1. INTRODUCTION 1.1. Introductory Remarks on Supersymmetry. 1.2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projective Unitary Representations of Infinite Dimensional Lie Groups
Projective unitary representations of infinite dimensional Lie groups Bas Janssens and Karl-Hermann Neeb January 5, 2015 Abstract For an infinite dimensional Lie group G modelled on a locally convex Lie algebra g, we prove that every smooth projective unitary represen- tation of G corresponds to a smooth linear unitary representation of a Lie group extension G] of G. (The main point is the smooth structure on G].) For infinite dimensional Lie groups G which are 1-connected, regular, and modelled on a barrelled Lie algebra g, we characterize the unitary g-representations which integrate to G. Combining these results, we give a precise formulation of the correspondence between smooth pro- jective unitary representations of G, smooth linear unitary representations of G], and the appropriate unitary representations of its Lie algebra g]. Contents 1 Representations of locally convex Lie groups 5 1.1 Smooth functions . 5 1.2 Locally convex Lie groups . 6 2 Projective unitary representations 7 2.1 Unitary representations . 7 2.2 Projective unitary representations . 7 3 Integration of Lie algebra representations 8 3.1 Derived representations . 9 3.2 Globalisation of Lie algebra representations . 10 3.2.1 Weak and strong topology on V . 11 3.2.2 Regular Lie algebra representations . 15 4 Projective unitary representations and central extensions 20 5 Smoothness of projective representations 25 5.1 Smoothness criteria . 25 5.2 Structure of the set of smooth rays . 26 1 6 Lie algebra extensions and cohomology 28 7 The main theorem 31 8 Covariant representations 33 9 Admissible derivations 36 9.1 Admissible derivations . -
Unitary Group - Wikipedia
Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1. -
Of Operator Algebras Vern I
proceedings of the american mathematical society Volume 92, Number 2, October 1984 COMPLETELY BOUNDED HOMOMORPHISMS OF OPERATOR ALGEBRAS VERN I. PAULSEN1 ABSTRACT. Let A be a unital operator algebra. We prove that if p is a completely bounded, unital homomorphism of A into the algebra of bounded operators on a Hubert space, then there exists a similarity S, with ||S-1|| • ||S|| = ||p||cb, such that S_1p(-)S is a completely contractive homomorphism. We also show how Rota's theorem on operators similar to contractions and the result of Sz.-Nagy and Foias on the similarity of p-dilations to contractions can be deduced from this result. 1. Introduction. In [6] we proved that a homomorphism p of an operator algebra is similar to a completely contractive homomorphism if and only if p is completely bounded. It was known that if S is such a similarity, then ||5|| • ||5_11| > ||/9||cb- However, at the time we were unable to determine if one could choose the similarity such that ||5|| • US'-1!! = ||p||cb- When the operator algebra is a C*- algebra then Haagerup had shown [3] that such a similarity could be chosen. The purpose of the present note is to prove that for a general operator algebra, there exists a similarity S such that ||5|| • ||5_1|| = ||p||cb- Completely contractive homomorphisms are central to the study of the repre- sentation theory of operator algebras, since they are precisely the homomorphisms that can be dilated to a ^representation on some larger Hilbert space of any C*- algebra which contains the operator algebra. -
Robot and Multibody Dynamics
Robot and Multibody Dynamics Abhinandan Jain Robot and Multibody Dynamics Analysis and Algorithms 123 Abhinandan Jain Ph.D. Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109 USA [email protected] ISBN 978-1-4419-7266-8 e-ISBN 978-1-4419-7267-5 DOI 10.1007/978-1-4419-7267-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938443 c Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) In memory of Guillermo Rodriguez, an exceptional scholar and a gentleman. To my parents, and to my wife, Karen. Preface “It is a profoundly erroneous truism, repeated by copybooks and by eminent people when they are making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case. -
From String Theory and Moonshine to Vertex Algebras
