Extended Kac-Moody Algebras '• • and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Extended Kac-Moody Algebras '• • and Applications \j LAPP-TH-335/91 Avril 9l I 1 Extended Kac-Moody algebras '• • and Applications E. Ragoucy and P. Sorba Laboratoire Physique Théorique ENSLAPP" - Groupe d'Annecy Chemin de Bellevue BP 110, F-74941 Annecy-le- Vieux Cedex, France Abstract : * We extend the notion of a Kac-Moody algebra defined on the S1 circle to super Kac-Moody algebras defined on M x GN, M being a smooth closed compact manifold of dimension greater than one, and G/v the Grassman algebra with N generators. We compute all the central extensions V-, »! of these algebras. Then, we determine for each such algebra the derivation algebra constructed : from the M x <7/v diffeomorphisms. The twists of such super Kac-Moody algebras as well as , the generalization to non-compact surfaces are partially studied. Finally, we apply our general construction to the study of conformai and superconformai algebras, as well as area-preserving j diffeomorphisms algebra and its supersymmetric extension. Wf A review to be published in Int. Jour, of Mod. Phys. A "URA 14-36 du CNRS, associée à l'Ecole Normale Supérieure de Lyon, et au Laboratoire d'Annecy-le-Vieux de Physique des Particules. ••• \ ; Contents 8 Appli< 8.1 (, 1 Introduction. 8.2 I- 8.3 h-. FUNDAMENTALS 6 O Cone U The usual Kac-Moody algebras. G 2.1 Loop algebra 6 A Deter •****< 2.2 Twists of loop algebras 7 A.I h 2.3 Central extension of a loop algebra 7 A.2 C, 2.4 Kac-Moody algebras and Hochschilq (cyclic) cohomology 8 A.3 C 2.5 Derivation algebra S B KM a 2.6 The Sugawaraand GKO constructions 10 B.I K B.2 h Central extensions for generalized loop algebraB. 12 3.1 Generalized loop algebras 12 C Parmi 3.2 Determination of the conditions to be verified by the central extension 14 3.3 Explicit form of the cocycles 15 D The r 3.4 First properties of the central extensions 17 E JV = 3 3.5 Twists of extended Kac-Moody algebras: an introduction 17 3.6 Divergence free vector fields and Kac superalgebras 20 F JV = 2 Diffeomorphisms compatible with a central extension. 20 4.1 What is a compatible algebra ? 20 4.2 The compatibility equation and its consequences 21 4.3 Compatibility equations for T>\} 23 Generalization to non-compact surfaces (without boundaries) 25 5.1 Coming back to compact surfaces with no supersymmetry 25 5.2 Generalization to non-compact surfaces 26 5.3 Supersymmetrization 27 •"I II APPLICATIONS 28 6 Application to the superconformai case. 28 28 6.1 The superconformai algebras SC(N) 28 28 6.2 Are the SC(TV) algebras compatible algebras ? 29 29 6.3 N=I case : the RNS algebra 30 30 6.4 The N = 2 case : t/(l)dSC(2) 34 34 6.5 Relation with complex structures 37 37 6.6 JV > 2 : New super conformai algebras 40 10 7 Application to (super) membrane and the area-preserving diffeomorphisms. 42 42 7.1 The aera-preserving diffeomorphisms algebra 42 •12 7.2 The bosonic case 44 44 7.3 The supersymmetric case 46 16 ; • ! t , 8 Applii 8 Application to the Krichever-Novikov algebras 50 8.1 i. 8.1 Case of the cylinder: the Virasoro algebra 50 8.2 I 8.2 Punctured surfaces of genus g> 0: the Krichever-Novikov algebras 51 8.3 S. 8.3 Supersymmetrization 53 8 Conrii 9 Conclusion and outlooks. 56 A Deter it A Determination of the cocycles of generalized KM algebras. 56 A.I It (i A.I Demonstration of the general theorem 58 A.2 C, 7 A.2 Classes of the cocycles 60 A.3 C 7 A.3 Covariance of the cocycles 60 8 B KM a 9 B KM algebras, fields and OPE's 62 B.I K 0 B.I Kac Moody algebras and current algebras 62 B.2 h B.2 Superfields and N = 1 Kac Moody algebras 63 2 C Paran 2 C Parametrization of two-dimensionnal surfaces. 65 4 D Thee 1 r> D The compatible algebras related to G^(S x G1). 66 .7 E /V = 3 E N = 3 Kac-Moody algebra defined on 51 leading to SC{2) algebra 68 ,7 F N = 2 JO F TV = 2 Kac-Moody algebras defined on M compatible with SDiJT(M) 70 10 20 21 23 25 25 26 27 28 28 28 29 30 34 37 10 42 42 44 46 1 Introduction. Vect(5')ot the circle v algebra Q. The importance of Kac-Moody algebras has been increasing since 1984 because of the essential KM algebi role they play in two dimensional conforma] theories[l], themselves covering a rather wide domain in theoretical physics. Indeed in string theory, the string develops a two-dimensional surface in the Therefo space in which it is embedded, i.e. the world sheet. Conformai transformations on the world sheet natural to a leave the string action