From the Representation Theory of Vertex Operator Algebras to Modular Tensor Categories in Conformal Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

From the Representation Theory of Vertex Operator Algebras to Modular Tensor Categories in Conformal Field Theory From the representation theory of vertex operator algebras to modular tensor categories in conformal field theory James Lepowsky* Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 wo-dimensional conformal constructed tensor category. This work, of these intertwining operators are the quantum field theory (CFT) along with results used in this work, in- fusion rules referred to above. Then has inspired an immense cludes, in particular, the (mathematical) one has to construct a tensor product amount of mathematics and construction of a significant portion of theory that ‘‘implements’’ these inter- Thas interacted with mathematics in very CFT—structures that actually do satisfy twining operators. After work of rich ways, in great part through the the axioms—using the representation Kazhdan–Lusztig (11) for certain struc- mathematically dynamic world of string theory of vertex operator algebras. tures based on affine Lie algebras, a theory. One notable example of this in- Huang (6) invokes a great deal of ear- tensor product theory for modules for teraction is provided by Verlinde’s con- lier work in vertex (operator) algebra a suitable, general vertex operator al- jecture: E. Verlinde (1) conjectured that theory. The mathematical foundation of gebra was constructed in a series of certain matrices formed by numbers CFT may be viewed as resting on the papers summarized in ref. 12. Elabo- called the ‘‘fusion rules’’ in a ‘‘rational’’ theory of vertex operator algebras (ref. rate use of ‘‘formal calculus’’ (dis- CFT are diagonalized by the matrix 7; see also ref. 8), which reflect the cussed in ref. 8) was required in this given by a certain natural action of a physical features codified by Belavin work. The main paper in this series fundamental modular transformation et al. (9). Mathematically, vertex opera- (13) establishes Huang’s associativity (essentially, a certain distinguished ele- tor algebra theory is extremely rich. For theorem, which leads quickly to the ment of the group of two-by-two matri- (categorical) coherence of the resulting ces of determinant one with integer braided tensor category. In CFT termi- entries). His conjecture led him to the To construct a nology, this associativity theorem as- ‘‘Verlinde formula’’ for the fusion rules serts the existence and associativity of and, more generally, for the dimensions tensor product theory the operator product expansion for in- of spaces of ‘‘conformal blocks’’ on Ri- tertwining operators, an assertion that emann surfaces of arbitrary genera. A of modules for a vertex was a key assumption (not theorem) in great deal of progress has been achieved ref. 3. In addition to braided tensor in interpreting and proving Verlinde’s operator algebra, one category structure, this series of papers (physical) conjecture and the Verlinde constructs the much richer ‘‘vertex ten- formula in mathematical settings, in is forced to proceed sor category’’ structure, which involves the case of the Wess–Zumino–Novikov- the conformal-geometric structure es- Witten models in CFT, which are based ‘‘backwards.’’ tablished in ref. 14, on the module cat- on affine Lie algebras. On the other egory of a suitable vertex operator hand, Moore and Seiberg (2, 3) showed, algebra. on a physical level of rigor, that the gen- the work discussed here, one needs the A fundamental theorem establishing eral form of the Verlinde conjecture is a representation theory of vertex operator natural modular transformation prop- consequence of the axioms for rational algebras, especially a tensor product the- erties of ‘‘characters’’ of modules for a CFTs, thereby providing a conceptual ory for modules for a suitable vertex suitable vertex operator algebra was understanding of the conjecture. In the operator algebra. In classical tensor proved by Zhu (15). Requiring all of process, they formulated a CFT ana- product theories for modules for a the theory mentioned here, as well as logue, later termed ‘‘modular tensor cat- group or for a suitable algebra such as a results in refs. 16–18, Huang formu- egory’’ (discussed in refs. 4 and 5) by I. Lie algebra, one automatically has the lates a general, mathematically precise, Frenkel, of the classical notion of tensor tensor product vector space available, statement of the Verlinde