On a Z2n-Graded Version of Supersymmetry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Topological Field Theory to Deformation Quantization and Reduction
Cattaneo, Alberto (2006). From topological field theory to deformation quantization and reduction. In: International Congress of Mathematicians. Vol. III. 339-365. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: 2006. International Congress of Mathematicians. Vol. III. 339-365. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2006 From topological field theory to deformation quantization and reduction Cattaneo, Alberto Cattaneo, Alberto (2006). From topological field theory to deformation quantization and reduction. In: International Congress of Mathematicians. Vol. III. 339-365. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: 2006. International Congress of Mathematicians. Vol. III. 339-365. From topological field theory to deformation quantization and reduction Alberto S. Cattaneo∗ Abstract. This note describes the functional-integral quantization of two-dimensional topolog- ical field theories together with applications to problems in deformation quantization of Poisson manifolds and reduction of certain submanifolds. A brief introduction to smooth graded mani- folds and to the Batalin–Vilkovisky formalism is included. Mathematics Subject Classification (2000). Primary 81T45; Secondary 51P05, 53D55, 58A50, 81T70. Keywords. Topological quantum field theory, BV formalism, graded manifolds, deformation quantization, formality, Poisson reduction, L∞- and A∞-algebras. 1. Introduction: a 2D TFT 0 1.1. The basic setting. Let be a smooth compact 2-manifold. On M1 := ()⊕ 1() one may define the following very simple action functional: S(ξ,η) := η dξ, ξ ∈ 0(), η ∈ 1(), (1.1) which is invariant under the distribution 0 ⊕ dβ, β ∈ 0(). -
Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and Their Applications
ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), 415–471 INTRODUCTION TO GRADED GEOMETRY, BATALIN-VILKOVISKY FORMALISM AND THEIR APPLICATIONS Jian Qiu and Maxim Zabzine Abstract. These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible toboth physicists and mathematicians. Table of Contents 1. Introduction and motivation 416 2. Supergeometry 417 2.1. Idea 418 2.2. Z2-graded linear algebra 418 2.3. Supermanifolds 420 2.4. Integration theory 421 3. Graded geometry 423 3.1. Z-graded linear algebra 423 3.2. Graded manifold 425 4. Odd Fourier transform and BV-formalism 426 4.1. Standard Fourier transform 426 4.2. Odd Fourier transform 427 4.3. Integration theory 430 4.4. Algebraic view on the integration 433 5. Perturbation theory 437 5.1. Integrals in Rn-Gaussian Integrals and Feynman Diagrams 437 2010 Mathematics Subject Classification: primary 58A50; secondary 16E45, 97K30. Key words and phrases: Batalin-Vilkovisky formalism, graded symplectic geometry, graph homology, perturbation theory. -
SUPERSYMMETRY 1. Introduction the Purpose
SUPERSYMMETRY JOSH KANTOR 1. Introduction The purpose of these notes is to give a short and (overly?)simple description of supersymmetry for Mathematicians. Our description is far from complete and should be thought of as a first pass at the ideas that arise from supersymmetry. Fundamental to supersymmetry is the mathematics of Clifford algebras and spin groups. We will describe the mathematical results we are using but we refer the reader to the references for proofs. In particular [4], [1], and [5] all cover spinors nicely. 2. Spin and Clifford Algebras We will first review the definition of spin, spinors, and Clifford algebras. Let V be a vector space over R or C with some nondegenerate quadratic form. The clifford algebra of V , l(V ), is the algebra generated by V and 1, subject to the relations v v = v, vC 1, or equivalently v w + w v = 2 v, w . Note that elements of· l(V ) !can"b·e written as polynomials· in V · and this! giv"es a splitting l(V ) = l(VC )0 l(V )1. Here l(V )0 is the set of elements of l(V ) which can bCe writtenC as a linear⊕ C combinationC of products of even numbers ofCvectors from V , and l(V )1 is the set of elements which can be written as a linear combination of productsC of odd numbers of vectors from V . Note that more succinctly l(V ) is just the quotient of the tensor algebra of V by the ideal generated by v vC v, v 1. -
Proofs JHEP 092P 1215 Xxxxxxx ???, 2016 Springer : Doi: March 1, 2016 : Y February 25, 2016 December 11, 2015 : : Setting