invariant. In statistical mechanics, conformai invariant quantum field theory can be achi describes the critical behaviour of systems at 2nd order phase transitions. Conformai invariance i) super is also present in integrable systems. As a (good) example, Toda field theories associated with for the Gra simple Lie algebras are both integrable and conformally invariant. Their conformai structure can ii) enlar be derived from their integrability properties, and directly shows up in the A-matrix solution of iii) imp< the classical Yang-Baxter equation [2] with dimA' In their fundamental paper [3], Belavin, Polyakov and Zamolodchikov have in particular shown As soon that two-dimensional conformai field theories (CFT) can be treated from a group theoretical point of or iii) a sin view. The basic ingredient is the two-dimensional conformai algebra, which is infinite dimensional, show up. and its central extension, called the Virasoro algebra V. The infinite dimensional algebras directly case, the m constructed from simple Lie algebras Q as (central extensions of) the set of maps from the circle infinite. Tit S1 into Ç, and called Kac Moody (KM) algebras are directly related to the Virasoro algebra. central ex te acting as a They appear in two-dimensional current algebras when considering a massless spinor (or scalar) a subalgebr Held, such a model leading to an exactly solvable CPT. They are the two-dimensional expression sum with i' of gauge symmetry in string theory : let us remember that in the heterotic string model, string states are classified in a representation of the Kac-Moody algebra of the gauge group EH x EH or These Spin(32)/Z2 [4j. The best example of the deep connection between a Kac-Moody algebra and the applicatioi Virasoro algebra is without doubt given by the Wess-Zumino-Witten (WZW) models [5], where naturally a both algebras are symmetries of snch field theories. general con performed Prom an algebraic point of view, for each KM algebra <7(5') - where S1 is the one-dimensional on the alg circle and the'denotes the central extension of the loop algebra G(S{), see below for more precise by an algeb definitions — one can construct the semi-direct sum : Q(S1 )OV, the Virasoro generators acting diffeomorpi as Lie derivatives on the elements of G(S1). An illustration of this property might be given by manifold: the Sugawara construction, which allows a realization of the Virasoro algebra from a Kac-Moody order to IP one. It is in part because of the semi-direct structure and of the Sugawara construction that one general the can determine, through the famous Goddard-Kent-Olive (GKO) construction, the minimal unitary appendix I representations of V from the unitary representations of some G(S1) algebras [6]. In Par! Now, we would like to point out the two following properties. First, most of the results obtained (section 6 up to now in two dimensions conformai theories need for G only the simple algebra SU(2) (we ignore seen as the now the string models with 2?« or spin(32) unification groups) : examples can be given by the However it A.D.E. classification [7] of modular invariant partition functions for "minimal" conformai theories, et al. alget) or by the GKO coset construction [6] of minimal theories. The use of bigger G algebras, that is For N = 2 algebras containing SU(2), opens new roads : the W11 algebras, whose interest increased recently, one in sue', in particular with their appearance [8] in Toda field theories [9] (based on groups G, bigger than us from co SU(2)!). completen to constrii' As a second remark, the Virasoro algebra which is actually the central extension of the algebra method, v Wct(S') o! Vect(S') of the diffeomorphisms group on the S1 circle (see section 2.5 below) acts effectively on the circle v the circle variable of the KM algebra C(S*) and its action is independent of the structure of the algebra Q. algebra Q. This remark may look naive, but shows explicitly the role of the continuous part of the KM algebr . KM algebra. Therefo Therefore, in the same way the "fundamental" SU(2) algebra can be enlarged, it is rather natural to a natural to ask oneself what can be learned when increasing this continuous z-part. Such a program can be achi can be achieved in different ways, for example by : i) super, i) supersymmetrizing the S1 circle, i.e. replacing it by the supercircle S1 x GN where GN stands for the Gra fur the Grassmann algebra generated by N Grassmann variables 0,,, a = \,...,N.