conjecture category for representations of (modules and one endows it with tensor product in the framework of the theory of ver- for) a group or a Lie algebra. It re- module structure by means of a natural tex operator algebras. Assuming only mained a very deep problem to con- coproduct operation. A module map such purely algebraic, natural hypothe- struct, in a mathematical as opposed to from the tensor product of two modules ses as simplicity of the vertex operator physical sense, structures (‘‘theories’’) to a third module then amounts to an algebra, complete reducibility of suit- satisfying these axioms for rational CFT. ‘‘intertwining operator’’ satisfying a nat- able modules, natural grading restric- These axioms are, in fact, much stronger ural condition coming from the group tions, and cofiniteness, hypotheses that than the Verlinde conjecture and modu- or algebra actions on the three modules. are relatively easily checked and have lar tensor category structure, and, in- However, vertex operator algebra indeed been previously verified in a deed, the mathematical construction of theory is imbued with considerable wide range of important families of CFTs (as opposed to the physical as- ‘‘nonclassical’’ subtleties, intimately examples, Huang sketches his proof sumption that they should exist) is a related to the nonclassical nature of (see ref. 6). The proof is heavily based very rich field of study to which many string theory in physics, and to con- on the results of his recent papers (19, mathematicians have contributed. In this struct a tensor product theory of mod- 20), in which natural duality and mod- issue of PNAS, Huang (6) announces a ules for a vertex operator algebra, one (mathematical) proof of the Verlinde is forced to proceed ‘‘backwards’’: conjecture in a very general form, along First, one defines suitable ‘‘intertwin- See companion article on page 5352. with two notable consequences: the ri- ing operators’’ (3, 10) among triples of *E-mail: [email protected]. gidity and modularity of a previously modules. The dimensions of the spaces © 2005 by The National Academy of Sciences of the USA 5304–5305 ͉ PNAS ͉ April 12, 2005 ͉ vol. 102 ͉ no. 15 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0501135102 Downloaded by guest on September 25, 2021 COMMENTARY ular invariance properties for genus-zero fact, the main work is to establish two used by Huang (6) will have further and genus-one multipoint correlation formulas of Moore and Seiberg that consequences. In fact, this tensor cate- functions constructed from intertwining they had derived from strong assump- gory theory has already been applied operators for a vertex operator algebra tions: the axioms for rational CFT. The to a variety of fields in mathematics satisfying the general hypotheses are difficulties lie in the sequence of math- and physics, including string theory or established; the multiple-valuedness of ematical developments briefly men- M-theory, in particular, D-branes. The the multipoint correlation functions tioned here. insight that continues to flow from the leads to considerable subtleties that As has been the case with many combined and respective efforts of had to be handled analytically and other major developments in the math- many physicists and mathematicians in geometrically, rather than just algebra- ematical study of string theory and this remarkable age of string theory ically. The strategy of the proof re- conformal field theory over the years, and its mathematical counterparts will flects the pattern of refs. 2 and 3; in it is to be expected that the methods surely produce new surprises. 1. Verlinde, E. (1988) Nucl. Phys. B 300, 360–376. 8. Frenkel, I. B., Lepowsky, J. & Meurman, A. (1988) 13. Huang, Y.-Z. (1995) J. Pure Appl. Alg. 100, 173– 2. Moore, G. & Seiberg, N. (1988) Phys. Lett. B 212, Vertex Operator Algebras and the Monster (Aca- 216. 451–460. demic, New York). 14. Huang, Y.-Z. (1998) Two-Dimensional Conformal 3. Moore, G. & Seiberg, N. (1988) Comm. Math. 9. Belavin, A. A., Polyakov, A. M. & Zamolod- Geometry and Vertex Operator Algebras Phys. 123, 177–254. chikov, A. B. (1984) Nucl. Phys. B 241, 333–380. (Birkhauser, Boston). 4. Bakalov, B. & Kirillov, A., Jr. (2001) Lectures on Tensor 10. Frenkel, I. B., Huang, Y.-Z. & Lepowsky, J. (1993) On 15. Zhu, Y. (1996) J. Am. Math. Soc. 9, 237–307. Categories and Modular Functors, University Lecture Axiomatic Approaches to Vertex Operator Algebras and 16. Huang, Y.-Z. (1996) J. Alg. 182, 201–234. Series (Am. Math. Soc., Providence, RI), Vol. 21. Modules, Memoirs of the American Mathematical So- 17. Huang, Y.