T-Duality from Super Lie N-Algebra Cocycles for Super P-Branes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Extensions of Lie Algebras of Symplectic and Divergence Free
Central extensions of Lie algebras of symplectic and divergence free vector fields Bas Janssens and Cornelia Vizman Abstract In this review paper, we present several results on central extensions of the Lie algebra of symplectic (Hamiltonian) vector fields, and compare them to similar results for the Lie algebra of (exact) divergence free vector fields. In particular, we comment on universal central extensions and integrability to the group level. 1 Perfect commutator ideals The Lie algebras of symplectic and divergence free vector fields both have perfect commutator ideals: the Lie algebras of Hamiltonian and exact divergence free vector fields, respectively. 1.1 Symplectic vector fields Let (M,ω) be a compact1, connected, symplectic manifold of dimension 2n. Then the Lie algebra of symplectic vector fields is denoted by X(M,ω) := {X ∈ X(M); LX ω =0} . ∞ The Hamiltonian vector field Xf of f ∈ C (M) is the unique vector field such that iXf ω = −df. Since the Lie bracket of X, Y ∈ X(M,ω) is Hamiltonian with i[X,Y ]ω = −dω(X, Y ), the Lie algebra of Hamiltonian vector fields ∞ Xham(M,ω) := {Xf ; f ∈ C (M)} is an ideal in X(M,ω). The map X 7→ [iX ω] identifies the quotient of X(M,ω) 1 by Xham(M,ω) with the abelian Lie algebra HdR(M), 1 0 → Xham(M,ω) → X(M,ω) → HdR(M) → 0 . (1) arXiv:1510.05827v1 [math.DG] 20 Oct 2015 Proposition 1.1. ([C70]) The Lie algebra Xham(M,ω) of Hamiltonian vector fields is perfect, and coincides with the commutator Lie algebra of the Lie algebra X(M,ω) of symplectic vector fields. -
Projective Unitary Representations of Infinite Dimensional Lie Groups
Projective unitary representations of infinite dimensional Lie groups Bas Janssens and Karl-Hermann Neeb January 5, 2015 Abstract For an infinite dimensional Lie group G modelled on a locally convex Lie algebra g, we prove that every smooth projective unitary represen- tation of G corresponds to a smooth linear unitary representation of a Lie group extension G] of G. (The main point is the smooth structure on G].) For infinite dimensional Lie groups G which are 1-connected, regular, and modelled on a barrelled Lie algebra g, we characterize the unitary g-representations which integrate to G. Combining these results, we give a precise formulation of the correspondence between smooth pro- jective unitary representations of G, smooth linear unitary representations of G], and the appropriate unitary representations of its Lie algebra g]. Contents 1 Representations of locally convex Lie groups 5 1.1 Smooth functions . 5 1.2 Locally convex Lie groups . 6 2 Projective unitary representations 7 2.1 Unitary representations . 7 2.2 Projective unitary representations . 7 3 Integration of Lie algebra representations 8 3.1 Derived representations . 9 3.2 Globalisation of Lie algebra representations . 10 3.2.1 Weak and strong topology on V . 11 3.2.2 Regular Lie algebra representations . 15 4 Projective unitary representations and central extensions 20 5 Smoothness of projective representations 25 5.1 Smoothness criteria . 25 5.2 Structure of the set of smooth rays . 26 1 6 Lie algebra extensions and cohomology 28 7 The main theorem 31 8 Covariant representations 33 9 Admissible derivations 36 9.1 Admissible derivations . -
The Chiral De Rham Complex of Tori and Orbifolds
The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus . -
Higher AGT Correspondences, W-Algebras, and Higher Quantum
Higher AGT Correspon- dences, W-algebras, and Higher Quantum Geometric Higher AGT Correspondences, W-algebras, Langlands Duality from M-Theory and Higher Quantum Geometric Langlands Meng-Chwan Duality from M-Theory Tan Introduction Review of 4d Meng-Chwan Tan AGT 5d/6d AGT National University of Singapore W-algebras + Higher QGL SUSY gauge August 3, 2016 theory + W-algebras + QGL Higher GL Conclusion Presentation Outline Higher AGT Correspon- dences, Introduction W-algebras, and Higher Quantum Lightning Review: A 4d AGT Correspondence for Compact Geometric Langlands Lie Groups Duality from M-Theory A 5d/6d AGT Correspondence for Compact Lie Groups Meng-Chwan Tan W-algebras and Higher Quantum Geometric Langlands Introduction Duality Review of 4d AGT Supersymmetric Gauge Theory, W-algebras and a 5d/6d AGT Quantum Geometric Langlands Correspondence