Three Approaches to M-Theory

Total Page:16

File Type:pdf, Size:1020Kb

Three Approaches to M-Theory Three Approaches to M-theory Luca Carlevaro PhD. thesis submitted to obtain the degree of \docteur `es sciences de l'Universit´e de Neuch^atel" on monday, the 25th of september 2006 PhD. advisors: Prof. Jean-Pierre Derendinger Prof. Adel Bilal Thesis comittee: Prof. Matthias Blau Prof. Matthias R. Gaberdiel Universit´e de Neuch^atel Facult´e des Sciences Institut de Physique Rue A.-L. Breguet 1 CH-2001 Neuch^atel Suisse This thesis is based on researches supported the Swiss National Science Foundation and the Commission of the European Communities under contract MRTN-CT-2004-005104. i Mots-cl´es: Th´eorie des cordes, Th´eorie de M(atrice) , condensation de gaugino, brisure de supersym´etrie en th´eorie M effective, effets d'instantons de membrane, sym´etries cach´ees de la supergravit´e, conjecture sur E10 Keywords: String theory, M(atrix) theory, gaugino condensation, supersymmetry breaking in effective M-theory, membrane instanton effects, hidden symmetries in supergravity, E10 con- jecture ii Summary: Since the early days of its discovery, when the term was used to characterise the quantum com- pletion of eleven-dimensional supergravity and to determine the strong-coupling limit of type IIA superstring theory, the idea of M-theory has developed with time into a unifying framework for all known superstring the- ories. This evolution in conception has followed the progressive discovery of a large web of dualities relating seemingly dissimilar string theories, such as theories of closed and oriented strings (type II theories), of closed and open unoriented strings (type I theory), and theories with built in gauge groups (heterotic theories). In particular the eleven-dimensional Lorentz invariance of M-theory has been further highlighted by the discovery of how it descends by an orbifold compactification to the weakly-coupled heterotic E8 × E8 string theory. Furthermore the derivation from M-theory of one-loop corrections to type II and heterotic low-energy effective supergravity has shed new light on our understanding of anomaly cancellation mechanisms which are so crucial for the consistency of superstring theories and are also of phenomenological importance, since the fermion content of the Standard Model is chiral. Despite these successes, M-theory remains somewhat elusive and is still in want of a complete and closed formulation. In particular, its fundamental degrees of freedom are still unknown, which in principle prevents us from establishing the full quantum theory. Proposals have been made, advocating D0-branes or M2-branes as its elementary states. However, even the most fruitful of these proposals, based on a partonic description of M-theory and known as the BFSS (Bank-Fischler-Seiberg-Susskind) conjecture or M(atrix) theory, has stumbled on a number of issues, one of the most nagging being its failure to correctly reproduce quantum corrections to two- and three-graviton tree-level scattering amplitudes known from supergravity one-loop calculations. In the absence of a closed and definite description, we are bound to adopt a fragmentary approach to M- theory. This work naturally follows this route. Three facets of M-theory are thus uncovered or further investigated in the course of the present thesis. The first part deals with the matrix model approach to M-theory and studies the relevancy of an alternative to the BFSS proposal, defined in purely algebraic terms, which is desirable from the point of view of a background independent formulation of M-theory. It implements overt eleven-dimensional Lorentz invariance by resorting to a osp(1j32) realisation of its group of symmetry, thereby incorporating M2- and M5-branes as fundamental degrees of freedom on the same footing as the original D0-branes of the BFSS model. This seems more in phase with the concept of M-theory which does not appear to give preference to strings over more extended objects. Finally, this construction partially solves the puzzle about the absence of transverse five-brane degrees of freedom in M(atrix) theory and opens the perspective of a description of M-theory in a curved AdS11 background. The second part of this thesis focuses on the determination of non-perturbative effects in low-energy effective heterotic supergravity, investigating some phenomenology related consequences of the Hoˇrava-Witten scenario. The latter provides the M-theory origin of the strongly-coupled heterotic E8 × E8 superstring theory in terms of an orbifold compactification on an interval, with twisted sectors given by two copies of E8 super Yang-Mills multiplets propagating on the ten-dimensional boundary hyperplanes sitting at the orbifold fixed points. This setups can accomodate, under certain conditions, the