-Z. (2000) Selecta Math. 6, 225– 5. Turaev, V. G. (1994) Quantum Invariants of Knots ciety (Am. Math. Soc., Providence, RI), Vol. 104. 267. and 3-Manifolds, de Gruyter Studies in Mathemat- 11. Kazhdan, D. & Lusztig, G. (1991) Int. Math. Res. 18. Dong, C., Li, H. & Mason, G. (2000) Comm. Math. ics (de Gruyter, Berlin), Vol. 18. Notices 2, 21–29. Phys. 214, 1–56. 6. Huang, Y.-Z. (2005) Proc. Natl. Acad. Sci. USA 12. Huang, Y.-Z. & Lepowsky, J. (1994) in Lie Theory 19. Huang, Y.-Z. (2005) Comm. Contemp. Math.,in 102, 5352–5356. and Geometry, in Honor of Bertram Kostant, eds. press. 7. Borcherds, R. E. (1986) Proc. Natl. Acad. Sci. USA Brylinski, J.-L., Brylinski, R., Guillemin, V. & 20. Huang, Y.-Z. (2005) Comm. Contemp. Math.,in 83, 3068–3071. Kac, V. (Birkhauser, Boston), pp. 349–383. press. Lepowsky PNAS ͉ April 12, 2005 ͉ vol. 102 ͉ no. 15 ͉ 5305 Downloaded by guest on September 25, 2021.
Recommended publications
  • 1. INTRODUCTION 1.1. Introductory Remarks on Supersymmetry. 1.2
    1. INTRODUCTION 1.1. Introductory remarks on supersymmetry. 1.2. Classical mechanics, the electromagnetic, and gravitational fields. 1.3. Principles of quantum mechanics. 1.4. Symmetries and projective unitary representations. 1.5. Poincar´esymmetry and particle classification. 1.6. Vector bundles and wave equations. The Maxwell, Dirac, and Weyl - equations. 1.7. Bosons and fermions. 1.8. Supersymmetry as the symmetry of Z2{graded geometry. 1.1. Introductory remarks on supersymmetry. The subject of supersymme- try (SUSY) is a part of the theory of elementary particles and their interactions and the still unfinished quest of obtaining a unified view of all the elementary forces in a manner compatible with quantum theory and general relativity. Supersymme- try was discovered in the early 1970's, and in the intervening years has become a major component of theoretical physics. Its novel mathematical features have led to a deeper understanding of the geometrical structure of spacetime, a theme to which great thinkers like Riemann, Poincar´e,Einstein, Weyl, and many others have contributed. Symmetry has always played a fundamental role in quantum theory: rotational symmetry in the theory of spin, Poincar´esymmetry in the classification of elemen- tary particles, and permutation symmetry in the treatment of systems of identical particles. Supersymmetry is a new kind of symmetry which was discovered by the physicists in the early 1970's. However, it is different from all other discoveries in physics in the sense that there has been no experimental evidence supporting it so far. Nevertheless an enormous effort has been expended by many physicists in developing it because of its many unique features and also because of its beauty and coherence1.
    [Show full text]
  • Modular Invariance of Characters of Vertex Operator Algebras
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 9, Number 1, January 1996 MODULAR INVARIANCE OF CHARACTERS OF VERTEX OPERATOR ALGEBRAS YONGCHANG ZHU Introduction In contrast with the finite dimensional case, one of the distinguished features in the theory of infinite dimensional Lie algebras is the modular invariance of the characters of certain representations. It is known [Fr], [KP] that for a given affine Lie algebra, the linear space spanned by the characters of the integrable highest weight modules with a fixed level is invariant under the usual action of the modular group SL2(Z). The similar result for the minimal series of the Virasoro algebra is observed in [Ca] and [IZ]. In both cases one uses the explicit character formulas to prove the modular invariance. The character formula for the affine Lie algebra is computed in [K], and the character formula for the Virasoro algebra is essentially contained in [FF]; see [R] for an explicit computation. This mysterious connection between the infinite dimensional Lie algebras and the modular group can be explained by the two dimensional conformal field theory. The highest weight modules of affine Lie algebras and the Virasoro algebra give rise to conformal field theories. In particular, the conformal field theories associated to the integrable highest modules and minimal series are rational. The characters of these modules are understood to be the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. From this point of view, the role of the modular group SL2(Z)ismanifest. In the study of conformal field theory, physicists arrived at the notion of chi- ral algebras (see e.g.
