Higher AGT Correspondences, W-Algebras, and Higher Quantum

Total Page:16

File Type:pdf, Size:1020Kb

Higher AGT Correspondences, W-Algebras, and Higher Quantum Higher AGT Correspon- dences, W-algebras, and Higher Quantum Geometric Higher AGT Correspondences, W-algebras, Langlands Duality from M-Theory and Higher Quantum Geometric Langlands Meng-Chwan Duality from M-Theory Tan Introduction Review of 4d Meng-Chwan Tan AGT 5d/6d AGT National University of Singapore W-algebras + Higher QGL SUSY gauge August 3, 2016 theory + W-algebras + QGL Higher GL Conclusion Presentation Outline Higher AGT Correspon- dences, Introduction W-algebras, and Higher Quantum Lightning Review: A 4d AGT Correspondence for Compact Geometric Langlands Lie Groups Duality from M-Theory A 5d/6d AGT Correspondence for Compact Lie Groups Meng-Chwan Tan W-algebras and Higher Quantum Geometric Langlands Introduction Duality Review of 4d AGT Supersymmetric Gauge Theory, W-algebras and a 5d/6d AGT Quantum Geometric Langlands Correspondence W-algebras + Higher QGL SUSY gauge Higher Geometric Langlands Correspondences from theory + W-algebras + M-Theory QGL Higher GL Conclusion Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- Circa 2009, Alday-Gaiotto-Tachikawa [1] | showed that dences, W-algebras, the Nekrasov instanton partition function of a 4d N = 2 and Higher Quantum conformal SU(2) quiver theory is equivalent to a Geometric Langlands conformal block of a 2d CFT with W2-symmetry that is Duality from M-Theory Liouville theory. This was henceforth known as the Meng-Chwan celebrated 4d AGT correspondence. Tan Circa 2009, Wyllard [2] | the 4d AGT correspondence is Introduction Review of 4d proposed and checked (partially) to hold for a 4d N = 2 AGT conformal SU(N) quiver theory whereby the corresponding 5d/6d AGT 2d CFT is an AN−1 conformal Toda field theory which has W-algebras + Higher QGL WN -symmetry. SUSY gauge theory + Circa 2009, Awata-Yamada [3] | formulated 5d pure W-algebras + QGL AGT correspondence for SU(2) in terms of q-deformed Higher GL W2-algebra. Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- dences, W-algebras, and Higher Circa 2011, Awata et al. [4] | mathematically Quantum Geometric conjectured 5d AGT correspondence for conformal SU(N) Langlands Duality from linear quiver theory. M-Theory Meng-Chwan Circa 2011, Keller et al. [5] | proposed and checked Tan (partially) the 4d AGT correspondence for N = 2 pure Introduction arbitrary G theory. Review of 4d AGT Circa 2012, Schiffmann-Vasserot, Maulik-Okounkov [6, 7] 5d/6d AGT | the equivariant cohomology of the moduli space of W-algebras + SU(N)-instantons is related to the integrable Higher QGL SUSY gauge representations of an affine WN -algebra (as a theory + W-algebras + mathematical proof of 4d AGT for pure SU(N)). QGL Higher GL Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- dences, W-algebras, Circa 2013, Tan [8] | M-theoretic derivation of the 4d and Higher Quantum AGT correspondence for arbitrary compact Lie groups, and Geometric its generalizations and connections to quantum integrable Langlands Duality from systems. M-Theory Meng-Chwan Circa 2013, Tan [9] | M-theoretic derivation of the 5d Tan and 6d AGT correspondence for SU(N), and their Introduction generalizations and connections to quantum integrable Review of 4d AGT systems. 5d/6d AGT Circa 2014, Braverman-Finkelberg-Nakajima [10] | the W-algebras + Higher QGL equivariant cohomology of the moduli space of SUSY gauge G-instantons is related to the integrable representations of theory + L W-algebras + a W( gaff )-algebra (as a mathematical proof of 4d AGT QGL for simply-laced G with Lie algebra g). Higher GL Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- dences, W-algebras, and Higher Quantum Circa 2015, Iqbal-Kozcaz-Yau [11] | string-theoretic Geometric Langlands derivation of the 6d AGT correspondence for SU(2), where Duality from M-Theory 2d CFT has elliptic W2-symmetry. Meng-Chwan Tan Circa 2015, Nieri [12] | field-theoretic derivation of the Introduction 6d AGT correspondence for SU(2), where 2d CFT has Review of 4d AGT elliptic W2-symmetry. 