Projective Unitary Representations of Infinite Dimensional Lie Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Extensions of Lie Algebras of Symplectic and Divergence Free
Central extensions of Lie algebras of symplectic and divergence free vector fields Bas Janssens and Cornelia Vizman Abstract In this review paper, we present several results on central extensions of the Lie algebra of symplectic (Hamiltonian) vector fields, and compare them to similar results for the Lie algebra of (exact) divergence free vector fields. In particular, we comment on universal central extensions and integrability to the group level. 1 Perfect commutator ideals The Lie algebras of symplectic and divergence free vector fields both have perfect commutator ideals: the Lie algebras of Hamiltonian and exact divergence free vector fields, respectively. 1.1 Symplectic vector fields Let (M,ω) be a compact1, connected, symplectic manifold of dimension 2n. Then the Lie algebra of symplectic vector fields is denoted by X(M,ω) := {X ∈ X(M); LX ω =0} . ∞ The Hamiltonian vector field Xf of f ∈ C (M) is the unique vector field such that iXf ω = −df. Since the Lie bracket of X, Y ∈ X(M,ω) is Hamiltonian with i[X,Y ]ω = −dω(X, Y ), the Lie algebra of Hamiltonian vector fields ∞ Xham(M,ω) := {Xf ; f ∈ C (M)} is an ideal in X(M,ω). The map X 7→ [iX ω] identifies the quotient of X(M,ω) 1 by Xham(M,ω) with the abelian Lie algebra HdR(M), 1 0 → Xham(M,ω) → X(M,ω) → HdR(M) → 0 . (1) arXiv:1510.05827v1 [math.DG] 20 Oct 2015 Proposition 1.1. ([C70]) The Lie algebra Xham(M,ω) of Hamiltonian vector fields is perfect, and coincides with the commutator Lie algebra of the Lie algebra X(M,ω) of symplectic vector fields. -
1. INTRODUCTION 1.1. Introductory Remarks on Supersymmetry. 1.2
1. INTRODUCTION 1.1. Introductory remarks on supersymmetry. 1.2. Classical mechanics, the electromagnetic, and gravitational fields. 1.3. Principles of quantum mechanics. 1.4. Symmetries and projective unitary representations. 1.5. Poincar´esymmetry and particle classification. 1.6. Vector bundles and wave equations. The Maxwell, Dirac, and Weyl - equations. 1.7. Bosons and fermions. 1.8. Supersymmetry as the symmetry of Z2{graded geometry. 1.1. Introductory remarks on supersymmetry. The subject of supersymme- try (SUSY) is a part of the theory of elementary particles and their interactions and the still unfinished quest of obtaining a unified view of all the elementary forces in a manner compatible with quantum theory and general relativity. Supersymme- try was discovered in the early 1970's, and in the intervening years has become a major component of theoretical physics. Its novel mathematical features have led to a deeper understanding of the geometrical structure of spacetime, a theme to which great thinkers like Riemann, Poincar´e,Einstein, Weyl, and many others have contributed. Symmetry has always played a fundamental role in quantum theory: rotational symmetry in the theory of spin, Poincar´esymmetry in the classification of elemen- tary particles, and permutation symmetry in the treatment of systems of identical particles. Supersymmetry is a new kind of symmetry which was discovered by the physicists in the early 1970's. However, it is different from all other discoveries in physics in the sense that there has been no experimental evidence supporting it so far. Nevertheless an enormous effort has been expended by many physicists in developing it because of its many unique features and also because of its beauty and coherence1. -
Unitary Group - Wikipedia
Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1. -
Unitary Representations of Lie Groups
Faculty of Science Unitary Representations of Lie Groups Representation Theory in Quantum Mechanics Bachelor Thesis TWIN Lucas Smits Physics and Astronomy // Mathematics Supervisor: Dr. J.W. van de Leur Mathematical Institute January 15, 2020 Contents Introduction2 1 Lie Groups and Lie Algebras3 1.1 Lie Groups.....................................3 1.2 Lie Algebras....................................8 1.3 The Lie Algebra of a Lie Group......................... 11 2 Unitary Representation Theory 17 2.1 Introduction to representation theory...................... 17 2.2 Unitary Representations............................. 20 2.3 Representation Theory in Quantum Mechanics................. 23 2.4 Lifting projective representations........................ 25 3 Representations of semidirect products 33 3.1 Character theory................................. 33 3.2 Representations of semidirect products..................... 36 3.3 Systems of Imprimitivity............................. 41 3.4 Systems of imprimitivity and semidirect products............... 