insertion of parallel fivebranes, allowing for Euclidean membranes to stretch between them and the boundary hyperplanes. In this framework, we investigate a Calabi- Yau compactification of this setup to four dimensions, establishing the effective supergravity and computing the resulting instanton corrections to the interaction Lagrangian. In the condensed phase, this allows us to derive the corresponding gauge threshold corrections and determine the resulting non-perturbative superpotential with the correct dependence in the fivebrane modulus, from a purely supergravity calculation. Confirming results determined earlier by instanton calculations this works also renders them more accurate and sets them on a sounder basis, whence the vacuum structure of the effective supergravity can be addressed. The third and last part of this thesis tackles the issue of how to recover information about M-theory by studying hidden symmetries of supergravity actions. In particular, we explore the conjecture stating that M- theory possesses an underlying hyperbolic infinite-dimensional Kac-Moody symmetry encapsulated in the split form e10 10, which occurs as a natural very-extension of the exceptional U-duality algebra of eleven-dimensional j supergravity compactified on a seven-torus. However, this conjecture is supposed to carry on beyond the toroidal case and to give clues about uncompactified M-theory. In the present work, we make use of this conjecture to determine the algebraic structure of Zm orbifold compactifications of M-theory, showing how their untwisted sectors are encoded in a certain class of Borcherds algebras. Furthermore, concentrating on a certain family of Z2 orbifolds of M-theory descending to non-supersymmetric but nonetheless stable orientifolds of type 0A string theory, we establish a dictionary between tilted Dp-/Dp0-brane configurations required in these models by tadpole cancellation and a certain class of threshold-one roots of e10. This latter result is of some phenomenological interest insomuch as it gives a deeper algebraic understanding of the magnetised D9-/D90-brane setup of the T-dual type 00 string theories, which have been recently shown to play a r^ole in moduli stabilisation. iii Remerciements Je d´esire remercier tout particuli`erement Jean-Pierre Derendinger, qui m'a aid´e et soutenu dans mon travail, dont la collaboration a ´et´e tr`es pr´ecieuse et qui m'a donn´e la possibilit´e et la chance de r´ealiser cette th`ese sous sa direction. Au m^eme titre, je remercie Adel Bilal qui fut mon premier directeur de th`ese, me conseilla, m'aida et guida mes pas au d´ebut de cette entreprise. Je remercie aussi Matthias Blau et Matthias Gaberdiel qui ont bien voulu accepter de faire partie du jury de th`ese et qui ont pris le temps de faire une lecture critique de mon travail. Je d´esire en outre remercier Maxime Bagnoud de ce que sa collaboration m'a appris et fait d´ecouvrir. Enfin, je remercie mes parents dont le soutien et l'amour ind´efectible m'ont soutenu tout au long de ce travail de th`ese et m'ont permis de le mener a` bien. iv Contents Introduction 1 I M-theory, Matrix models and the osp(1 32; ) superalgebra 5 j Introduction 6 1 M(atrix)-theory, branes and the BFSS conjecture 9 1.1 A matrix model for membranes . 9 1.1.1 The bosonic membrane in the light-cone frame . 9 1.1.2 Regularising the membrane Matrix theory . 13 1.1.3 The supermembrane on a curved background . 15 1.1.4 Supersymmmetrisation in eleven dimensions . 15 1.1.5 Instabilities and continuous spectrum of states in the supermembrane model 19 1.2 D-branes and Dirac-Born-Infeld theory . 20 1.2.1 Ten-dimensional super Yang-Mills theory and its toroidal reduction . 22 1.2.2 D-branes and T-duality . 23 1.3 The BFSS Conjecture . 25 1.3.1 M-theory and IIA string theory . 25 1.3.2 The BFSS matrix model . 27 1.3.3 The Infinite Momentum Frame . 29 1.3.4 M(atrix) theory: a proposal for DLCQ M-theory . 30 1.3.5 Continuous energy spectrum and second-quantisation in M(atrix) theory . 33 1.3.6 The BFSS matrix model and its supersymmetry algebra . 35 1.4 Brane charges and the BFSS supersymetry algebra . 37 1.4.1 The BFSS supercharge density algebra . 39 1.5 M-theory branes from M(atrix) theory . 42 1.5.1 Transverse membranes . 42 1.5.2 Spherical membranes . 44 1.5.3 Longitudinal fivebranes . 44 1.5.4 Transverse fivebranes . 46 1.6 Outlook . 48 2 Supermatrix models for M-theory based on osp(1 32; R) 50 j 2.1 Introduction . 50 2.2 The osp(1 32; R) superalgebra . 51 j 2.3 The twelve-dimensional case . 52 2.3.1 Embedding of SO(10; 2) in OSp(1 32; R) . 54 j 2.3.2 Supersymmetry transformations of 12D matrix fields . 55 v 2.3.3 sp(32; R) transformations of the fields and their commutation relation with supersymmetries . 56 2.3.4 A note on translational invariance and kinematical supersymmetries .