5d/6d AGT W-algebras + Circa 2016, Tan [13] | M-theoretic derivation of the 5d Higher QGL SUSY gauge and 6d AGT correspondence for arbitrary compact Lie theory + groups, and more. W-algebras + QGL Higher GL Conclusion Motivations for Our Work Higher AGT 1). The recent work of Kimura-Pestun in [14] which furnishes a Correspon- dences, gauge-theoretic realization of the q-deformed affine W-algebras W-algebras, and Higher constructed by Frenkel-Reshetikhin in [17], strongly suggests Quantum Geometric that we should be able to realize, in a unified manner through Langlands Duality from our M-theoretic framework in [8, 9], a quantum geometric M-Theory Langlands duality and its higher analogs as defined by Meng-Chwan Tan Feigin-Frenkel-Reshetikhin in [15, 16], and more. Introduction 2). The connection between the gauge-theoretic realization of Review of 4d AGT the geometric Langlands correspondence by Kapustin-Witten 5d/6d AGT in [18, 19] and its original algebraic CFT formulation by W-algebras + Beilinson-Drinfeld in [20], is hitherto still missing. The fact Higher QGL that we can relate 4d supersymmetric gauge theory to ordinary SUSY gauge theory + affine W-algebras which obey a geometric Langlands duality, W-algebras + QGL suggests that the sought-after connection may actually reside Higher GL within our M-theoretic framework in [8, 9]. Conclusion Summary of Talk Higher AGT Correspon- dences, W-algebras, and Higher In this talk based on [13], we will present an M-theoretic Quantum Geometric derivation of a 5d and 6d AGT correspondence for arbitrary Langlands Duality from compact Lie groups, from which we can obtain identities of M-Theory various W-algebras which underlie a quantum geometric Meng-Chwan Tan Langlands duality and its higher analogs, whence we will be able to Introduction Review of 4d AGT (i) elucidate the sought-after connection between the 4d 5d/6d AGT gauge-theoretic realization of the geometric Langlands W-algebras + correspondence by Kapustin-Witten [18, 19] and its algebraic Higher QGL 2d CFT formulation by Beilinson-Drinfeld [20], SUSY gauge theory + W-algebras + QGL Higher GL Conclusion Summary of Talk Higher AGT Correspon- dences, W-algebras, and Higher Quantum (ii) explain what the higher 5d and 6d analogs of the geometric Geometric Langlands Langlands correspondence for simply-laced Lie (Kac-Moody) Duality from groups G (G), ought to involve, M-Theory b Meng-Chwan Tan and Introduction Review of 4d (iii) demonstrate Nekrasov-Pestun-Shatashvili's recent result AGT in [21], which relates the moduli space of 5d/6d 5d/6d AGT supersymmetric G (Gb)-quiver SU(Ki ) gauge theories to the W-algebras + Higher QGL representation theory of quantum/elliptic affine (toroidal) SUSY gauge G-algebras. theory + W-algebras + QGL Higher GL Conclusion Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence for Compact Groups Higher AGT Via a chain of string dualities in a background of fluxbranes as Correspon- dences, introduced in [22, 23], we have the dual M-theory W-algebras, and Higher compactifications Quantum Geometric 4 5 5 R!0 Langlands R j1,2 × Σn;t ×R j3; x6;7 () R j3; x4;5 ×C × TNN j3; x6;7 ; Duality from | {z } | {z } M-Theory N M5-branes 1 M5-branes Meng-Chwan (1) Tan where n = 1 or 2 for G = SU(N) or SO(N + 1) (N even), and Introduction 4j × Σ × 5j () 5j ×C × SNR!0j ; Review of 4d R 1,2 n;t R 3; x6;7 R 3; x4;5 N 3; x6;7 AGT | {z } | {z } N M5-branes + OM5-plane 1 M5-branes 5d/6d AGT (2) W-algebras + Higher QGL where n = 1, 2 or 3 for G = SO(2N), USp(2N − 2) or G2 SUSY gauge (with N = 4). theory + W-algebras + QGL Here, 3 = 1 + 2, the surface C has the same topology as 1 Higher GL Σn;t = Sn × It , and we have an M9-brane at each tip of It . 