46 4 Wigner's classification, a qualitative discussion 53 4.1 The Lorentz and the Poincar´egroup...................... 53 4.2 Projective representations of the Poincar´egroup................ 55 4.3 Wigner's Classification.............................. 58 5 Appendix: Weyl's theorem on complete reducibility 64 1 Introduction Lie groups were first introduced by the Norwegian mathematican Sophus Lie in the final years of the nineteenth century in his study on the symmetry differential equations. Heuris- tically, Lie groups are groups whose elements are organized in a smooth way, contrary to discrete groups. Their symmetric nature makes them a crucial ingrediant in today's study of geometry. Lie groups are often studied through representation theory, that is, the iden- tification of group elements with linear transformations of a vector space. This enables to reduce problems in abstract algebra to linear algebra, which is a well-understood area in math. -
UC Riverside UC Riverside Previously Published Works
UC Riverside UC Riverside Previously Published Works Title Universal topological quantum computation from a superconductor-abelian quantum hall heterostructure Permalink https://escholarship.org/uc/item/3nm3m6f2 Journal Physical Review X, 4(1) ISSN 2160-3308 Authors Mong, RSK Clarke, DJ Alicea, J et al. Publication Date 2014 DOI 10.1103/PhysRevX.4.011036 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure Roger S. K. Mong,1 David J. Clarke,1 Jason Alicea,1 Netanel H. Lindner,1 Paul Fendley,2 Chetan Nayak,3, 4 Yuval Oreg,5 Ady Stern,5 Erez Berg,5 Kirill Shtengel,6, 7 and Matthew P. A. Fisher4 1Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA 2Department of Physics, University of Virginia, Charlottesville, VA 22904, USA 3Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106, USA 4Department of Physics, University of California, Santa Barbara, CA 93106, USA 5Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel 6Department of Physics and Astronomy, University of California, Riverside, California 92521, USA 7Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately pro- vide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green’s observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p + ip superconductor both support so-called Ising non-Abelian anyons. -
Central Extensions of Groups of Sections
Central extensions of groups of sections Karl-Hermann Neeb and Christoph Wockel October 24, 2018 Abstract If K is a Lie group and q : P → M is a principal K-bundle over the compact manifold M, then any invariant symmetric V -valued bi- linear form on the Lie algebra k of K defines a Lie algebra exten- sion of the gauge algebra by a space of bundle-valued 1-forms modulo exact 1-forms. In the present paper we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components, we give a complete characterization of the integrable ex- tensions. Our results on gauge groups are obtained by specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context we provide suffi- cient conditions for integrability in terms of data related only to the group K. Keywords: gauge group; gauge algebra; central extension; Lie group extension; integrable Lie algebra; Lie group bundle; Lie algebra bundle arXiv:0711.3437v2 [math.DG] 29 Apr 2009 Introduction Affine Kac–Moody groups and their Lie algebras play an interesting role in various fields of mathematics and mathematical physics, such as string theory and conformal field theory (cf. [PS86] for the analytic theory of loop groups, [Ka90] for the algebraic theory of Kac–Moody Lie algebras and [Sch97] for connections to conformal field theory). For further connections to mathe- matical physics we refer to the monograph [Mi89] which discusses various occurrences of Lie algebras of smooth maps in physical theories (see also [Mu88], [DDS95]). -
The Unitary Group in Its Strong Topology Martin Schottenloher Mathematisches Institut LMU M¨Unchen Theresienstr
The Unitary Group In Its Strong Topology Martin Schottenloher Mathematisches Institut LMU M¨unchen Theresienstr. 