Recommended publications
  • On the Holographic S–Matrix
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server On the Holographic S{matrix I.Ya.Aref’eva Steklov Mathematical Institute, Russian Academy of Sciences Gubkin St.8, GSP-1, 117966, Moscow, Russia Centro Vito Volterra, Universita di Roma Tor Vergata, Italy [email protected] Abstract The recent proposal by Polchinski and Susskind for the holographic flat space S– matrix is discussed. By using Feynman diagrams we argue that in principle all the information about the S–matrix in the interacting field theory in the bulk of the anti- de Sitter space is encoded into the data on the timelike boundary. The problem of locality of interpolating field is discussed and it is suggested that the interpolating field lives in a quantum Boltzmannian Hilbert space. 1 According to the holographic principle [1, 2] one should describe a field theory on a manifold M which includes gravity by a theory which lives on the boundary of M.Two prominent examples of the holography are the Matrix theory [3] and the AdS/CFT corre- spondence [4, 5, 6]. The relation between quantum gravity in the anti-de Sitter space and the gauge theory on the boundary could be useful for better understanding of both theories. In principle CFT might teach us about quantum gravity in the bulk of AdS. Correlation functions in the Euclidean formulation are the subject of intensive study (see for example [7]-[21]). The AdS/CFT correspondence in the Lorentz formulation is considered in [22]-[29].
    [Show full text]
  • The Chiral De Rham Complex of Tori and Orbifolds
    The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus .
    [Show full text]
  • Higher AGT Correspondences, W-Algebras, and Higher Quantum
    Higher AGT Correspon- dences, W-algebras, and Higher Quantum Geometric Higher AGT Correspondences, W-algebras, Langlands Duality from M-Theory and Higher Quantum Geometric Langlands Meng-Chwan Duality from M-Theory Tan Introduction Review of 4d Meng-Chwan Tan AGT 5d/6d AGT National University of Singapore W-algebras + Higher QGL SUSY gauge August 3, 2016 theory + W-algebras + QGL Higher GL Conclusion Presentation Outline Higher AGT Correspon- dences, Introduction W-algebras, and Higher Quantum Lightning Review: A 4d AGT Correspondence for Compact Geometric Langlands Lie Groups Duality from M-Theory A 5d/6d AGT Correspondence for Compact Lie Groups Meng-Chwan Tan W-algebras and Higher Quantum Geometric Langlands Introduction Duality Review of 4d AGT Supersymmetric Gauge Theory, W-algebras and a 5d/6d AGT Quantum Geometric Langlands Correspondence W-algebras + Higher QGL SUSY gauge Higher Geometric Langlands Correspondences from theory + W-algebras + M-Theory QGL Higher GL Conclusion Conclusion 6d/5d/4d AGT Correspondence in Physics and Mathematics Higher AGT Correspon- Circa 2009, Alday-Gaiotto-Tachikawa [1] | showed that dences, W-algebras, the Nekrasov instanton partition function of a 4d N = 2 and Higher Quantum conformal SU(2) quiver theory is equivalent to a Geometric Langlands conformal block of a 2d CFT with W2-symmetry that is Duality from M-Theory Liouville theory. This was henceforth known as the Meng-Chwan celebrated 4d AGT correspondence. Tan Circa 2009, Wyllard [2] | the 4d AGT correspondence is Introduction Review of 4d proposed and checked (partially) to hold for a 4d N = 2 AGT conformal SU(N) quiver theory whereby the corresponding 5d/6d AGT 2d CFT is an AN−1 conformal Toda field theory which has W-algebras + Higher QGL WN -symmetry.