Recommended publications
  • Compactifying M-Theory on a G2 Manifold to Describe/Explain Our World – Predictions for LHC (Gluinos, Winos, Squarks), and Dark Matter
    Compactifying M-theory on a G2 manifold to describe/explain our world – Predictions for LHC (gluinos, winos, squarks), and dark matter Gordy Kane CMS, Fermilab, April 2016 1 OUTLINE • Testing theories in physics – some generalities - Testing 10/11 dimensional string/M-theories as underlying theories of our world requires compactification to four space-time dimensions! • Compactifying M-theory on “G2 manifolds” to describe/ explain our vacuum – underlying theory - fluxless sector! • Moduli – 4D manifestations of extra dimensions – stabilization - supersymmetry breaking – changes cosmology first 16 slides • Technical stuff – 18-33 - quickly • From the Planck scale to EW scale – 34-39 • LHC predictions – gluino about 1.5 TeV – also winos at LHC – but not squarks - 40-47 • Dark matter – in progress – surprising – 48 • (Little hierarchy problem – 49-51) • Final remarks 1-5 2 String/M theory a powerful, very promising framework for constructing an underlying theory that incorporates the Standard Models of particle physics and cosmology and probably addresses all the questions we hope to understand about the physical universe – we hope for such a theory! – probably also a quantum theory of gravity Compactified M-theory generically has gravity; Yang- Mills forces like the SM; chiral fermions like quarks and leptons; softly broken supersymmetry; solutions to hierarchy problems; EWSB and Higgs physics; unification; small EDMs; no flavor changing problems; partially observable superpartner spectrum; hidden sector DM; etc Simultaneously – generically Argue compactified M-theory is by far the best motivated, and most comprehensive, extension of the SM – gets physics relevant to the LHC and Higgs and superpartners right – no ad hoc inputs or free parameters Take it very seriously 4 So have to spend some time explaining derivations, testability of string/M theory Don’t have to be somewhere to test theory there – E.g.
    [Show full text]
  • Deformations of G2-Structures, String Dualities and Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected]
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Rodrigo De Menezes Barbosa University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Mathematics Commons, and the Quantum Physics Commons Recommended Citation Barbosa, Rodrigo De Menezes, "Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles" (2019). Publicly Accessible Penn Dissertations. 3279. https://repository.upenn.edu/edissertations/3279 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3279 For more information, please contact [email protected]. Deformations Of G2-Structures, String Dualities And Flat Higgs Bundles Abstract We study M-theory compactifications on G2-orbifolds and their resolutions given by total spaces of coassociative ALE-fibrations over a compact flat Riemannian 3-manifold Q. The afl tness condition allows an explicit description of the deformation space of closed G2-structures, and hence also the moduli space of supersymmetric vacua: it is modeled by flat sections of a bundle of Brieskorn-Grothendieck resolutions over Q. Moreover, when instanton corrections are neglected, we obtain an explicit description of the moduli space for the dual type IIA string compactification. The two moduli spaces are shown to be isomorphic for an important example involving A1-singularities, and the result is conjectured to hold in generality. We also discuss an interpretation of the IIA moduli space in terms of "flat Higgs bundles" on Q and explain how it suggests a new approach to SYZ mirror symmetry, while also providing a description of G2-structures in terms of B-branes.