39, 80333 M¨unchen [email protected], +49 89 21804435 Abstract. The unitary group U(H) on an infinite dimensional complex Hilbert space H in its strong topology is a topological group and has some further nice properties, e.g. it is metrizable and contractible if H is separa- ble. As an application Hilbert bundles are classified by homotopy. Keywords: Unitary Operator, Strong Operator Topology, Topological Group, Infinite Dimensional Lie Group, Contractibility, Hilbert bundle, Classifying Space 2000 Mathematics Subject Classification: 51 F 25, 22 A 10, 22 E 65, 55 R 35, 57 T 20 It is easy to show and well-known that the unitary group U(H) – the group of all unitary operators H→Hon a complex Hilbert space H – is a topological group with respect to the norm topology on U(H). However, for many purposes in mathematics the norm topology is too strong. For example, for a compact topological group G with Haar measure μ the left regular representation on H = L2(G, μ) −1 L : G → U(H),g → Lg : H→H,Lgf(x)=f(g x) is continuous for the strong topology on U(H),butL is not continuous when U(H) is equipped with the norm topology, except for finite G. This fact makes the norm topology on U(H) useless in representation theory and its applications as well as in many areas of physics or topology. The continuity property which is mostly used in case of a topological space W and a general Hilbert space H and which seems to be more natural is the continuity of a left action on H Φ:W ×H→H, in particular, in case of a left action of a topological group G on H: Note that the above left regular representation is continuous as a map: L : G ×H→H. -
Arxiv:1305.5974V1 [Math-Ph]
INTRODUCTION TO SPORADIC GROUPS for physicists Luis J. Boya∗ Departamento de F´ısica Te´orica Universidad de Zaragoza E-50009 Zaragoza, SPAIN MSC: 20D08, 20D05, 11F22 PACS numbers: 02.20.a, 02.20.Bb, 11.24.Yb Key words: Finite simple groups, sporadic groups, the Monster group. Juan SANCHO GUIMERA´ In Memoriam Abstract We describe the collection of finite simple groups, with a view on physical applications. We recall first the prime cyclic groups Zp, and the alternating groups Altn>4. After a quick revision of finite fields Fq, q = pf , with p prime, we consider the 16 families of finite simple groups of Lie type. There are also 26 extra “sporadic” groups, which gather in three interconnected “generations” (with 5+7+8 groups) plus the Pariah groups (6). We point out a couple of physical applications, in- cluding constructing the biggest sporadic group, the “Monster” group, with close to 1054 elements from arguments of physics, and also the relation of some Mathieu groups with compactification in string and M-theory. ∗[email protected] arXiv:1305.5974v1 [math-ph] 25 May 2013 1 Contents 1 Introduction 3 1.1 Generaldescriptionofthework . 3 1.2 Initialmathematics............................ 7 2 Generalities about groups 14 2.1 Elementarynotions............................ 14 2.2 Theframeworkorbox .......................... 16 2.3 Subgroups................................. 18 2.4 Morphisms ................................ 22 2.5 Extensions................................. 23 2.6 Familiesoffinitegroups ......................... 24 2.7 Abeliangroups .............................. 27 2.8 Symmetricgroup ............................. 28 3 More advanced group theory 30 3.1 Groupsoperationginspaces. 30 3.2 Representations.............................. 32 3.3 Characters.Fourierseries . 35 3.4 Homological algebra and extension theory . 37 3.5 Groupsuptoorder16.......................... -
Central Extensions of Filiform Zinbiel Algebras
Central extensions of filiform Zinbiel algebras 1 Luisa M. Camachoa, Iqboljon Karimjanovb, Ivan Kaygorodovc & Abror Khudoyberdiyevd a University of Sevilla, Sevilla, Spain. b Andijan State University, Andijan, Uzbekistan. c CMCC, Universidade Federal do ABC, Santo Andr´e, Brazil. d National University of Uzbekistan, Institute of Mathematics Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan. E-mail addresses: Luisa M. Camacho ([email protected]) Iqboljon Karimjanov ([email protected]) Ivan Kaygorodov ([email protected]) Abror Khudoyberdiyev ([email protected]) Abstract: In this paper we describe central extensions (up to isomorphism) of all complex null-filiform and filiform Zinbiel algebras. It is proven that every non-split central extension of an n-dimensional null- filiform Zinbiel algebra is isomorphic to an (n +1)-dimensional null-filiform Zinbiel algebra. Moreover, we obtain all pairwise non isomorphic quasi-filiform Zinbiel algebras. Keywords: Zinbiel algebra, filiform algebra, algebraic classification, central extension. MSC2010: 17D25, 17A30. INTRODUCTION The algebraic classification (up to isomorphism) of an n-dimensional algebras from a certain variety defined by some family of polynomial identities is a classical problem in the theory of non-associative algebras. There are many results related to algebraic classification of small dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel and many another algebras [1,9,11–16,24,27,31,33,36–38,42]. An algebra A is called a Zinbiel algebra if it satisfies the identity arXiv:2009.00988v1 [math.RA] 1 Sep 2020 (x y) z = x (y z + z y). ◦ ◦ ◦ ◦ ◦ Zinbiel algebras were introduced by Loday in [43] and studied in [2,5,10,17,20–22,41,44–46,49]. -
M-Theory from the Superpoint