Published for SISSA by Springer Received: December 11, 2015 Revised: February 25, 2016 Accepted: March 1, 2016 Published: ???, 2016 proofs JHEP_092P_1215 Notes on super Killing tensors P.S. Howea and U. Lindstr¨omb,c aDepartment of Mathematics, King’s College London, The Strand, London WC2R 2LS, U.K. bDepartment of Physics and Astronomy, Theoretical Physics, Uppsala University, SE-751 20 Uppsala, Sweden cTheoretical Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K. E-mail: [email protected], [email protected] Abstract: The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed. Keywords: Extended Supersymmetry, Superspaces, Higher Spin Symmetry ArXiv ePrint: 1511.04575 Open Access, c The Authors. doi:xxxxxxx Article funded by SCOAP3. Contents 1 Introduction 1 2 Killing tensors in superspace 3 3 Superparticles 6 4 SCKTs in flat superspaces 10 proofs JHEP_092P_1215 5 Analytic superspace 18 6 Components of superconformal Killing tensors 24 6.1 D = 3 25 6.2 D = 4 26 6.3 D = 6 27 6.4 Algebras 28 7 Comments on higher spin 29 8 Concluding remarks 30 A Supersymmetric SN bracket 31 1 Introduction In ordinary Lorentzian spacetime a Killing vector, K, is a symmetry of the metric, i.e. -
Supersymmetric Lagrangians
1 Section 1 Setup Supersymmetric Lagrangians Chris Elliott February 6, 2013 1 Setup Let's recall some notions from classical Lagrangian field theory. Let M be an oriented supermanifold: our spacetime, of dimension njd. For our purposes, we will most often think about the case where M is either Minkowski space Mˇ n = R1;n−1, or Super Minkowski space M = Mˇ n × ΠS where S is a representation of Spin(1; n − 1). Definition 1.1. Let E ! M be a smooth (super) fibre bundle. The associated space of fields is the space of smooth sections φM ! E.A Lagrangian density on F is a function L: F! Dens(M) { where Dens(M) denotes the bundle of densities on M { that satisfies a locality condition. Precisely, we form the pullback bundle Dens(M)F / Dens(M) M × F / M π1 and require L to be a section of this bundle such that, for some k, for all m 2 M, L(m; φ) only depends on the first k derivatives of φ. We can phrase this in terms of factoring through the kth jet bundle of E. As usual, we define the action functional to be the integral Z S(φ) = L(φ): M A Lagrangian system generally includes additional information, namely a choice of variational 1-form γ. In general I won't use this data, but I should mention when it might play a role. 1.1 Symmetries In this talk, we will be discussing Lagrangian systems with certain kinds of symmetry called supersymmetry. As such, it'll be important to understand what it actually means to be a symmetry of such a system. -
[Math.RA] 14 Jun 2007 the Minkowski and Conformal Superspaces
IFIC/06-28 FTUV-05/0928 The Minkowski and conformal superspaces R. Fioresi 1 Dipartimento di Matematica, Universit`adi Bologna Piazza di Porta S. Donato, 5. 40126 Bologna. Italy. e-mail: fi[email protected] M. A. Lled´o Departament de F´ısica Te`orica, Universitat de Val`encia and IFIC C/Dr. Moliner, 50, E-46100 Burjassot (Val`encia), Spain. e-mail: Maria.Lledo@ific.uv.es and V. S. Varadarajan Department of Mathematics, UCLA. Los Angeles, CA, 90095-1555, USA e-mail: [email protected] Abstract We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it arXiv:math/0609813v2 [math.RA] 14 Jun 2007 as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra. 1Investigation supported by the University of Bologna, funds for selected research top- ics. 1 Contents 1 Introduction 3 2 The complex Minkowski space time and the Grassmannian G(2,4) 6 2.1 The Pl¨ucker embedding and the Klein quadric . 7 2.2 Therealform ........................... 10 3 Homogeneous spaces for Lie supergroups 11 3.1 The supermanifold structure on X = G/H ........... 12 3.2 The action of G on X ...................... 15 3.3 The functor of points of X = G/H ............... 16 4 The super Poincar´eand the translation superalgebras 17 4.1 Thetranslationsuperalgebra. -
Lectures on Supersymmetry and Superstrings 1 General Superalgebra