1 Conclusion The radius of Sn is given by β, which is much larger than It . Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence for Compact Groups Higher AGT The relevant spacetime (quarter) BPS states on the LHS of (1) Correspon- dences, and (2) are captured by a gauged sigma model on instanton W-algebras, and Higher moduli space, and are spanned by Quantum Geometric M Langlands ∗ IH 2 U(M ); (3) Duality from U(1) ×T G;m M-Theory m Meng-Chwan Tan while those on the RHS of (1) and (2) are captured by a gauged chiral WZW model on the I-brane C in the equivalent Introduction IIA frame, and are spanned by Review of 4d AGT L W( gaff ): (4) 5d/6d AGT c W-algebras + The physical duality of the compactifications in (1) and (2) will Higher QGL mean that (3) is equivalent to (4), i.e. SUSY gauge theory + W-algebras + M ∗ L QGL IHU(1)2×T U(MG;m) = Wc( gaff ) (5) Higher GL m Conclusion Lightning Review: An M-Theoretic Derivation of the 4d Pure AGT Correspondence for Compact Groups Higher AGT Correspon- dences, The 4d Nekrasov instanton partition function is given by W-algebras, and Higher Quantum _ X 2mhg Geometric Zinst(Λ; 1; 2;~a) = Λ ZBPS;m(1; 2;~a; β ! 0); (6) Langlands Duality from m M-Theory Meng-Chwan where Λ can be interpreted as the inverse of the observed scale Tan 4 of the R j1,2 space on the LHS of (1), and ZBPS;m is a 5d Introduction worldvolume index. Review of 4d AGT Thus, since ZBPS;m is a weighted count of the states in 5d/6d AGT Ω ∗ HBPS;m = IHU(1)2×T U(MG;m), it would mean from (6) that W-algebras + Higher QGL Z (Λ; ; ;~a) = hΨjΨi; (7) SUSY gauge inst 1 2 theory + W-algebras + _ L mhg L ∗ QGL where jΨi = m Λ jΨmi 2 m IHU(1)2×T U(MG;m).
Recommended publications
  • Some Mathematical Applications of Little String Theory
    Some mathematical applications of little string theory Mina Aganagic UC Berkeley Based on joint works with Edward Frenkel and Andrei Okounkov, to appear Andrei Okounkov, arXiv:1604.00423 [math.AG] , Nathan Haouzi, arXiv:1506.04183 [hep-th] , String theory predicts existence of a remarkable quantum field theory in six dimensions, the (2,0) superconformal field theory. The theory is labeled by a simply-laced Lie algebra, . It is remarkable, in part, because it is expected to play an important role in pure mathematics: Geometric Langlands Program Knot Categorification Program The fact that the theory has no classical limit, makes it hard to extract its predictions. AGT correspondence, after Alday, Gaiotto and Tachikawa, serves well to illustrate both the mathematical appeal of the theory and the difficulty of working with it. The AGT correspondence states that the partition function of the -type (2,0) SCFT, on a six manifold of the form is a conformal block on the Riemann surface of a vertex operator algebra which is also labeled by : -algebra The correspondence further relates defects of the 6d theory to vertex operators of the -algebra, inserted at points on . x x x x x x If one is to take the conjecture at its face value, it is hard to make progress on it. Since we do not know how to describe the (2,0) SCFT, we cannot formulate or evaluate its partition function in any generality. (Exceptions are g=A_1 , or special choices of defects.) I will argue in this talk that one can make progress by replacing the 6-dimensional conformal field theory, which is a point particle theory, by the 6-dimensional string theory which contains it, the (2,0) little string theory.
    [Show full text]
  • The Chiral De Rham Complex of Tori and Orbifolds
    The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus .
    [Show full text]
  • Arxiv:1109.4101V2 [Hep-Th]
    Quantum Open-Closed Homotopy Algebra and String Field Theory Korbinian M¨unster∗ Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany Ivo Sachs† Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA and Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany (Dated: September 28, 2018) Abstract We reformulate the algebraic structure of Zwiebach’s quantum open-closed string field theory in terms of homotopy algebras. We call it the quantum open-closed homotopy algebra (QOCHA) which is the generalization of the open-closed homo- topy algebra (OCHA) of Kajiura and Stasheff. The homotopy formulation reveals new insights about deformations of open string field theory by closed string back- grounds. In particular, deformations by Maurer Cartan elements of the quantum closed homotopy algebra define consistent quantum open string field theories. arXiv:1109.4101v2 [hep-th] 19 Oct 2011 ∗Electronic address: [email protected] †Electronic address: [email protected] 2 Contents I. Introduction 3 II. Summary 4 III. A∞- and L∞-algebras 7 A. A∞-algebras 7 B. L∞-algebras 10 IV. Homotopy involutive Lie bialgebras 12 A. Higher order coderivations 12 B. IBL∞-algebra 13 C. IBL∞-morphisms and Maurer Cartan elements 15 V. Quantum open-closed homotopy algebra 15 A. Loop homotopy algebra of closed strings 17 B. IBL structure on cyclic Hochschild complex 18 C. Quantum open-closed homotopy algebra 19 VI. Deformations and the quantum open-closed correspondence 23 A. Quantum open string field theory 23 B. Quantum open-closed correspondence 24 VII.
    [Show full text]
  • Iterated Loop Modules and a Filtration for Vertex Representation of Toroidal Lie Algebras
    Pacific Journal of Mathematics ITERATED LOOP MODULES AND A FILTRATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO Volume 171 No. 2 December 1995 PACIFIC JOURNAL OF MATHEMATICS Vol. 171, No. 2, 1995 ITERATED LOOP MODULES AND A FILTERATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO The purpose of this paper is two fold. The first one is to construct a continuous new family of irreducible (some of them are unitarizable) modules for Toroidal algebras. The second one is to describe the sub-quotients of the (integrable) modules constructed through the use of Vertex operators. Introduction. Toroidal algebras r[d] are defined for every d > 1 and when d — 1 they are precisely the untwisted affine Lie-algebras. Such an affine algebra Q can be realized as the universal central extension of the loop algebra Q ®C[t, t"1] where Q is simple finite dimensional Lie-algebra over C. It is well known that Q is a one dimensional central extension of Q ®C[ί, ί"1]. The Toroidal algebras ηd] are the universal central extensions of the iterated loop algebra Q ®C[tfλ, tJ1] which, for d > 2, turnout to be infinite central extension. These algebras are interesting because they are related to the Lie-algebra of Map (X, G), the infinite dimensional group of polynomial maps of X to the complex algebraic group G where X is a d-dimensional torus. For additional material on recent developments in the theory of Toroidal algebras one may consult [BC], [FM] and [MS]. In [MEY] and [EM] a countable family of modules (also integrable see [EMY]) are constructed for Toroidal algebras on Fock space through the use of Vertex Operators (Theorem 3.4, [EM]).
    [Show full text]
  • Geometric Langlands from 4D N=2 Theories
    Geometric Langlands from 4d N = 2 theories Aswin Balasubramanian DESY & U. Hamburg September 11, 2017 IMSc Seminar, Chennai based on 1702.06499 w J. Teschner + work with Ioana Coman-Lohi, J.T Aswin Balasubramanian Geometric Langlands from 4d N = 2 theories 1 / 46 Goals for my talk Part A : Light introduction to Geometric Langlands (Kapustin-Witten, Beilinson-Drinfeld, Our Motivating Questions) Part B : Review N = 2 Class S theories (Hitchin system, AGT correspondence) Part C: Aspects of Geometric Langlands from Class S Aswin Balasubramanian Geometric Langlands from 4d N = 2 theories 2 / 46 Goals for my talk Part A : Light introduction to Geometric Langlands (Kapustin-Witten, Beilinson-Drinfeld, Our Motivating Questions) Part B : Review N = 2 Class S theories (Hitchin system, AGT correspondence) Part C: Aspects of Geometric Langlands from Class S Aswin Balasubramanian Geometric Langlands from 4d N = 2 theories 2 / 46 Goals for my talk Part A : Light introduction to Geometric Langlands (Kapustin-Witten, Beilinson-Drinfeld, Our Motivating Questions) Part B : Review N = 2 Class S theories (Hitchin system, AGT correspondence) Part C: Aspects of Geometric Langlands from Class S Aswin Balasubramanian Geometric Langlands from 4d N = 2 theories 2 / 46 Part A : Approaches to Geometric Langlands Aswin Balasubramanian Geometric Langlands from 4d N = 2 theories 3 / 46 Historical Background The Langlands program has its roots in Number Theory, specifically the classification of Automorphic forms for G(Z). These generalize modular forms of SL(2; Z) . Fourier co-efficients of Automorphic forms encode very interesting Number Theoretic information. For several reasons, it was interesting to ask if there was a geometric analog.