M-Theory from the Superpoint John Huerta∗, Urs Schreibery March 21, 2017 Abstract The \brane scan" classifies consistent Green{Schwarz strings and membranes in terms of the invariant cocycles on super-Minkowski spacetimes. The \brane bouquet" generalizes this by consecutively forming the invariant higher central extensions induced by these cocycles, which yields the complete brane content of string/M-theory, including the D-branes and the M5- brane, as well as the various duality relations between these. This raises the question whether the super-Minkowski spacetimes themselves arise as maximal invariant central extensions. Here we prove that they do. Starting from the simplest possible super-Minkowski spacetime, the superpoint, which has no Lorentz structure and no spinorial structure, we give a systematic process of consecutive maximal invariant central extensions, and show that it discovers the super- Minkowski spacetimes that contain superstrings, culminating in the 10- and 11-dimensional super-Minkowski spacetimes of string/M-theory and leading directly to the brane bouquet. Contents 1 Introduction 2 2 Automorphisms of super-Minkowski spacetimes9 3 The consecutive maximal invariant central extensions of the superpoint 12 4 Outlook 17 A Background 17 A.1 Super Lie algebra cohomology............................... 17 A.2 Super Minkowski spacetimes................................ 20 ∗CAMGSD, Instituto Superior T´ecnico,Av. Ravisco Pais, 1049-001 Lisboa, Portugal yMathematics Institute of the Academy, Zitnaˇ 25, 115 67 Praha 1, Czech Republic, on leave at Bonn 1 1 Introduction In his \vision talk" at the annual string theory conference in 2014, Greg Moore highlighted the following open question in string theory [41, section 9]: Perhaps we need to understand the nature of time itself better. -
Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure
PHYSICAL REVIEW X 4, 011036 (2014) Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure Roger S. K. Mong,1 David J. Clarke,1 Jason Alicea,1 Netanel H. Lindner,1,2 Paul Fendley,3 Chetan Nayak,4,5 Yuval Oreg,6 Ady Stern,6 Erez Berg,6 Kirill Shtengel,7,8 and Matthew P. A. Fisher5 1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA 2Department of Physics, Technion, 32000 Haifa, Israel 3Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA 4Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA 5Department of Physics, University of California, Santa Barbara, California 93106, USA 6Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel 7Department of Physics and Astronomy, University of California, Riverside, California 92521, USA 8Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA (Received 2 August 2013; published 12 March 2014) Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green’s observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p þ ip superconductor both support so-called Ising non-Abelian anyons. Here, we establish a similar correspondence between the Z3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising anyons—allow for universal topological quantum computation solely through braiding. -
Extended Self-Dual Yang-Mills from the N=2 String ∗
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server hep-th/9712043 ITP–UH–31/97 EXTENDED SELF-DUAL YANG-MILLS FROM THE N=2 STRING ∗ Chandrashekar Devchand Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften Inselstraße 22-26, 04103 Leipzig, Germany E-mail: [email protected] Olaf Lechtenfeld Institut f¨ur Theoretische Physik, Universit¨at Hannover Appelstraße 2, 30167 Hannover, Germany http://www.itp.uni-hannover.de/˜lechtenf/ Abstract We show that the physical degrees of freedom of the critical open string with N=2 superconformal symmetry on the worldsheet are described by a self-dual Yang-Mills field on a hyperspace parametrised by the coordinates of the target space R2,2 to- gether with a commuting chiral spinor. A prepotential for the self-dual connection in the hyperspace generates the infinite tower of physical fields corresponding to the inequivalent pictures or spinor ghost vacua of this string. An action is presented for this tower, which describes consistent interactions amongst fields of arbitrarily high spin. An interesting truncation to a theory of five fields is seen to have no graphs of two or more loops. ∗ supported in part by the ‘Deutsche Forschungsgemeinschaft’; grant LE-838/5-1 1 Introduction The N=2 string1 has many unique features descending from various remarkable properties of the (1+1)-dimensional N=2 superconformal algebra, the gauge symmetry on the worldsheet. In particular, these superconformal gauge symmetries kill all oscillatory modes of the string, yielding a peculiar string without any massive modes.