    [Show full text]
  • Of Operator Algebras Vern I
    proceedings of the american mathematical society Volume 92, Number 2, October 1984 COMPLETELY BOUNDED HOMOMORPHISMS OF OPERATOR ALGEBRAS VERN I. PAULSEN1 ABSTRACT. Let A be a unital operator algebra. We prove that if p is a completely bounded, unital homomorphism of A into the algebra of bounded operators on a Hubert space, then there exists a similarity S, with ||S-1|| • ||S|| = ||p||cb, such that S_1p(-)S is a completely contractive homomorphism. We also show how Rota's theorem on operators similar to contractions and the result of Sz.-Nagy and Foias on the similarity of p-dilations to contractions can be deduced from this result. 1. Introduction. In [6] we proved that a homomorphism p of an operator algebra is similar to a completely contractive homomorphism if and only if p is completely bounded. It was known that if S is such a similarity, then ||5|| • ||5_11| > ||/9||cb- However, at the time we were unable to determine if one could choose the similarity such that ||5|| • US'-1!! = ||p||cb- When the operator algebra is a C*- algebra then Haagerup had shown [3] that such a similarity could be chosen. The purpose of the present note is to prove that for a general operator algebra, there exists a similarity S such that ||5|| • ||5_1|| = ||p||cb- Completely contractive homomorphisms are central to the study of the repre- sentation theory of operator algebras, since they are precisely the homomorphisms that can be dilated to a ^representation on some larger Hilbert space of any C*- algebra which contains the operator algebra.
    [Show full text]
  • Robot and Multibody Dynamics
    Robot and Multibody Dynamics Abhinandan Jain Robot and Multibody Dynamics Analysis and Algorithms 123 Abhinandan Jain Ph.D. Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109 USA [email protected] ISBN 978-1-4419-7266-8 e-ISBN 978-1-4419-7267-5 DOI 10.1007/978-1-4419-7267-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938443 c Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) In memory of Guillermo Rodriguez, an exceptional scholar and a gentleman. To my parents, and to my wife, Karen. Preface “It is a profoundly erroneous truism, repeated by copybooks and by eminent people when they are making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite is the case.
    [Show full text]
  • From String Theory and Moonshine to Vertex Algebras
    Preample From string theory and Moonshine to vertex algebras Bong H. Lian Department of Mathematics Brandeis University [email protected] Harvard University, May 22, 2020 Dedicated to the memory of John Horton Conway December 26, 1937 – April 11, 2020. Preample Acknowledgements: Speaker’s collaborators on the theory of vertex algebras: Andy Linshaw (Denver University) Bailin Song (University of Science and Technology of China) Gregg Zuckerman (Yale University) For their helpful input to this lecture, special thanks to An Huang (Brandeis University) Tsung-Ju Lee (Harvard CMSA) Andy Linshaw (Denver University) Preample Disclaimers: This lecture includes a brief survey of the period prior to and soon after the creation of the theory of vertex algebras, and makes no claim of completeness – the survey is intended to highlight developments that reflect the speaker’s own views (and biases) about the subject. As a short survey of early history, it will inevitably miss many of the more recent important or even towering results. Egs. geometric Langlands, braided tensor categories, conformal nets, applications to mirror symmetry, deformations of VAs, .... Emphases are placed on the mutually beneficial cross-influences between physics and vertex algebras in their concurrent early developments, and the lecture is aimed for a general audience. Preample Outline 1 Early History 1970s – 90s: two parallel universes 2 A fruitful perspective: vertex algebras as higher commutative algebras 3 Classification: cousins of the Moonshine VOA 4 Speculations The String Theory Universe 1968: Veneziano proposed a model (using the Euler beta function) to explain the ‘st-channel crossing’ symmetry in 4-meson scattering, and the Regge trajectory (an angular momentum vs binding energy plot for the Coulumb potential).