Preample From string theory and Moonshine to vertex algebras Bong H. Lian Department of Mathematics Brandeis University [email protected] Harvard University, May 22, 2020 Dedicated to the memory of John Horton Conway December 26, 1937 – April 11, 2020. Preample Acknowledgements: Speaker’s collaborators on the theory of vertex algebras: Andy Linshaw (Denver University) Bailin Song (University of Science and Technology of China) Gregg Zuckerman (Yale University) For their helpful input to this lecture, special thanks to An Huang (Brandeis University) Tsung-Ju Lee (Harvard CMSA) Andy Linshaw (Denver University) Preample Disclaimers: This lecture includes a brief survey of the period prior to and soon after the creation of the theory of vertex algebras, and makes no claim of completeness – the survey is intended to highlight developments that reflect the speaker’s own views (and biases) about the subject. As a short survey of early history, it will inevitably miss many of the more recent important or even towering results. Egs. geometric Langlands, braided tensor categories, conformal nets, applications to mirror symmetry, deformations of VAs, .... Emphases are placed on the mutually beneficial cross-influences between physics and vertex algebras in their concurrent early developments, and the lecture is aimed for a general audience. Preample Outline 1 Early History 1970s – 90s: two parallel universes 2 A fruitful perspective: vertex algebras as higher commutative algebras 3 Classification: cousins of the Moonshine VOA 4 Speculations The String Theory Universe 1968: Veneziano proposed a model (using the Euler beta function) to explain the ‘st-channel crossing’ symmetry in 4-meson scattering, and the Regge trajectory (an angular momentum vs binding energy plot for the Coulumb potential). -
UC Riverside UC Riverside Previously Published Works
UC Riverside UC Riverside Previously Published Works Title Universal topological quantum computation from a superconductor-abelian quantum hall heterostructure Permalink https://escholarship.org/uc/item/3nm3m6f2 Journal Physical Review X, 4(1) ISSN 2160-3308 Authors Mong, RSK Clarke, DJ Alicea, J et al. Publication Date 2014 DOI 10.1103/PhysRevX.4.011036 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure Roger S. K. Mong,1 David J. Clarke,1 Jason Alicea,1 Netanel H. Lindner,1 Paul Fendley,2 Chetan Nayak,3, 4 Yuval Oreg,5 Ady Stern,5 Erez Berg,5 Kirill Shtengel,6, 7 and Matthew P. A. Fisher4 1Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA 2Department of Physics, University of Virginia, Charlottesville, VA 22904, USA 3Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106, USA 4Department of Physics, University of California, Santa Barbara, CA 93106, USA 5Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel 6Department of Physics and Astronomy, University of California, Riverside, California 92521, USA 7Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately pro- vide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green’s observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p + ip superconductor both support so-called Ising non-Abelian anyons. -
Operator Algebras: an Informal Overview 3
OPERATOR ALGEBRAS: AN INFORMAL OVERVIEW FERNANDO LLEDO´ Contents 1. Introduction 1 2. Operator algebras 2 2.1. What are operator algebras? 2 2.2. Differences and analogies between C*- and von Neumann algebras 3 2.3. Relevance of operator algebras 5 3. Different ways to think about operator algebras 6 3.1. Operator algebras as non-commutative spaces 6 3.2. Operator algebras as a natural universe for spectral theory 6 3.3. Von Neumann algebras as symmetry algebras 7 4. Some classical results 8 4.1. Operator algebras in functional analysis 8 4.2. Operator algebras in harmonic analysis 10 4.3. Operator algebras in quantum physics 11 References 13 Abstract. In this article we give a short and informal overview of some aspects of the theory of C*- and von Neumann algebras. We also mention some classical results and applications of these families of operator algebras. 1. Introduction arXiv:0901.0232v1 [math.OA] 2 Jan 2009 Any introduction to the theory of operator algebras, a subject that has deep interrelations with many mathematical and physical disciplines, will miss out important elements of the theory, and this introduction is no ex- ception. The purpose of this article is to give a brief and informal overview on C*- and von Neumann algebras which are the main actors of this summer school. We will also mention some of the classical results in the theory of operator algebras that have been crucial for the development of several areas in mathematics and mathematical physics. Being an overview we can not provide details. Precise definitions, statements and examples can be found in [1] and references cited therein. -
