids as L∞ spaces 13 5. Representations up to homotopy and vector bundles on L∞ spaces 20 6. Symplectic structures 32 Appendix A. Jets and connections 37 References 43 1. Introduction Lie algebroids appear throughout geometry and physics, and they provide a fertile transfer of ideas and intuition between geometry and Lie theory. (The literature is vast. See, for instance, arXiv:1604.00711v2 [math.DG] 18 Jan 2018 [Mac05, CdSW99, ELW99, Fer02, CRvdB10, CF03], among many other papers.) Recently the language of derived geometry has provided another perspective on the relationship between Lie theory and geometry, emphasizing the idea that a deformation problem is describable by a dg Lie algebra (e.g., [Lur, Hin01]). -
Automorphisms of Graded Super Symplectic Manifolds
Surveys in Differential Geometry XV Automorphisms of Graded Super Symplectic Manifolds Joshua Leslie Abstract. In section 1 we present the language of differential analysis in graded locally convex infinite dimensional vector spaces that was studied in [5]. In section 2 we give results on diffeological Lie groups and Lie algebras and formulate diffeological versions of the fundamental theorems of Lie. In section 3 we introduce the notion of graded supermani- folds and we indicate a method of constructing non-trivial com- pact graded supermanifolds with non-degenerate graded differen- tial forms which generalize symplectic and contact structures to the graded case. In section 4 we study automorphisms of generalizations of some of the classical geometric structures to compact graded supermani- fold, M, and show that these automorphism groups are diffeological Lie subgroups of the Lie group of superdiffeomorphisms of M. Introduction We shall show how to construct compact supermanifolds having geomet- ric structures determined by certain elements of ∧p ⊗ ⊗q Γ (TΓM) Γ0 Γ0 (TΓM) ∧p ⊗ ⊗q where Γ (TΓM) Γ0 Γ0 (TΓM) represents the smooth sections of the bundle ∧p ⊗ ⊗q → ΠM : (TΓM) Γ0 Γ0 (TΓM) M, where by abuse of notation the “Γ” in TΓM and TΓM represents a finitely generated Grassmann algebra. The geometric automorphisms of these geo- metric structures will be seen to be diffeological Lie subgroups of the infinite c 2011 International Press 237 238 J. LESLIE dimensional Lie group of G∞ diffeomorphisms of an a non trivial compact G∞ supermanifold. Underlying the infinite dimensional Lie algebras of Cartan are geomet- ric structures of differential geometry; such as contact structures, symplectic structures, and foliated structures. -
Analysis on Superspace: an Overview
BULL. AUSTRAL. MATH. SOC. 58C50, 15A75, 17B70, 46S20, 81Q60 VOL. 50 (1994) [135-165] ANALYSIS ON SUPERSPACE: AN OVERVIEW VLADIMIR G. PESTOV The concept of superspace is fundamental for some recent physical theories, notably supersymmetry, and a mathematical feedback for it is provided by superanalysis and supergeometry. We survey the state of affairs in superanalysis, shifting our attention from supermanifold theory to "plain" superspaces. The two principal existing approaches to superspaces are sketched and links between them discussed. We examine a problem by Manin of representing even geometry (analysis) as a collective effect in infinite-dimensional purely odd geometry (analysis), by applying the technique of nonstandard (infinitesimal) analysis. FOREWORD "Superspace is the greatest invention since the wheel" (see [59]). I don't know how many of us would agree with this radical statement, and it was only intended to be a jocular epigraph, of course. However, the concept of superspace is thriving indeed in theoretical physics of our days. Under superspace physicists understand our space-time labeled not only with usual coordinates (x11), but also with anticommuting coordinates (0a), and endowed with a representation of a certain group or, better still, supergroup, whatever it means. The anticommuting coordinates represent certain internal degrees of freedom of the physical system. This concept was actually known in physics since the early 60s or late 50s [138, 138, 91, 28], but what made it so important was the discovery of supersymmetry [144, 131, 145], which is an essentially new form of symmetry unifying fermions (particles of matter) with bosons (particles carrying interaction between bosons). -
On a Z2n-Graded Version of Supersymmetry
S S symmetry Article n On a Z2-Graded Version of Supersymmetry Andrew James Bruce Mathematics Research Unit, University of Luxembourg, Maison du Nombre 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg; [email protected] Received: 13 December 2018; Accepted: 16 January 2019; Published: 19 January 2019 n Abstract: We extend the notion of super-Minkowski space-time to include Z2 -graded (Majorana) spinor coordinates. Our choice of the grading leads to spinor coordinates that are nilpotent but commute amongst themselves. The mathematical framework we employ is the recently developed n category of Z2 -manifolds understood as locally ringed spaces. The formalism we present resembles N -extended superspace (in the presence of central charges), but with some subtle differences due to the exotic nature of the grading employed. n Keywords: Z2 -manifolds; supersymmetry; superspace methods; parastatistics 1. Introduction Supersymmetry was independently discovered by three groups of authors: Gervais & Sakita [1], Gol’fand & Lichtman [2] and Volkov & Akulov [3] in the early 1970s. The first example of an interacting supersymmetric quantum field theory in four dimensions was due to Wess & Zumino [4]. This non-classical symmetry is more than just a way of relating bosonic and fermionic degrees of freedom as supersymmetric field theories can have some remarkable properties. For example, supersymmetry can lead to milder divergences and even ‘non-renormalisation theorems’; offer a solution to the hierarchy problem in Grand Unified Theories; remove the tachyon from the spectrum of string theories and naturally leads to a theory of gravity when promoted to a local gauge theory. However, we stress that no experimental evidence that Nature utilises supersymmetry has yet been found. -
Graded Manifolds: Some Issues
Graded Manifolds: Some Issues Jan Vysok´y (joint work with Rudolf Smolka)ˇ Higher Structures and Field Theory ESI Wien, 11 September 2020 Z-graded manifolds: overview Z-graded (or simply graded) manifolds, Z-graded supermanifolds: Suitable mathematical theory of \generalized manifolds", where functions locally depend on Z-graded variables (which do commute accordingly). There are two basic approaches to this problem: 1 Consider (smooth) Z2-supermanifolds with an additional Z-grading. Kontsevich (1997), Severaˇ (2001), Roytenberg, Voronov (2002). 2 Define Z-graded (henceforth just graded) manifolds without an underlying supermanifold. Mehta (2006), Cattaneo & Sch¨atz (2010), Fairon (2017). Optimal scenario Mimic Berezin-Leites approach to supermanifolds (1983) with \purely graded" coordinates of all degrees (not just N-manifolds). Jan Vysok´y Graded Manifolds: Some Issues 1 / 25 Graded algebra: usual approach Definition (graded \object") An object (vector space, ring, algebra) V is graded, if it can be L written as as a direct sum V = Vk of its subspaces Vk ⊆ V . k2Z h Elements of V := [k2ZVk − f0g have defined degree jvj 2 Z and are called homogeneous elements. Algebraic structures (e.g. ring multiplication) satisfy additional grading requirements (e.g. jv · wj = jvj + jwj). Object morphisms ' : V ! W have to preserve the grading, that is j'(v)j = jvj (or shift it by a given number, when required). Example L V = Vk a graded vector space. Symmetric algebra S(V ) is k2Z S(V ) = T (V )=J; J = hfv ⊗ w − (−1)jwjjvjw ⊗ v j v; w 2 V hgi: It is a graded commutative associative algebra. Jan Vysok´y Graded Manifolds: Some Issues 2 / 25 Graded manifolds: usual approach Definition (graded manifold) Let M be a second countable Hausdorff space.