    [Show full text]
  • Probabilistic Conformal Blocks for Liouville Cft on the Torus
    PROBABILISTIC CONFORMAL BLOCKS FOR LIOUVILLE CFT ON THE TORUS PROMIT GHOSAL, GUILLAUME REMY, XIN SUN, AND YI SUN Abstract. Virasoro conformal blocks are a family of important functions defined as power series via the Virasoro algebra. They are a fundamental input to the conformal bootstrap program for 2D conformal field theory (CFT) and are closely related to four dimensional supersymmetric gauge theory through the Alday- Gaiotto-Tachikawa correspondence. The present work provides a probabilistic construction of the 1-point toric Virasoro conformal block for central change greater than 25. More precisely, we construct an analytic function using a probabilistic tool called Gaussian multiplicative chaos (GMC) and prove that its power series expansion coincides with the 1-point toric Virasoro conformal block. The range (25; 1) of central charges corresponds to Liouville CFT, an important CFT originating from 2D quantum gravity and bosonic string theory. Our work reveals a new integrable structure underlying GMC and opens the door to the study of non-perturbative properties of Virasoro conformal blocks such as their analytic continuation and modular symmetry. Our proof combines an analysis of GMC with tools from CFT such as Belavin-Polyakov- Zamolodchikov differential equations, operator product expansions, and Dotsenko-Fateev type integrals. 1. Introduction A conformal field theory (CFT) is a way to construct random functions on Riemannian manifolds that transform covariantly under conformal (i.e. angle preserving) mappings. Since the seminal work of Belavin- Polyakov-Zamolodchikov in [BPZ84], two dimensional (2D) CFT has grown into one of the most prominent branches of theoretical physics, with applications to 2D statistical physics and string theory, as well as far reaching consequences in mathematics; see e.g.
    [Show full text]
  • Lie Algebras from Lie Groups
    Preprint typeset in JHEP style - HYPER VERSION Lecture 8: Lie Algebras from Lie Groups Gregory W. Moore Abstract: Not updated since November 2009. March 27, 2018 -TOC- Contents 1. Introduction 2 2. Geometrical approach to the Lie algebra associated to a Lie group 2 2.1 Lie's approach 2 2.2 Left-invariant vector fields and the Lie algebra 4 2.2.1 Review of some definitions from differential geometry 4 2.2.2 The geometrical definition of a Lie algebra 5 3. The exponential map 8 4. Baker-Campbell-Hausdorff formula 11 4.1 Statement and derivation 11 4.2 Two Important Special Cases 17 4.2.1 The Heisenberg algebra 17 4.2.2 All orders in B, first order in A 18 4.3 Region of convergence 19 5. Abstract Lie Algebras 19 5.1 Basic Definitions 19 5.2 Examples: Lie algebras of dimensions 1; 2; 3 23 5.3 Structure constants 25 5.4 Representations of Lie algebras and Ado's Theorem 26 6. Lie's theorem 28 7. Lie Algebras for the Classical Groups 34 7.1 A useful identity 35 7.2 GL(n; k) and SL(n; k) 35 7.3 O(n; k) 38 7.4 More general orthogonal groups 38 7.4.1 Lie algebra of SO∗(2n) 39 7.5 U(n) 39 7.5.1 U(p; q) 42 7.5.2 Lie algebra of SU ∗(2n) 42 7.6 Sp(2n) 42 8. Central extensions of Lie algebras and Lie algebra cohomology 46 8.1 Example: The Heisenberg Lie algebra and the Lie group associated to a symplectic vector space 47 8.2 Lie algebra cohomology 48 { 1 { 9.