W-algebras + Higher QGL SUSY gauge Higher Geometric Langlands Correspondences from theory + W-algebras + M-Theory QGL Higher GL Conclusion Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- Circa 2009, Alday-Gaiotto-Tachikawa [1] | showed that dences, W-algebras, the Nekrasov instanton partition function of a 4d N = 2 and Higher Quantum conformal SU(2) quiver theory is equivalent to a Geometric Langlands conformal block of a 2d CFT with W2-symmetry that is Duality from M-Theory Liouville theory. This was henceforth known as the Meng-Chwan celebrated 4d AGT correspondence. Tan Circa 2009, Wyllard [2] | the 4d AGT correspondence is Introduction Review of 4d proposed and checked (partially) to hold for a 4d N = 2 AGT conformal SU(N) quiver theory whereby the corresponding 5d/6d AGT 2d CFT is an AN−1 conformal Toda field theory which has W-algebras + Higher QGL WN -symmetry. -
Unitary Representations of Lie Groups
Faculty of Science Unitary Representations of Lie Groups Representation Theory in Quantum Mechanics Bachelor Thesis TWIN Lucas Smits Physics and Astronomy // Mathematics Supervisor: Dr. J.W. van de Leur Mathematical Institute January 15, 2020 Contents Introduction2 1 Lie Groups and Lie Algebras3 1.1 Lie Groups.....................................3 1.2 Lie Algebras....................................8 1.3 The Lie Algebra of a Lie Group......................... 11 2 Unitary Representation Theory 17 2.1 Introduction to representation theory...................... 17 2.2 Unitary Representations............................. 20 2.3 Representation Theory in Quantum Mechanics................. 23 2.4 Lifting projective representations........................ 25 3 Representations of semidirect products 33 3.1 Character theory................................. 33 3.2 Representations of semidirect products..................... 36 3.3 Systems of Imprimitivity............................. 41 3.4 Systems of imprimitivity and semidirect products............... 46 4 Wigner's classification, a qualitative discussion 53 4.1 The Lorentz and the Poincar´egroup...................... 53 4.2 Projective representations of the Poincar´egroup................ 55 4.3 Wigner's Classification.............................. 58 5 Appendix: Weyl's theorem on complete reducibility 64 1 Introduction Lie groups were first introduced by the Norwegian mathematican Sophus Lie in the final years of the nineteenth century in his study on the symmetry differential equations. Heuris- tically, Lie groups are groups whose elements are organized in a smooth way, contrary to discrete groups. Their symmetric nature makes them a crucial ingrediant in today's study of geometry. Lie groups are often studied through representation theory, that is, the iden- tification of group elements with linear transformations of a vector space. This enables to reduce problems in abstract algebra to linear algebra, which is a well-understood area in math. -
SUPERSYMMETRY 1. Introduction the Purpose
SUPERSYMMETRY JOSH KANTOR 1. Introduction The purpose of these notes is to give a short and (overly?)simple description of supersymmetry for Mathematicians. Our description is far from complete and should be thought of as a first pass at the ideas that arise from supersymmetry. Fundamental to supersymmetry is the mathematics of Clifford algebras and spin groups. We will describe the mathematical results we are using but we refer the reader to the references for proofs. In particular [4], [1], and [5] all cover spinors nicely. 2. Spin and Clifford Algebras We will first review the definition of spin, spinors, and Clifford algebras. Let V be a vector space over R or C with some nondegenerate quadratic form. The clifford algebra of V , l(V ), is the algebra generated by V and 1, subject to the relations v v = v, vC 1, or equivalently v w + w v = 2 v, w . Note that elements of· l(V ) !can"b·e written as polynomials· in V · and this! giv"es a splitting l(V ) = l(VC )0 l(V )1. Here l(V )0 is the set of elements of l(V ) which can bCe writtenC as a linear⊕ C combinationC of products of even numbers ofCvectors from V , and l(V )1 is the set of elements which can be written as a linear combination of productsC of odd numbers of vectors from V . Note that more succinctly l(V ) is just the quotient of the tensor algebra of V by the ideal generated by v vC v, v 1. -
Arxiv:1109.4101V2 [Hep-Th]