    [Show full text]
  • JHEP10(2009)051 3 3 2), | S 1 Ads , (1 × 3 Heory P SU August 10, 2009 October 20, 2009 : : September 20, 2009 : Ads Received , Published Unting in D1-D5 Systems
    Published by IOP Publishing for SISSA Received: August 10, 2009 Accepted: September 20, 2009 Published: October 20, 2009 3 Asymptotic symmetries of string theory on AdS3 × S JHEP10(2009)051 with Ramond-Ramond fluxes Sujay K. Ashok,a,b Raphael Benichouc and Jan Troostc aInstitute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai, 600113 India bPerimeter Institute for Theoretical Physics, Waterloo, Ontario, ON N2L2Y5, Canada cLaboratoire de Physique Th´eorique, Unit´eMixte du CRNS et de l’Ecole´ Normale Sup´erieure associ´ee `al’Universit´ePierre et Marie Curie 6, UMR 8549, 24 Rue Lhomond, Paris 75005, France E-mail: [email protected], [email protected], [email protected] Abstract: String theory on AdS3 space-times with boundary conditions that allow for black hole states has global asymptotic symmetries which include an infinite dimensional conformal algebra. Using the conformal current algebra for sigma-models on P SU(1, 1 2), | we explicitly construct the R-symmetry and Virasoro charges in the worldsheet theory describing string theory on AdS S3 with Ramond-Ramond fluxes. We also indicate how 3 × to construct the full boundary superconformal algebra. The boundary superconformal algebra plays an important role in classifying the full spectrum of string theory on AdS3 with Ramond-Ramond fluxes, and in the microscopic entropy counting in D1-D5 systems. Keywords: AdS-CFT Correspondence, Conformal Field Models in String Theory ArXiv ePrint: 0907.1242 c SISSA 2009 doi:10.1088/1126-6708/2009/10/051 Contents 1 Introduction 1 3
    [Show full text]
  • Modular Invariance of Characters of Vertex Operator Algebras
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 9, Number 1, January 1996 MODULAR INVARIANCE OF CHARACTERS OF VERTEX OPERATOR ALGEBRAS YONGCHANG ZHU Introduction In contrast with the finite dimensional case, one of the distinguished features in the theory of infinite dimensional Lie algebras is the modular invariance of the characters of certain representations. It is known [Fr], [KP] that for a given affine Lie algebra, the linear space spanned by the characters of the integrable highest weight modules with a fixed level is invariant under the usual action of the modular group SL2(Z). The similar result for the minimal series of the Virasoro algebra is observed in [Ca] and [IZ]. In both cases one uses the explicit character formulas to prove the modular invariance. The character formula for the affine Lie algebra is computed in [K], and the character formula for the Virasoro algebra is essentially contained in [FF]; see [R] for an explicit computation. This mysterious connection between the infinite dimensional Lie algebras and the modular group can be explained by the two dimensional conformal field theory. The highest weight modules of affine Lie algebras and the Virasoro algebra give rise to conformal field theories. In particular, the conformal field theories associated to the integrable highest modules and minimal series are rational. The characters of these modules are understood to be the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. From this point of view, the role of the modular group SL2(Z)ismanifest. In the study of conformal field theory, physicists arrived at the notion of chi- ral algebras (see e.g.