    [Show full text]
  • Pulling Yourself up by Your Bootstraps in Quantum Field Theory
    Pulling Yourself Up by Your Bootstraps in Quantum Field Theory Leonardo Rastelli Yang Institute for Theoretical Physics Stony Brook University ICTP and SISSA Trieste, April 3 2019 A. Sommerfeld Center, Munich January 30 2019 Quantum Field Theory in Fundamental Physics Local quantum fields ' (x) f i g x = (t; ~x), with t = time, ~x = space The language of particle physics: for each particle species, a field Quantum Field Theory for Collective Behavior Modelling N degrees of freedom in statistical mechanics. Example: Ising! model 1 (uniaxial ferromagnet) σi = 1, spin at lattice site i ± P Energy H = J σiσj − (ij) Near Tc, field theory description: magnetization '(~x) σ(~x) , ∼ h i Z h i H = d3x ~ ' ~ ' + m2'2 + λ '4 + ::: r · r 2 m T Tc ∼ − Z h i H = d3x ~ ' ~ ' + m2'2 + λ '4 + ::: r · r The dots stand for higher-order \operators": '6, (~ ' ~ ')'2, '8, etc. r · r They are irrelevant for the large-distance physics at T T . ∼ c Crude rule of thumb: an operator is irrelevant if its scaling weight [ ] > 3 (3 d, dimension of space). O O ≡ Basic assignments: ['] = 1 d 1 and [~x] = 1 = [~ ] = 1. 2 ≡ 2 − − ) r So ['2] = 1, ['4] = 2, [~ ' ~ '] =3, while ['8] = 4 etc. r · r First hint of universality: critical exponents do not depend on details. E.g., C T T −α, ' (T T )β for T < T , etc. T ∼ j − cj h i ∼ c − c QFT \Theory of fluctuating fields” (Duh!) ≡ Traditionally, QFT is formulated as a theory of local \quantum fields”: Z H['(x)] Y − Z = d'(x) e g x In particle physics, x spacetime and g = ~ (quantum) 2 In statistical mechanics, x space and g = T (thermal).
    [Show full text]
  • Operator Algebras: an Informal Overview 3
    OPERATOR ALGEBRAS: AN INFORMAL OVERVIEW FERNANDO LLEDO´ Contents 1. Introduction 1 2. Operator algebras 2 2.1. What are operator algebras? 2 2.2. Differences and analogies between C*- and von Neumann algebras 3 2.3. Relevance of operator algebras 5 3. Different ways to think about operator algebras 6 3.1. Operator algebras as non-commutative spaces 6 3.2. Operator algebras as a natural universe for spectral theory 6 3.3. Von Neumann algebras as symmetry algebras 7 4. Some classical results 8 4.1. Operator algebras in functional analysis 8 4.2. Operator algebras in harmonic analysis 10 4.3. Operator algebras in quantum physics 11 References 13 Abstract. In this article we give a short and informal overview of some aspects of the theory of C*- and von Neumann algebras. We also mention some classical results and applications of these families of operator algebras. 1. Introduction arXiv:0901.0232v1 [math.OA] 2 Jan 2009 Any introduction to the theory of operator algebras, a subject that has deep interrelations with many mathematical and physical disciplines, will miss out important elements of the theory, and this introduction is no ex- ception. The purpose of this article is to give a brief and informal overview on C*- and von Neumann algebras which are the main actors of this summer school. We will also mention some of the classical results in the theory of operator algebras that have been crucial for the development of several areas in mathematics and mathematical physics. Being an overview we can not provide details. Precise definitions, statements and examples can be found in [1] and references cited therein.