    [Show full text]
  • Arxiv:1109.4101V2 [Hep-Th]
    Quantum Open-Closed Homotopy Algebra and String Field Theory Korbinian M¨unster∗ Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany Ivo Sachs† Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA and Arnold Sommerfeld Center for Theoretical Physics, Theresienstrasse 37, D-80333 Munich, Germany (Dated: September 28, 2018) Abstract We reformulate the algebraic structure of Zwiebach’s quantum open-closed string field theory in terms of homotopy algebras. We call it the quantum open-closed homotopy algebra (QOCHA) which is the generalization of the open-closed homo- topy algebra (OCHA) of Kajiura and Stasheff. The homotopy formulation reveals new insights about deformations of open string field theory by closed string back- grounds. In particular, deformations by Maurer Cartan elements of the quantum closed homotopy algebra define consistent quantum open string field theories. arXiv:1109.4101v2 [hep-th] 19 Oct 2011 ∗Electronic address: [email protected] †Electronic address: [email protected] 2 Contents I. Introduction 3 II. Summary 4 III. A∞- and L∞-algebras 7 A. A∞-algebras 7 B. L∞-algebras 10 IV. Homotopy involutive Lie bialgebras 12 A. Higher order coderivations 12 B. IBL∞-algebra 13 C. IBL∞-morphisms and Maurer Cartan elements 15 V. Quantum open-closed homotopy algebra 15 A. Loop homotopy algebra of closed strings 17 B. IBL structure on cyclic Hochschild complex 18 C. Quantum open-closed homotopy algebra 19 VI. Deformations and the quantum open-closed correspondence 23 A. Quantum open string field theory 23 B. Quantum open-closed correspondence 24 VII.
    [Show full text]
  • Iterated Loop Modules and a Filtration for Vertex Representation of Toroidal Lie Algebras
    Pacific Journal of Mathematics ITERATED LOOP MODULES AND A FILTRATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO Volume 171 No. 2 December 1995 PACIFIC JOURNAL OF MATHEMATICS Vol. 171, No. 2, 1995 ITERATED LOOP MODULES AND A FILTERATION FOR VERTEX REPRESENTATION OF TOROIDAL LIE ALGEBRAS S. ESWARA RAO The purpose of this paper is two fold. The first one is to construct a continuous new family of irreducible (some of them are unitarizable) modules for Toroidal algebras. The second one is to describe the sub-quotients of the (integrable) modules constructed through the use of Vertex operators. Introduction. Toroidal algebras r[d] are defined for every d > 1 and when d — 1 they are precisely the untwisted affine Lie-algebras. Such an affine algebra Q can be realized as the universal central extension of the loop algebra Q ®C[t, t"1] where Q is simple finite dimensional Lie-algebra over C. It is well known that Q is a one dimensional central extension of Q ®C[ί, ί"1]. The Toroidal algebras ηd] are the universal central extensions of the iterated loop algebra Q ®C[tfλ, tJ1] which, for d > 2, turnout to be infinite central extension. These algebras are interesting because they are related to the Lie-algebra of Map (X, G), the infinite dimensional group of polynomial maps of X to the complex algebraic group G where X is a d-dimensional torus. For additional material on recent developments in the theory of Toroidal algebras one may consult [BC], [FM] and [MS]. In [MEY] and [EM] a countable family of modules (also integrable see [EMY]) are constructed for Toroidal algebras on Fock space through the use of Vertex Operators (Theorem 3.4, [EM]).
    [Show full text]
  • A Note on Six-Dimensional Gauge Theories
    ILL-(TH)-97-09 hep-th/9712168 A Note on Six-Dimensional Gauge Theories Robert G. Leigh∗† and Moshe Rozali‡ Department of Physics University of Illinois at Urbana-Champaign Urbana, IL 61801 July 9, 2018 Abstract We study the new “gauge” theories in 5+1 dimensions, and their non- commutative generalizations. We argue that the θ-term and the non-commutative torus parameters appear on an equal footing in the non-critical string theories which define the gauge theories. The use of these theories as a Matrix descrip- tion of M-theory on T 5, as well as a closely related realization as 5-branes in type IIB string theory, proves useful in studying some of their properties. arXiv:hep-th/9712168v2 14 Apr 1998 ∗U.S. Department of Energy Outstanding Junior Investigator †e-mail: [email protected] ‡e-mail: [email protected] 0 1 Introduction Matrix theory[1] is an attempt at a non-perturbative formulation of M-theory in the lightcone frame. Compactifying it on a torus T d has been shown to be related to the large N limit of Super-Yang-Mills (SYM) theory in d + 1 dimensions[2]. This description is necessarily only partial for d > 3, since the SYM theory is then not renormalizable. The SYM theory is defined, for d = 4 by the (2,0) superconformal field theory in 5+1 dimensions [3, 4], and for d = 5 by a non-critical string theory in 5+1 dimensions [4, 5]. The situation of compactifications to lower dimensions is unclear for now (for recent reviews see [7, 8]).