    [Show full text]
  • On Mirror Maps for Manifolds of Exceptional Holonomy JHEP10(2019)204 ]) 2 and 2 G ] (See Also [ 1 21 31 ]
    Published for SISSA by Springer Received: August 23, 2019 Accepted: October 2, 2019 Published: October 21, 2019 On mirror maps for manifolds of exceptional holonomy JHEP10(2019)204 Andreas P. Braun,a Suvajit Majumdera and Alexander Ottob;c aMathematical Institute, University of Oxford Woodstock Road, Oxford, OX2 6GG, U.K. bPerimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada cDepartment of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada E-mail: [email protected], [email protected], [email protected] Abstract: We study mirror symmetry of type II strings on manifolds with the exceptional holonomy groups G2 and Spin(7). Our central result is a construction of mirrors of Spin(7) manifolds realized as generalized connected sums. In parallel to twisted connected sum G2 manifolds, mirrors of such Spin(7) manifolds can be found by applying mirror symmetry to the pair of non-compact manifolds they are glued from. To provide non-trivial checks for such geometric mirror constructions, we give a CFT analysis of mirror maps for Joyce orbifolds in several new instances for both the Spin(7) and the G2 case. For all of these models we find possible assignments of discrete torsion phases, work out the action of mirror symmetry, and confirm the consistency with the geometrical construction. A novel feature appearing in the examples we analyse is the possibility of frozen singularities. Keywords: String Duality, Conformal Field Models in String Theory, Superstring Vacua ArXiv ePrint: 1905.01474 Open Access, c The Authors. https://doi.org/10.1007/JHEP10(2019)204 Article funded by SCOAP3.
    [Show full text]
  • The Chiral De Rham Complex of Tori and Orbifolds
    The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus .
    [Show full text]
  • From String Theory and Moonshine to Vertex Algebras
    Preample From string theory and Moonshine to vertex algebras Bong H. Lian Department of Mathematics Brandeis University [email protected] Harvard University, May 22, 2020 Dedicated to the memory of John Horton Conway December 26, 1937 – April 11, 2020. Preample Acknowledgements: Speaker’s collaborators on the theory of vertex algebras: Andy Linshaw (Denver University) Bailin Song (University of Science and Technology of China) Gregg Zuckerman (Yale University) For their helpful input to this lecture, special thanks to An Huang (Brandeis University) Tsung-Ju Lee (Harvard CMSA) Andy Linshaw (Denver University) Preample Disclaimers: This lecture includes a brief survey of the period prior to and soon after the creation of the theory of vertex algebras, and makes no claim of completeness – the survey is intended to highlight developments that reflect the speaker’s own views (and biases) about the subject. As a short survey of early history, it will inevitably miss many of the more recent important or even towering results. Egs. geometric Langlands, braided tensor categories, conformal nets, applications to mirror symmetry, deformations of VAs, .... Emphases are placed on the mutually beneficial cross-influences between physics and vertex algebras in their concurrent early developments, and the lecture is aimed for a general audience. Preample Outline 1 Early History 1970s – 90s: two parallel universes 2 A fruitful perspective: vertex algebras as higher commutative algebras 3 Classification: cousins of the Moonshine VOA 4 Speculations The String Theory Universe 1968: Veneziano proposed a model (using the Euler beta function) to explain the ‘st-channel crossing’ symmetry in 4-meson scattering, and the Regge trajectory (an angular momentum vs binding energy plot for the Coulumb potential).