    [Show full text]
  • Three Approaches to M-Theory
    Three Approaches to M-theory Luca Carlevaro PhD. thesis submitted to obtain the degree of \docteur `es sciences de l'Universit´e de Neuch^atel" on monday, the 25th of september 2006 PhD. advisors: Prof. Jean-Pierre Derendinger Prof. Adel Bilal Thesis comittee: Prof. Matthias Blau Prof. Matthias R. Gaberdiel Universit´e de Neuch^atel Facult´e des Sciences Institut de Physique Rue A.-L. Breguet 1 CH-2001 Neuch^atel Suisse This thesis is based on researches supported the Swiss National Science Foundation and the Commission of the European Communities under contract MRTN-CT-2004-005104. i Mots-cl´es: Th´eorie des cordes, Th´eorie de M(atrice) , condensation de gaugino, brisure de supersym´etrie en th´eorie M effective, effets d'instantons de membrane, sym´etries cach´ees de la supergravit´e, conjecture sur E10 Keywords: String theory, M(atrix) theory, gaugino condensation, supersymmetry breaking in effective M-theory, membrane instanton effects, hidden symmetries in supergravity, E10 con- jecture ii Summary: Since the early days of its discovery, when the term was used to characterise the quantum com- pletion of eleven-dimensional supergravity and to determine the strong-coupling limit of type IIA superstring theory, the idea of M-theory has developed with time into a unifying framework for all known superstring the- ories. This evolution in conception has followed the progressive discovery of a large web of dualities relating seemingly dissimilar string theories, such as theories of closed and oriented strings (type II theories), of closed and open unoriented strings (type I theory), and theories with built in gauge groups (heterotic theories).
    [Show full text]
  • Pos(TASI2017)015
    The String Landscape, the Swampland, and the Missing Corner PoS(TASI2017)015 T. Daniel Brennana, Federico Cartab,∗ and Cumrun Vafayc a Department of Physics and Astronomy, Rutgers University 126 Frelinghuysen Rd., Piscataway NJ 08855, USA b Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain c Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA Email: [email protected], [email protected], [email protected] We give a brief overview of the string landscape and techniques used to construct string com- pactifications. We then explain how this motivates the notion of the swampland and review a number of conjectures that attempt to characterize theories in the swampland. We also compare holography in the context of superstrings with the similar, but much simpler case of topological string theory. For topological strings, there is a direct definition of topological gravity based on a sum over a “quantum gravitational foam.” In this context, holography is the statement of an identification between a gravity and gauge theory, both of which are defined independently of one another. This points to a missing corner in string dualities which suggests the search for a direct definition of quantum theory of gravity rather than relying on its strongly coupled holographic dual as an adequate substitute (Based on TASI 2017 lectures given by C. Vafa). Theoretical Advanced Study Institute in Elementary Partical Physics (TASI): “Physics at the Fundamental Frontier” University of Colorado, Boulder Boulder, CO June, 5 – 30 2017 ∗La Caixa-Severo Ochoa Scholar ySpeaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • Extended Kac-Moody Algebras '• • and Applications
    \j LAPP-TH-335/91 Avril 9l I 1 Extended Kac-Moody algebras '• • and Applications E. Ragoucy and P. Sorba Laboratoire Physique Théorique ENSLAPP" - Groupe d'Annecy Chemin de Bellevue BP 110, F-74941 Annecy-le- Vieux Cedex, France Abstract : * We extend the notion of a Kac-Moody algebra defined on the S1 circle to super Kac-Moody algebras defined on M x GN, M being a smooth closed compact manifold of dimension greater than one, and G/v the Grassman algebra with N generators. We compute all the central extensions V-, »! of these algebras. Then, we determine for each such algebra the derivation algebra constructed : from the M x <7/v diffeomorphisms. The twists of such super Kac-Moody algebras as well as , the generalization to non-compact surfaces are partially studied. Finally, we apply our general construction to the study of conformai and superconformai algebras, as well as area-preserving j diffeomorphisms algebra and its supersymmetric extension. Wf A review to be published in Int. Jour, of Mod. Phys. A "URA 14-36 du CNRS, associée à l'Ecole Normale Supérieure de Lyon, et au Laboratoire d'Annecy-le-Vieux de Physique des Particules. ••• \ ; Contents 8 Appli< 8.1 (, 1 Introduction. 8.2 I- 8.3 h-. FUNDAMENTALS 6 O Cone U The usual Kac-Moody algebras. G 2.1 Loop algebra 6 A Deter •****< 2.2 Twists of loop algebras 7 A.I h 2.3 Central extension of a loop algebra 7 A.2 C, 2.4 Kac-Moody algebras and Hochschilq (cyclic) cohomology 8 A.3 C 2.5 Derivation algebra S B KM a 2.6 The Sugawaraand GKO constructions 10 B.I K B.2 h Central extensions for generalized loop algebraB.