    [Show full text]
  • Random Matrix Theory in Physics
    RANDOM MATRIX THEORY IN PHYSICS π π Thomas Guhr, Lunds Universitet, Lund, Sweden p(W)(s) = s exp s2 : (2) 2 − 4 As shown in Figure 2, the Wigner surmise excludes de- Introduction generacies, p(W)(0) = 0, the levels repel each other. This is only possible if they are correlated. Thus, the Poisson We wish to study energy correlations of quantum spec- law and the Wigner surmise reflect the absence or the tra. Suppose the spectrum of a quantum system has presence of energy correlations, respectively. been measured or calculated. All levels in the total spec- trum having the same quantum numbers form one par- ticular subspectrum. Its energy levels are at positions 1.0 xn; n = 1; 2; : : : ; N, say. We assume that N, the num- ber of levels in this subspectrum, is large. With a proper ) s smoothing procedure, we obtain the level density R1(x), ( 0.5 i.e. the probability density of finding a level at the energy p x. As indicated in the top part of Figure 1, the level density R1(x) increases with x for most physics systems. 0.0 In the present context, however, we are not so interested 0 1 2 3 in the level density. We want to measure the spectral cor- s relations independently of it. Hence, we have to remove FIG. 2. Wigner surmise (solid) and Poisson law (dashed). the level density from the subspectrum. This is referred to as unfolding. We introduce a new dimensionless en- Now, the question arises: If these correlation patterns ergy scale ξ such that dξ = R (x)dx.
    [Show full text]
  • JT Gravity and Random Matrix Ensembles
    JT Gravity And Random Matrix Ensembles Edward Witten Strings 2019, Brussels I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * time-reversal symmetry * fermions * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). * time-reversal symmetry * fermions * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * fermions * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * time-reversal symmetry * N = 1 supersymmetry This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ). I will describe an extension of this work (Stanford and EW, \JT Gravity And The Ensembles of Random Matrix Theory," arXiv:1907:xxxxx). We generalized the story to include * time-reversal symmetry * fermions This morning Steve Shenker reported on random matrices and JT gravity (Saad, Shenker, and Stanford, \JT Gravity as a Matrix Integral" arXiv:1903.11115 ).
    [Show full text]
  • Lie Algebras from Lie Groups
    Preprint typeset in JHEP style - HYPER VERSION Lecture 8: Lie Algebras from Lie Groups Gregory W. Moore Abstract: Not updated since November 2009. March 27, 2018 -TOC- Contents 1. Introduction 2 2. Geometrical approach to the Lie algebra associated to a Lie group 2 2.1 Lie's approach 2 2.2 Left-invariant vector fields and the Lie algebra 4 2.2.1 Review of some definitions from differential geometry 4 2.2.2 The geometrical definition of a Lie algebra 5 3. The exponential map 8 4. Baker-Campbell-Hausdorff formula 11 4.1 Statement and derivation 11 4.2 Two Important Special Cases 17 4.2.1 The Heisenberg algebra 17 4.2.2 All orders in B, first order in A 18 4.3 Region of convergence 19 5. Abstract Lie Algebras 19 5.1 Basic Definitions 19 5.2 Examples: Lie algebras of dimensions 1; 2; 3 23 5.3 Structure constants 25 5.4 Representations of Lie algebras and Ado's Theorem 26 6. Lie's theorem 28 7. Lie Algebras for the Classical Groups 34 7.1 A useful identity 35 7.2 GL(n; k) and SL(n; k) 35 7.3 O(n; k) 38 7.4 More general orthogonal groups 38 7.4.1 Lie algebra of SO∗(2n) 39 7.5 U(n) 39 7.5.1 U(p; q) 42 7.5.2 Lie algebra of SU ∗(2n) 42 7.6 Sp(2n) 42 8. Central extensions of Lie algebras and Lie algebra cohomology 46 8.1 Example: The Heisenberg Lie algebra and the Lie group associated to a symplectic vector space 47 8.2 Lie algebra cohomology 48 { 1 { 9.