    [Show full text]
  • Higher AGT Correspondences, W-Algebras, and Higher Quantum
    Higher AGT Correspon- dences, W-algebras, and Higher Quantum Geometric Higher AGT Correspondences, W-algebras, Langlands Duality from M-Theory and Higher Quantum Geometric Langlands Meng-Chwan Duality from M-Theory Tan Introduction Review of 4d Meng-Chwan Tan AGT 5d/6d AGT National University of Singapore W-algebras + Higher QGL SUSY gauge August 3, 2016 theory + W-algebras + QGL Higher GL Conclusion Presentation Outline Higher AGT Correspon- dences, Introduction W-algebras, and Higher Quantum Lightning Review: A 4d AGT Correspondence for Compact Geometric Langlands Lie Groups Duality from M-Theory A 5d/6d AGT Correspondence for Compact Lie Groups Meng-Chwan Tan W-algebras and Higher Quantum Geometric Langlands Introduction Duality Review of 4d AGT Supersymmetric Gauge Theory, W-algebras and a 5d/6d AGT Quantum Geometric Langlands Correspondence W-algebras + Higher QGL SUSY gauge Higher Geometric Langlands Correspondences from theory + W-algebras + M-Theory QGL Higher GL Conclusion Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- Circa 2009, Alday-Gaiotto-Tachikawa [1] | showed that dences, W-algebras, the Nekrasov instanton partition function of a 4d N = 2 and Higher Quantum conformal SU(2) quiver theory is equivalent to a Geometric Langlands conformal block of a 2d CFT with W2-symmetry that is Duality from M-Theory Liouville theory. This was henceforth known as the Meng-Chwan celebrated 4d AGT correspondence. Tan Circa 2009, Wyllard [2] | the 4d AGT correspondence is Introduction Review of 4d proposed and checked (partially) to hold for a 4d N = 2 AGT conformal SU(N) quiver theory whereby the corresponding 5d/6d AGT 2d CFT is an AN−1 conformal Toda field theory which has W-algebras + Higher QGL WN -symmetry.
    [Show full text]
  • Exercise 3 — Supersymmetry for Superstrings
    Arash Ardehali String Theory | Prof. Sheikh-Jabbari Exercise 3 | Supersymmetry for Superstrings 1. SUSY generalities (suggested reading : Vafa et. al., Mirror symmetry, Ch 10) Supersymmetry often leads to: I) stability of quantum systems, and II) control over the non-perturbative regime of quantum systems. As for item I, in string theory supersymmetry allows removing the bosonic string tachyon in Minkowski background. (Question: do you remember the masses of the open and closed bosonic string tachyons in Minkowski background?) In other words, the superstring spectrum, unlike the bosonic spectrum, does not signal a perturbative instability in the system. The fact that supersymmetry (SUSY) removes the tachyon (after GSO, of course), is in accord with the general wisdom that supersymmetry often stabilizes quantum systems. • Write down the N = (1; 1) SUSY algebra (in terms of Hilbert-space operators) in 1+0, 1+1, and 1+3 dimensional quantum field theories. [Hint: ask Google.] Make sure you understand the role of y. Show that in all cases the SUSY algebra implies a positive semi-definite energy. [Hint: write the expectation value of the Hamiltonian in terms of the supercharge operators.] • Write down the SUSY algebra in 1+1 dimensional conformal field theory (CFT). This CFT could be the one living on the worldsheet of superstrings. Does the algebra imply a positivity constraint on the spectrum? Task: read about Witten's SUSY-inspired proof of the positive energy theorem in clas- sical GR. As for item II, in string theory supersymmetry allows understanding various strong- weak dualities between the five superstring theories and M-theory.
    [Show full text]
  • Arxiv:1109.4101V2 [Hep-Th]
    Quantum Open-Closed Homotopy Algebra and String Field Theory Korbinian M¨unster∗ Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany Ivo Sachs† Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA and Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany (Dated: September 28, 2018) Abstract We reformulate the algebraic structure of Zwiebach’s quantum open-closed string field theory in terms of homotopy algebras. We call it the quantum open-closed homotopy algebra (QOCHA) which is the generalization of the open-closed homo- topy algebra (OCHA) of Kajiura and Stasheff. The homotopy formulation reveals new insights about deformations of open string field theory by closed string back- grounds. In particular, deformations by Maurer Cartan elements of the quantum closed homotopy algebra define consistent quantum open string field theories. arXiv:1109.4101v2 [hep-th] 19 Oct 2011 ∗Electronic address: [email protected] †Electronic address: [email protected] 2 Contents I. Introduction 3 II. Summary 4 III. A∞- and L∞-algebras 7 A. A∞-algebras 7 B. L∞-algebras 10 IV. Homotopy involutive Lie bialgebras 12 A. Higher order coderivations 12 B. IBL∞-algebra 13 C. IBL∞-morphisms and Maurer Cartan elements 15 V. Quantum open-closed homotopy algebra 15 A. Loop homotopy algebra of closed strings 17 B. IBL structure on cyclic Hochschild complex 18 C. Quantum open-closed homotopy algebra 19 VI. Deformations and the quantum open-closed correspondence 23 A. Quantum open string field theory 23 B. Quantum open-closed correspondence 24 VII.