Lectures on supersymmetry and superstrings Thomas Mohaupt Abstract: These are informal notes on some mathematical aspects of su- persymmetry, based on two ‘Mathematics and Theoretical Physics Meetings’ in the Autumn Term 2009.1 First super vector spaces, Lie superalgebras and su- percommutative associative superalgebras are briefly introduced together with superfunctions and superspaces. After a review of the Poincar´eLie algebra we discuss Poincar´eLie superalgebras and introduce Minkowski superspaces. As a minimal example of a supersymmetric model we discuss the free scalar superfield in two-dimensional N = (1, 1) supersymmetry (this is more or less copied from [1]). We briefly discuss the concept of chiral supersymmetry in two dimensions. None of the material is original. We give references for further reading. Some ‘bonus material’ on (super-)conformal field theories, (super-)string theories and symmetric spaces is included. These are topics which will play a role in future meetings, or which came up briefly during discussions. 1 General superalgebra Definition: A super vector space V is a vector space with a decomposition V = V V 0 ⊕ 1 and a map (parity map) ˜ : (V V ) 0 Z · 0 ∪ 1 −{ } → 2 which assigns even or odd parity to every homogeneous element. Notation: a V a˜ =0 , ‘even’ , b V ˜b = 1 ‘odd’ . ∈ 0 → ∈ 1 → Definition: A Lie superalgebra g (also called super Lie algebra) is a super vector space g = g g 0 ⊕ 1 together with a bracket respecting the grading: [gi , gj] gi j ⊂ + (addition of index mod 2), which is required to be Z2 graded anti-symmetric: ˜ [a,b]= ( 1)a˜b[b,a] − − (multiplication of parity mod 2), and to satisfy a Z2 graded Jacobi identity: ˜ [a, [b,c]] = [[a,b],c] + ( 1)a˜b[b, [a,c]] . -
Graded-And-Microformal-Prop
The University of Manchester Research Graded Geometry, Q-Manifolds, and Microformal Geometry DOI: 10.1002/prop.201910023 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Voronov, T. (2019). Graded Geometry, Q-Manifolds, and Microformal Geometry: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory. Fortschritte der Physik. https://doi.org/10.1002/prop.201910023 Published in: Fortschritte der Physik Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:06. Oct. 2021 Graded geometry, Q-manifolds, and microformal geometry 1,2 Theodore Th. Voronov ¤ below), to which we give a brief introduction as well. We give an exposition of graded and microformal ge- “Thick morphisms” (defined for ordinary manifolds, ometry, and the language of Q-manifolds. Q-manifolds supermanifolds or graded manifolds) generalize ordinary are supermanifolds endowed with an odd vector field of maps or supermanifold morphisms, but are not maps square zero. -
M-Theory from the Superpoint
M-Theory from the Superpoint John Huerta∗, Urs Schreibery March 21, 2017 Abstract The \brane scan" classifies consistent Green{Schwarz strings and membranes in terms of the invariant cocycles on super-Minkowski spacetimes. The \brane bouquet" generalizes this by consecutively forming the invariant higher central extensions induced by these cocycles, which yields the complete brane content of string/M-theory, including the D-branes and the M5- brane, as well as the various duality relations between these. This raises the question whether the super-Minkowski spacetimes themselves arise as maximal invariant central extensions. Here we prove that they do. Starting from the simplest possible super-Minkowski spacetime, the superpoint, which has no Lorentz structure and no spinorial structure, we give a systematic process of consecutive maximal invariant central extensions, and show that it discovers the super- Minkowski spacetimes that contain superstrings, culminating in the 10- and 11-dimensional super-Minkowski spacetimes of string/M-theory and leading directly to the brane bouquet. Contents 1 Introduction 2 2 Automorphisms of super-Minkowski spacetimes9 3 The consecutive maximal invariant central extensions of the superpoint 12 4 Outlook 17 A Background 17 A.1 Super Lie algebra cohomology............................... 17 A.2 Super Minkowski spacetimes................................ 20 ∗CAMGSD, Instituto Superior T´ecnico,Av. Ravisco Pais, 1049-001 Lisboa, Portugal yMathematics Institute of the Academy, Zitnaˇ 25, 115 67 Praha 1, Czech Republic, on leave at Bonn 1 1 Introduction In his \vision talk" at the annual string theory conference in 2014, Greg Moore highlighted the following open question in string theory [41, section 9]: Perhaps we need to understand the nature of time itself better. -
Torsion Constraints in Supergeometry