    [Show full text]
  • Iterated Loop Modules and a Filtration for Vertex Representation of Toroidal Lie Algebras
    Pacific Journal of Mathematics ITERATED LOOP MODULES AND A FILTRATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO Volume 171 No. 2 December 1995 PACIFIC JOURNAL OF MATHEMATICS Vol. 171, No. 2, 1995 ITERATED LOOP MODULES AND A FILTERATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO The purpose of this paper is two fold. The first one is to construct a continuous new family of irreducible (some of them are unitarizable) modules for Toroidal algebras. The second one is to describe the sub-quotients of the (integrable) modules constructed through the use of Vertex operators. Introduction. Toroidal algebras r[d] are defined for every d > 1 and when d — 1 they are precisely the untwisted affine Lie-algebras. Such an affine algebra Q can be realized as the universal central extension of the loop algebra Q ®C[t, t"1] where Q is simple finite dimensional Lie-algebra over C. It is well known that Q is a one dimensional central extension of Q ®C[ί, ί"1]. The Toroidal algebras ηd] are the universal central extensions of the iterated loop algebra Q ®C[tfλ, tJ1] which, for d > 2, turnout to be infinite central extension. These algebras are interesting because they are related to the Lie-algebra of Map (X, G), the infinite dimensional group of polynomial maps of X to the complex algebraic group G where X is a d-dimensional torus. For additional material on recent developments in the theory of Toroidal algebras one may consult [BC], [FM] and [MS]. In [MEY] and [EM] a countable family of modules (also integrable see [EMY]) are constructed for Toroidal algebras on Fock space through the use of Vertex Operators (Theorem 3.4, [EM]).
    [Show full text]
  • Instanton Counting in Class Sk
    Prepared for submission to JHEP DESY 17-189 Instanton counting in Class Sk Thomas Bourton, Elli Pomoni DESY Theory Group, Notkestraße 85, 22607 Hamburg, Germany E-mail: [email protected], [email protected] Abstract: We compute the instanton partition functions of N = 1 SCFTs in class Sk. We obtain this result via orbifolding Dp/D(p-4) brane systems and calculating the partition function of the supersymmetric gauge theory on the worldvolume of K D(p-4) branes. Starting with D5/D1 setups probing a Z` × Zk orbifold singularity we obtain the K instanton partition 4 2 2 functions of 6d (1; 0) theories on R × T in the presence of orbifold defects on T via com- puting the 2d superconformal index of the worldvolume theory on K D1 branes wrapping the T 2. We then reduce our results to the 5d and to the 4d instanton partition func- tions. For k = 1 we check that we reproduce the known elliptic, trigonometric and rational Nekrasov partition functions. Finally, we show that the instanton partition functions of SU(N) quivers in class Sk can be obtained from the class S mother theory partition func- 2πij=k tions with SU(kN) gauge factors via imposing the ‘orbifold condition’ aA ! aAe with A = jA and A = 1;:::;N, j = 1; : : : ; k on the Coulomb moduli and the mass parameters. arXiv:1712.01288v1 [hep-th] 4 Dec 2017 Contents 1 Introduction2 2 String theory description4 2.1 Type IIB realisation4 2.2 Type IIA realisation6 2.3 A 6d uplift7 2.4 On supersymmetry of the D1/D5 system9 3 4d N = 2∗ Instantons from a 2d superconformal index computation 10
    [Show full text]