    [Show full text]
  • Modular Constraints on Superconformal Field Theories
    KIAS-P18096 Modular Constraints on Superconformal Field Theories Jin-Beom Bae, Sungjay Lee, and Jaewon Song Korea Institute for Advanced Study 85 Hoegiro, Dongdaemun-Gu, Seoul 02455, Korea Abstract We constrain the spectrum of N = (1; 1) and N = (2; 2) superconformal field theories in two-dimensions by requiring the NS-NS sector partition function to be invariant under the Γθ congruence subgroup of the full modular group SL(2; Z). We employ semi-definite programming to find constraints on the allowed spectrum of operators with or without U(1) charges. Especially, the arXiv:1811.00976v1 [hep-th] 2 Nov 2018 upper bounds on the twist gap for the non-current primaries exhibit interest- ing peaks, kinks, and plateau. We identify a number of candidate rational (S)CFTs realized at the numerical boundaries and find that they are realized as the solutions to modular differential equations associated to Γθ. Some of the candidate theories have been discussed by H¨ohnin the context of self-dual ex- tremal vertex operator (super)algebra. We also obtain bounds for the charged operators and study their implications to the weak gravity conjecture in AdS3. Contents 1 Introduction 1 2 Preliminaries 7 2.1 Representations of N = 1 Superconformal Algebra . .7 2.2 Representations of N = 2 Superconformal Algebra . .9 2.3 Semi-Definite Programming . 12 3 Charge Independent Bounds 14 3.1 Spin-independent bounds on the gap . 14 3.2 Spin-dependent Bounds for N = (1; 1) SCFT . 16 3.3 Spin-dependent Bounds for N = (2; 2) SCFT . 26 4 Charge Dependent Bounds 29 4.1 HFK-type Bound for the Charged States .
    [Show full text]
  • Iterated Loop Modules and a Filtration for Vertex Representation of Toroidal Lie Algebras
    Pacific Journal of Mathematics ITERATED LOOP MODULES AND A FILTRATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO Volume 171 No. 2 December 1995 PACIFIC JOURNAL OF MATHEMATICS Vol. 171, No. 2, 1995 ITERATED LOOP MODULES AND A FILTERATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO The purpose of this paper is two fold. The first one is to construct a continuous new family of irreducible (some of them are unitarizable) modules for Toroidal algebras. The second one is to describe the sub-quotients of the (integrable) modules constructed through the use of Vertex operators. Introduction. Toroidal algebras r[d] are defined for every d > 1 and when d — 1 they are precisely the untwisted affine Lie-algebras. Such an affine algebra Q can be realized as the universal central extension of the loop algebra Q ®C[t, t"1] where Q is simple finite dimensional Lie-algebra over C. It is well known that Q is a one dimensional central extension of Q ®C[ί, ί"1]. The Toroidal algebras ηd] are the universal central extensions of the iterated loop algebra Q ®C[tfλ, tJ1] which, for d > 2, turnout to be infinite central extension. These algebras are interesting because they are related to the Lie-algebra of Map (X, G), the infinite dimensional group of polynomial maps of X to the complex algebraic group G where X is a d-dimensional torus. For additional material on recent developments in the theory of Toroidal algebras one may consult [BC], [FM] and [MS]. In [MEY] and [EM] a countable family of modules (also integrable see [EMY]) are constructed for Toroidal algebras on Fock space through the use of Vertex Operators (Theorem 3.4, [EM]).
    [Show full text]