Commun. Math. Phys. 133, 563-615(1990) Communications ΪΠ Mathematical Physics ©Springer-Verlagl990 Torsion Constraints in Supergeometry John Lott* I.H.E.S., F-91440 Bures-sur-Yvette, France Received November 9, 1989; in revised form April 2, 1990 Abstract. We derive the torsion constraints for superspace versions of supergravity theories by means of the theory of G-stmctures. We also discuss superconformal geometry and superKahler geometry. I. Introduction Supersymmetry is a now well established topic in quantum field theory [WB, GGRS]. The basic idea is that one can construct actions in ordinary spacetime which involve both even commuting fields and odd anticommuting fields, with a symmetry which mixes the two types of fields. These actions can then be interpreted as arising from actions in a superspace with both even and odd coordinates, upon doing a partial integration over the odd coordinates. A mathematical framework to handle the differential topology of supermanifolds, manifolds with even and odd coordinates, was developed by Berezin, Kostant and others. A very readable account of this theory is given in the book of Manin [Ma]. The right notion of differential geometry for supermanifolds is less clear. Such a geometry is necessary in order to write supergravity theories in superspace. One could construct a supergeometry by ΊL2 grading what one usually does in (pseudo) Riemannian geometry, to have supermetrics, super Levi-Civita connections, etc. The local frame group which would take the place of the orthogonal group in standard geometry would be the orthosymplectic group. However, it turns out that this would be physically undesirable. Such a program would give more fields than one needs for a minimal supergravity theory, i.e. -
Introduction to Graded Geometry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector European Journal of Mathematics DOI 10.1007/s40879-017-0138-4 RESEARCH/REVIEW ARTICLE Introduction to graded geometry Maxime Fairon1 Received: 7 November 2016 / Revised: 1 March 2017 / Accepted: 8 March 2017 © The Author(s) 2017. This article is an open access publication Abstract This paper aims at setting out the basics of Z-graded manifolds theory. We introduce Z-graded manifolds from local models and give some of their properties. The requirement to work with a completed graded symmetric algebra to define functions is made clear. Moreover, we define vector fields and exhibit their graded local basis. The paper also reviews some correspondences between differential Z-graded manifolds and algebraic structures. Keywords Supergeometry · Graded manifold · Differential graded manifold · Q-manifold Mathematics Subject Classification 58A50 · 51-02 1 Introduction In the 70s, supermanifolds were introduced and studied to provide a geometric back- ground to the developing theory of supersymmetry. In the Berezin–Leites [2] and Kostant [11] approach, they are defined as Z2-graded locally ringed spaces. More pre- cisely, this means that a supermanifold is a pair (|N|, ON ) such that |N| is a topological space and ON is a sheaf of Z2-graded algebras which satisfies, for all sufficiently small open subsets U, ∞ m ON (U) CRn (U)⊗ R , B Maxime Fairon [email protected] 1 School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom 123 M. Fairon m where R is endowed with its canonical Z2-grading. -
T-Duality from Super Lie N-Algebra Cocycles for Super P-Branes
T-Duality from super Lie n-algebra cocycles for super p-branes Domenico Fiorenza,∗ Hisham Sati,† Urs Schreiber‡ August 25, 2018 Abstract We compute the L∞-theoretic double dimensional reduction of the F1/Dp-brane super L∞- cocycles with coefficients in rationalized twisted K-theory from the 10d type IIA and type IIB super Lie algebras down to 9d. We show that the two resulting coefficient L∞-algebras are naturally related by an L∞-isomorphism which we find to act on the super p-brane cocycles by the infinitesimal version of the rules of topological T-duality and inducing an isomorphism between K0-cocycles in type IIA and K1-cocycles in type IIB, rationally. In particular this is a derivation of the Buscher rules for RR-fields (Hori’s formula) from first principles. Moreover, we show that these L∞-algebras are the homotopy quotients of the RR-charge coefficients by the “T-duality Lie 2-algebra”. We find that the induced L∞-extension is a gerby extension of a 9+(1+1) dimensional (i.e. “doubled”) T-duality correspondence super-spacetime, which serves as a local model for T-folds. We observe that this still extends, via the D0-brane cocycle of its type IIA factor, to a 10 + (1 + 1)-dimensional super Lie algebra. Finally we show that this satisfies expected properties of a local model space for F-theory elliptic fibrations. Contents 1 Introduction 2 2 Supersymmetry super Lie n-algebras 6 3 Double dimensional reduction 11 4 The brane supercocycles 20 arXiv:1611.06536v3 [math-ph] 31 Mar 2017 5 Super L∞-algebraic T-duality 24 6 T-Correspondence space and