Quantum Open-Closed Homotopy Algebra and String Field Theory Korbinian M¨unster∗ Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany Ivo Sachs† Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA and Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany (Dated: September 28, 2018) Abstract We reformulate the algebraic structure of Zwiebach’s quantum open-closed string field theory in terms of homotopy algebras. We call it the quantum open-closed homotopy algebra (QOCHA) which is the generalization of the open-closed homo- topy algebra (OCHA) of Kajiura and Stasheff. The homotopy formulation reveals new insights about deformations of open string field theory by closed string back- grounds. In particular, deformations by Maurer Cartan elements of the quantum closed homotopy algebra define consistent quantum open string field theories. arXiv:1109.4101v2 [hep-th] 19 Oct 2011 ∗Electronic address: [email protected] †Electronic address: [email protected] 2 Contents I. Introduction 3 II. Summary 4 III. A∞- and L∞-algebras 7 A. A∞-algebras 7 B. L∞-algebras 10 IV. Homotopy involutive Lie bialgebras 12 A. Higher order coderivations 12 B. IBL∞-algebra 13 C. IBL∞-morphisms and Maurer Cartan elements 15 V. Quantum open-closed homotopy algebra 15 A. Loop homotopy algebra of closed strings 17 B. IBL structure on cyclic Hochschild complex 18 C. Quantum open-closed homotopy algebra 19 VI. Deformations and the quantum open-closed correspondence 23 A. Quantum open string field theory 23 B. Quantum open-closed correspondence 24 VII. -
Proofs JHEP 092P 1215 Xxxxxxx ???, 2016 Springer : Doi: March 1, 2016 : Y February 25, 2016 December 11, 2015 : : Setting
Published for SISSA by Springer Received: December 11, 2015 Revised: February 25, 2016 Accepted: March 1, 2016 Published: ???, 2016 proofs JHEP_092P_1215 Notes on super Killing tensors P.S. Howea and U. Lindstr¨omb,c aDepartment of Mathematics, King’s College London, The Strand, London WC2R 2LS, U.K. bDepartment of Physics and Astronomy, Theoretical Physics, Uppsala University, SE-751 20 Uppsala, Sweden cTheoretical Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, U.K. E-mail: [email protected], [email protected] Abstract: The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed. Keywords: Extended Supersymmetry, Superspaces, Higher Spin Symmetry ArXiv ePrint: 1511.04575 Open Access, c The Authors. doi:xxxxxxx Article funded by SCOAP3. Contents 1 Introduction 1 2 Killing tensors in superspace 3 3 Superparticles 6 4 SCKTs in flat superspaces 10 proofs JHEP_092P_1215 5 Analytic superspace 18 6 Components of superconformal Killing tensors 24 6.1 D = 3 25 6.2 D = 4 26 6.3 D = 6 27 6.4 Algebras 28 7 Comments on higher spin 29 8 Concluding remarks 30 A Supersymmetric SN bracket 31 1 Introduction In ordinary Lorentzian spacetime a Killing vector, K, is a symmetry of the metric, i.e. -
Central Extensions of Groups of Sections
Central extensions of groups of sections Karl-Hermann Neeb and Christoph Wockel October 24, 2018 Abstract If K is a Lie group and q : P → M is a principal K-bundle over the compact manifold M, then any invariant symmetric V -valued bi- linear form on the Lie algebra k of K defines a Lie algebra exten- sion of the gauge algebra by a space of bundle-valued 1-forms modulo exact 1-forms. In the present paper we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components, we give a complete characterization of the integrable ex- tensions. Our results on gauge groups are obtained by specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context we provide suffi- cient conditions for integrability in terms of data related only to the group K. Keywords: gauge group; gauge algebra; central extension; Lie group extension; integrable Lie algebra; Lie group bundle; Lie algebra bundle arXiv:0711.3437v2 [math.DG] 29 Apr 2009 Introduction Affine Kac–Moody groups and their Lie algebras play an interesting role in various fields of mathematics and mathematical physics, such as string theory and conformal field theory (cf. [PS86] for the analytic theory of loop groups, [Ka90] for the algebraic theory of Kac–Moody Lie algebras and [Sch97] for connections to conformal field theory). For further connections to mathe- matical physics we refer to the monograph [Mi89] which discusses various occurrences of Lie algebras of smooth maps in physical theories (see also [Mu88], [DDS95]). -
Supersymmetric Lagrangians