    [Show full text]
  • COSETS of AFFINE VERTEX ALGEBRAS INSIDE LARGER STRUCTURES Vertex Algebra Are a Fundamental Class of Algebraic Structures That Ar
    COSETS OF AFFINE VERTEX ALGEBRAS INSIDE LARGER STRUCTURES THOMAS CREUTZIG AND ANDREW R. LINSHAW ABSTRACT. Given a finite-dimensional reductive Lie algebra g equipped with a nondegen- erate, invariant, symmetric bilinear form B, let Vk(g;B) denote the universal affine vertex algebra associated to g and B at level k. Let Ak be a vertex (super)algebra admitting a homomorphism Vk(g;B) !Ak. Under some technical conditions on Ak, we characterize the commutant Ck = Com(Vk(g;B); Ak) for generic values of k. We establish the strong 0 0 0 0 finite generation of Ck in the following cases: Ak = Vk(g ;B ), Ak = Vk−l(g ;B ) ⊗ F, and 0 0 00 00 0 00 Ak = Vk−l(g ;B ) ⊗ Vl(g ;B ). Here g and g are finite-dimensional Lie (super)algebras containing g, equipped with nondegenerate, invariant, (super)symmetric bilinear forms B0 and B00 which extend B, l 2 C is fixed, and F is a free field algebra admitting a homomor- phism Vl(g;B) !F. Our approach is essentially constructive and leads to minimal strong finite generating sets for many interesting examples. 1. INTRODUCTION Vertex algebra are a fundamental class of algebraic structures that arose out of confor- mal field theory and have applications in a diverse range of subjects. The coset or commu- tant construction is a standard way to construct new vertex algebras from old ones. Given a vertex algebra V and a subalgebra A ⊂ V, Com(A; V) is the subalgebra of V which com- mutes with A. This was introduced by Frenkel and Zhu in [FZ], generalizing earlier constructions in representation theory [KP] and physics [GKO], where it was used to con- struct the unitary discrete series representations of the Virasoro algebra.
    [Show full text]
  • Intertwining Operator Superalgebras and Vertex Tensor Categories for Superconformal Algebras, Ii
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 354, Number 1, Pages 363{385 S 0002-9947(01)02869-0 Article electronically published on August 21, 2001 INTERTWINING OPERATOR SUPERALGEBRAS AND VERTEX TENSOR CATEGORIES FOR SUPERCONFORMAL ALGEBRAS, II YI-ZHI HUANG AND ANTUN MILAS Abstract. We construct the intertwining operator superalgebras and vertex tensor categories for the N = 2 superconformal unitary minimal models and other related models. 0. Introduction It has been known that the N = 2 Neveu-Schwarz superalgebra is one of the most important algebraic objects realized in superstring theory. The N =2su- perconformal field theories constructed from its discrete unitary representations of central charge c<3 are among the so-called \minimal models." In the physics liter- ature, there have been many conjectural connections among Calabi-Yau manifolds, Landau-Ginzburg models and these N = 2 unitary minimal models. In fact, the physical construction of mirror manifolds [GP] used the conjectured relations [Ge1] [Ge2] between certain particular Calabi-Yau manifolds and certain N =2super- conformal field theories (Gepner models) constructed from unitary minimal models (see [Gr] for a survey). To establish these conjectures as mathematical theorems, it is necessary to construct the N = 2 unitary minimal models mathematically and to study their structures in detail. In the present paper, we apply the theory of intertwining operator algebras developed by the first author in [H3], [H5] and [H6] and the tensor product theory for modules for a vertex operator algebra developed by Lepowsky and the first author in [HL1]{[HL6], [HL8] and [H1] to construct the intertwining operator algebras and vertex tensor categories for N = 2 superconformal unitary minimal models.
    [Show full text]
  • A Spatial Operator Algebra
    International Journal of Robotics Research vol. 10, pp. 371-381, Aug. 1991 A Spatial Op erator Algebra for Manipulator Mo deling and Control 1 2 1 G. Ro driguez , K. Kreutz{Delgado , and A. Jain 2 1 AMES Department, R{011 Jet Propulsion Lab oratory Univ. of California, San Diego California Institute of Technology La Jolla, CA 92093 4800 Oak Grove Drive Pasadena, CA 91109 Abstract A recently develop ed spatial op erator algebra for manipulator mo deling, control and tra- jectory design is discussed. The elements of this algebra are linear op erators whose domain and range spaces consist of forces, moments, velo cities, and accelerations. The e ect of these op erators is equivalent to a spatial recursion along the span of a manipulator. Inversion of op erators can be eciently obtained via techniques of recursive ltering and smo othing. The op erator algebra provides a high-level framework for describing the dynamic and kinematic b ehavior of a manipu- lator and for control and tra jectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract op erator expressions by insp ection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanization of sp eci c algorithms is greatly simpli ed. 1 Intro duction: A Spatial Op erator Algebra A new approach to the mo deling and analysis of systems of rigid b o dies interacting among them- selves and their environment has recently b een develop ed in Ro driguez 1987a and Ro driguez and Kreutz-Delgado 1992b .