    [Show full text]
  • Lie Algebras by Shlomo Sternberg
    Lie algebras Shlomo Sternberg April 23, 2004 2 Contents 1 The Campbell Baker Hausdorff Formula 7 1.1 The problem. 7 1.2 The geometric version of the CBH formula. 8 1.3 The Maurer-Cartan equations. 11 1.4 Proof of CBH from Maurer-Cartan. 14 1.5 The differential of the exponential and its inverse. 15 1.6 The averaging method. 16 1.7 The Euler MacLaurin Formula. 18 1.8 The universal enveloping algebra. 19 1.8.1 Tensor product of vector spaces. 20 1.8.2 The tensor product of two algebras. 21 1.8.3 The tensor algebra of a vector space. 21 1.8.4 Construction of the universal enveloping algebra. 22 1.8.5 Extension of a Lie algebra homomorphism to its universal enveloping algebra. 22 1.8.6 Universal enveloping algebra of a direct sum. 22 1.8.7 Bialgebra structure. 23 1.9 The Poincar´e-Birkhoff-Witt Theorem. 24 1.10 Primitives. 28 1.11 Free Lie algebras . 29 1.11.1 Magmas and free magmas on a set . 29 1.11.2 The Free Lie Algebra LX ................... 30 1.11.3 The free associative algebra Ass(X). 31 1.12 Algebraic proof of CBH and explicit formulas. 32 1.12.1 Abstract version of CBH and its algebraic proof. 32 1.12.2 Explicit formula for CBH. 32 2 sl(2) and its Representations. 35 2.1 Low dimensional Lie algebras. 35 2.2 sl(2) and its irreducible representations. 36 2.3 The Casimir element. 39 2.4 sl(2) is simple.
    [Show full text]
  • Structure and Representation Theory of Infinite-Dimensional Lie Algebras
    Structure and Representation Theory of Infinite-dimensional Lie Algebras David Mehrle Abstract Kac-Moody algebras are a generalization of the finite-dimensional semisimple Lie algebras that have many characteristics similar to the finite-dimensional ones. These possibly infinite-dimensional Lie algebras have found applica- tions everywhere from modular forms to conformal field theory in physics. In this thesis we give two main results of the theory of Kac-Moody algebras. First, we present the classification of affine Kac-Moody algebras by Dynkin di- agrams, which extends the Cartan-Killing classification of finite-dimensional semisimple Lie algebras. Second, we prove the Kac Character formula, which a generalization of the Weyl character formula for Kac-Moody algebras. In the course of presenting these results, we develop some theory as well. Contents 1 Structure 1 1.1 First example: affine sl2(C) .....................2 1.2 Building Lie algebras from complex matrices . .4 1.3 Three types of generalized Cartan matrices . .9 1.4 Symmetrizable GCMs . 14 1.5 Dynkin diagrams . 19 1.6 Classification of affine Lie algebras . 20 1.7 Odds and ends: the root system, the standard invariant form and Weyl group . 29 2 Representation Theory 32 2.1 The Universal Enveloping Algebra . 32 2.2 The Category O ............................ 35 2.3 Characters of g-modules . 39 2.4 The Generalized Casimir Operator . 45 2.5 Kac Character Formula . 47 1 Acknowledgements First, I’d like to thank Bogdan Ion for being such a great advisor. I’m glad that you agreed to supervise this project, and I’m grateful for your patience and many helpful suggestions.
    [Show full text]
  • D-Brane Actions and N = 2 Supergravity Solutions
    D-Brane Actions and N =2Supergravity Solutions Thesis by Calin Ciocarlie In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2004 (Submitted May 20 , 2004) ii c 2004 Calin Ciocarlie All Rights Reserved iii Acknowledgements I would like to express my gratitude to the people who have taught me Physics throughout my education. My thesis advisor John Schwarz has given me insightful guidance and invaluable advice. I benefited a lot by collaborating with outstanding colleagues: Iosif Bena, Iouri Chepelev, Peter Lee, Jongwon Park. I have also bene- fited from interesting discussions with Vadim Borokhov, Jaume Gomis, Prof. Anton Kapustin, Tristan McLoughlin, Yuji Okawa, and Arkadas Ozakin. I am also thankful to my Physics teacher Violeta Grigorie who’s enthusiasm for Physics is contagious and to my family for constant support and encouragement in my academic pursuits. iv Abstract Among the most remarkable recent developments in string theory are the AdS/CFT duality, as proposed by Maldacena, and the emergence of noncommutative geometry. It has been known for some time that for a system of almost coincident D-branes the transverse displacements that represent the collective coordinates of the system become matrix-valued transforming in the adjoint representation of U(N). From a geometrical point of view this is rather surprising but, as we will see in Chapter 2, it is closely related to the noncommutative descriptions of D-branes. A consequence of the collective coordinates becoming matrix-valued is the ap- pearance of a “dielectric” effect in which D-branes can become polarized into higher- dimensional fuzzy D-branes.
    [Show full text]