Intertwining Operator Superalgebras and Vertex Tensor Categories for Superconformal Algebras, Ii
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 354, Number 1, Pages 363{385 S 0002-9947(01)02869-0 Article electronically published on August 21, 2001 INTERTWINING OPERATOR SUPERALGEBRAS AND VERTEX TENSOR CATEGORIES FOR SUPERCONFORMAL ALGEBRAS, II YI-ZHI HUANG AND ANTUN MILAS Abstract. We construct the intertwining operator superalgebras and vertex tensor categories for the N = 2 superconformal unitary minimal models and other related models. 0. Introduction It has been known that the N = 2 Neveu-Schwarz superalgebra is one of the most important algebraic objects realized in superstring theory. The N =2su- perconformal field theories constructed from its discrete unitary representations of central charge c<3 are among the so-called \minimal models." In the physics liter- ature, there have been many conjectural connections among Calabi-Yau manifolds, Landau-Ginzburg models and these N = 2 unitary minimal models. In fact, the physical construction of mirror manifolds [GP] used the conjectured relations [Ge1] [Ge2] between certain particular Calabi-Yau manifolds and certain N =2super- conformal field theories (Gepner models) constructed from unitary minimal models (see [Gr] for a survey). To establish these conjectures as mathematical theorems, it is necessary to construct the N = 2 unitary minimal models mathematically and to study their structures in detail. In the present paper, we apply the theory of intertwining operator algebras developed by the first author in [H3], [H5] and [H6] and the tensor product theory for modules for a vertex operator algebra developed by Lepowsky and the first author in [HL1]{[HL6], [HL8] and [H1] to construct the intertwining operator algebras and vertex tensor categories for N = 2 superconformal unitary minimal models. -
A Spatial Operator Algebra
International Journal of Robotics Research vol. 10, pp. 371-381, Aug. 1991 A Spatial Op erator Algebra for Manipulator Mo deling and Control 1 2 1 G. Ro driguez , K. Kreutz{Delgado , and A. Jain 2 1 AMES Department, R{011 Jet Propulsion Lab oratory Univ. of California, San Diego California Institute of Technology La Jolla, CA 92093 4800 Oak Grove Drive Pasadena, CA 91109 Abstract A recently develop ed spatial op erator algebra for manipulator mo deling, control and tra- jectory design is discussed. The elements of this algebra are linear op erators whose domain and range spaces consist of forces, moments, velo cities, and accelerations. The e ect of these op erators is equivalent to a spatial recursion along the span of a manipulator. Inversion of op erators can be eciently obtained via techniques of recursive ltering and smo othing. The op erator algebra provides a high-level framework for describing the dynamic and kinematic b ehavior of a manipu- lator and for control and tra jectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract op erator expressions by insp ection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanization of sp eci c algorithms is greatly simpli ed. 1 Intro duction: A Spatial Op erator Algebra A new approach to the mo deling and analysis of systems of rigid b o dies interacting among them- selves and their environment has recently b een develop ed in Ro driguez 1987a and Ro driguez and Kreutz-Delgado 1992b . -
The Unitary Group in Its Strong Topology Martin Schottenloher Mathematisches Institut LMU M¨Unchen Theresienstr
The Unitary Group In Its Strong Topology Martin Schottenloher Mathematisches Institut LMU M¨unchen Theresienstr. 39, 80333 M¨unchen [email protected], +49 89 21804435 Abstract. The unitary group U(H) on an infinite dimensional complex Hilbert space H in its strong topology is a topological group and has some further nice properties, e.g. it is metrizable and contractible if H is separa- ble. As an application Hilbert bundles are classified by homotopy. Keywords: Unitary Operator, Strong Operator Topology, Topological Group, Infinite Dimensional Lie Group, Contractibility, Hilbert bundle, Classifying Space 2000 Mathematics Subject Classification: 51 F 25, 22 A 10, 22 E 65, 55 R 35, 57 T 20 It is easy to show and well-known that the unitary group U(H) – the group of all unitary operators H→Hon a complex Hilbert space H – is a topological group with