    [Show full text]
  • Chiral Algebras and Partition Functions
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Partition functions and chiral algebras. Author(s) Tuite, Michael P. Publication Date 2007-05 Publication Mason, G., Tuite, M.P. (2007) Partition functions and chiral Information algebras Lie algebras, vertex operator algebras and their applications, CONTEMPORARY 442 Publisher American Mathematical Society Link to publisher's http://www.ams.org/bookstore-getitem/item=conm-442 version Item record http://hdl.handle.net/10379/4848 Downloaded 2021-09-29T23:55:39Z Some rights reserved. For more information, please see the item record link above. Chiral Algebras and Partition Functions Geoffrey Mason∗ Department of Mathematics, University of California Santa Cruz, CA 95064, U.S.A. MichaelP.Tuite† Department of Mathematical Physics, National University of Ireland, Galway, Ireland. In Honor of Jim Lepowsky and Robert Wilson Abstract We discuss recent work of the authors concerning correlation functions and partition functions for free bosons/fermions and the b-c or ghost system. We compare and contrast the nature of the 1-point functions at genus 1, and explain how one may understand the free boson partition function at genus 2 via vertex operators and sewing complex tori. 1 Introduction This paper is based on the talk given by one of the authors at the North Carolina State Conference honoring Jim Lepowsky and Robert Wilson. The paper concerns the idea of partition functions in the theory of chiral algebras. The genus 1 partition function of a vertex operator algebra - a.k.a. the graded dimension - has been studied extensively, but the case when either the genus is greater than 1 or else the chiral algebra is not a vertex operator algebra ∗Partial support provided by NSF DMS-0245225 and the Committee on Research, University of California, Santa Cruz †Supported by the Millenium Fund, National University of Ireland, Galway 1 has received little attention from mathematicians thus far.
    [Show full text]
  • Clifford Algebra Analogue of the Hopf–Koszul–Samelson Theorem
    Advances in Mathematics AI1608 advances in mathematics 125, 275350 (1997) article no. AI971608 Clifford Algebra Analogue of the HopfKoszulSamelson Theorem, the \-Decomposition C(g)=End V\ C(P), and the g-Module Structure of Ãg Bertram Kostant* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received October 18, 1996 1. INTRODUCTION 1.1. Let g be a complex semisimple Lie algebra and let h/b be, respectively, a Cartan subalgebra and a Borel subalgebra of g. Let n=dim g and l=dim h so that n=l+2r where r=dim gÂb. Let \ be one- half the sum of the roots of h in b. The irreducible representation ?\ : g Ä End V\ of highest weight \ is dis- tinguished among all finite-dimensional irreducible representations of g for r a number of reasons. One has dim V\=2 and, via the BorelWeil theorem, Proj V\ is the ambient variety for the minimal projective embed- ding of the flag manifold associated to g. In addition, like the adjoint representation, ?\ admits a uniform construction for all g. Indeed let SO(g) be defined with respect to the Killing form Bg on g. Then if Spin ad: g Ä End S is the composite of the adjoint representation ad: g Ä Lie SO(g) with the spin representation Spin: Lie SO(g) Ä End S, it is shown in [9] that Spin ad is primary of type ?\ . Given the well-known relation between SS and exterior algebras, one immediately deduces that the g-module structure of the exterior algebra Ãg, with respect to the derivation exten- sion, %, of the adjoint representation, is given by l Ãg=2 V\V\.(a) The equation (a) is only skimming the surface of a much richer structure.
    [Show full text]