1 Section 1 Setup Supersymmetric Lagrangians Chris Elliott February 6, 2013 1 Setup Let's recall some notions from classical Lagrangian field theory. Let M be an oriented supermanifold: our spacetime, of dimension njd. For our purposes, we will most often think about the case where M is either Minkowski space Mˇ n = R1;n−1, or Super Minkowski space M = Mˇ n × ΠS where S is a representation of Spin(1; n − 1). Definition 1.1. Let E ! M be a smooth (super) fibre bundle. The associated space of fields is the space of smooth sections φM ! E.A Lagrangian density on F is a function L: F! Dens(M) { where Dens(M) denotes the bundle of densities on M { that satisfies a locality condition. Precisely, we form the pullback bundle Dens(M)F / Dens(M) M × F / M π1 and require L to be a section of this bundle such that, for some k, for all m 2 M, L(m; φ) only depends on the first k derivatives of φ. We can phrase this in terms of factoring through the kth jet bundle of E. As usual, we define the action functional to be the integral Z S(φ) = L(φ): M A Lagrangian system generally includes additional information, namely a choice of variational 1-form γ. In general I won't use this data, but I should mention when it might play a role. 1.1 Symmetries In this talk, we will be discussing Lagrangian systems with certain kinds of symmetry called supersymmetry. As such, it'll be important to understand what it actually means to be a symmetry of such a system. -
Iterated Loop Modules and a Filtration for Vertex Representation of Toroidal Lie Algebras
Pacific Journal of Mathematics ITERATED LOOP MODULES AND A FILTRATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO Volume 171 No. 2 December 1995 PACIFIC JOURNAL OF MATHEMATICS Vol. 171, No. 2, 1995 ITERATED LOOP MODULES AND A FILTERATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO The purpose of this paper is two fold. The first one is to construct a continuous new family of irreducible (some of them are unitarizable) modules for Toroidal algebras. The second one is to describe the sub-quotients of the (integrable) modules constructed through the use of Vertex operators. Introduction. Toroidal algebras r[d] are defined for every d > 1 and when d — 1 they are precisely the untwisted affine Lie-algebras. Such an affine algebra Q can be realized as the universal central extension of the loop algebra Q ®C[t, t"1] where Q is simple finite dimensional Lie-algebra over C. It is well known that Q is a one dimensional central extension of Q ®C[ί, ί"1]. The Toroidal algebras ηd] are the universal central extensions of the iterated loop algebra Q ®C[tfλ, tJ1] which, for d > 2, turnout to be infinite central extension. These algebras are interesting because they are related to the Lie-algebra of Map (X, G), the infinite dimensional group of polynomial maps of X to the complex algebraic group G where X is a d-dimensional torus. For additional material on recent developments in the theory of Toroidal algebras one may consult [BC], [FM] and [MS]. In [MEY] and [EM] a countable family of modules (also integrable see [EMY]) are constructed for Toroidal algebras on Fock space through the use of Vertex Operators (Theorem 3.4, [EM]). -
[Math.RA] 14 Jun 2007 the Minkowski and Conformal Superspaces
IFIC/06-28 FTUV-05/0928 The Minkowski and conformal superspaces R. Fioresi 1 Dipartimento di Matematica, Universit`adi Bologna Piazza di Porta S. Donato, 5. 40126 Bologna. Italy. e-mail: fi[email protected] M. A. Lled´o Departament de F´ısica Te`orica, Universitat de Val`encia and IFIC C/Dr. Moliner, 50, E-46100 Burjassot (Val`encia), Spain. e-mail: Maria.Lledo@ific.uv.es and V. S. Varadarajan Department of Mathematics, UCLA. Los Angeles, CA, 90095-1555, USA e-mail: [email protected] Abstract We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it arXiv:math/0609813v2 [math.RA] 14 Jun 2007 as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra. 1Investigation supported by the University of Bologna, funds for selected research top- ics. 1 Contents 1 Introduction 3 2 The complex Minkowski space time and the Grassmannian G(2,4) 6 2.1 The Pl¨ucker embedding and the Klein quadric . 7 2.2 Therealform ........................... 10 3 Homogeneous spaces for Lie supergroups 11 3.1 The supermanifold structure on X = G/H ........... 12 3.2 The action of G on X ...................... 15 3.3 The functor of points of X = G/H ............... 16 4 The super Poincar´eand the translation superalgebras 17 4.1 Thetranslationsuperalgebra.