respect to the norm topology on U(H). However, for many purposes in mathematics the norm topology is too strong. For example, for a compact topological group G with Haar measure μ the left regular representation on H = L2(G, μ) −1 L : G → U(H),g → Lg : H→H,Lgf(x)=f(g x) is continuous for the strong topology on U(H),butL is not continuous when U(H) is equipped with the norm topology, except for finite G. This fact makes the norm topology on U(H) useless in representation theory and its applications as well as in many areas of physics or topology. The continuity property which is mostly used in case of a topological space W and a general Hilbert space H and which seems to be more natural is the continuity of a left action on H Φ:W ×H→H, in particular, in case of a left action of a topological group G on H: Note that the above left regular representation is continuous as a map: L : G ×H→H. -
Clifford Algebra Analogue of the Hopf–Koszul–Samelson Theorem
Advances in Mathematics AI1608 advances in mathematics 125, 275350 (1997) article no. AI971608 Clifford Algebra Analogue of the HopfKoszulSamelson Theorem, the \-Decomposition C(g)=End V\ C(P), and the g-Module Structure of Ãg Bertram Kostant* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received October 18, 1996 1. INTRODUCTION 1.1. Let g be a complex semisimple Lie algebra and let h/b be, respectively, a Cartan subalgebra and a Borel subalgebra of g. Let n=dim g and l=dim h so that n=l+2r where r=dim gÂb. Let \ be one- half the sum of the roots of h in b. The irreducible representation ?\ : g Ä End V\ of highest weight \ is dis- tinguished among all finite-dimensional irreducible representations of g for r a number of reasons. One has dim V\=2 and, via the BorelWeil theorem, Proj V\ is the ambient variety for the minimal projective embed- ding of the flag manifold associated to g. In addition, like the adjoint representation, ?\ admits a uniform construction for all g. Indeed let SO(g) be defined with respect to the Killing form Bg on g. Then if Spin ad: g Ä End S is the composite of the adjoint representation ad: g Ä Lie SO(g) with the spin representation Spin: Lie SO(g) Ä End S, it is shown in [9] that Spin ad is primary of type ?\ . Given the well-known relation between SS and exterior algebras, one immediately deduces that the g-module structure of the exterior algebra Ãg, with respect to the derivation exten- sion, %, of the adjoint representation, is given by l Ãg=2 V\V\.(a) The equation (a) is only skimming the surface of a much richer structure. -
Arxiv:1305.5974V1 [Math-Ph]
INTRODUCTION TO SPORADIC GROUPS for physicists Luis J. Boya∗ Departamento de F´ısica Te´orica Universidad de Zaragoza E-50009 Zaragoza, SPAIN MSC: 20D08, 20D05, 11F22 PACS numbers: 02.20.a, 02.20.Bb, 11.24.Yb Key words: Finite simple groups, sporadic groups, the Monster group. Juan SANCHO GUIMERA´ In Memoriam Abstract We describe the collection of finite simple groups, with a view on physical applications. We recall first the prime cyclic groups Zp, and the alternating groups Altn>4. After a quick revision of finite fields Fq, q = pf , with p prime, we consider the 16 families of finite simple groups of Lie type. There are also 26 extra “sporadic” groups, which gather in three interconnected “generations” (with 5+7+8 groups) plus the Pariah groups (6). We point out a couple of physical applications, in- cluding constructing the biggest sporadic group, the “Monster” group, with close to 1054 elements from arguments of physics, and also the relation of some Mathieu groups with compactification in string and M-theory. ∗[email protected] arXiv:1305.5974v1 [math-ph] 25 May 2013 1 Contents 1 Introduction 3 1.1 Generaldescriptionofthework . 3 1.2 Initialmathematics............................ 7 2 Generalities about groups 14 2.1 Elementarynotions............................ 14 2.2 Theframeworkorbox .......................... 16 2.3 Subgroups................................. 18 2.4 Morphisms ................................ 22 2.5 Extensions................................. 23 2.6 Familiesoffinitegroups ......................... 24 2.7 Abeliangroups .............................. 27 2.8 Symmetricgroup ............................. 28 3 More advanced group theory 30 3.1 Groupsoperationginspaces. 30 3.2 Representations.............................. 32 3.3 Characters.Fourierseries . 35 3.4 Homological algebra and extension theory . 37 3.5 Groupsuptoorder16..........................