Jhep01(2020)007

Total Page:16

File Type:pdf, Size:1020Kb

Jhep01(2020)007 Published for SISSA by Springer Received: March 27, 2019 Revised: November 15, 2019 Accepted: December 9, 2019 Published: January 2, 2020 Deformed graded Poisson structures, generalized geometry and supergravity JHEP01(2020)007 Eugenia Boffo and Peter Schupp Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany E-mail: [email protected], [email protected] Abstract: In recent years, a close connection between supergravity, string effective ac- tions and generalized geometry has been discovered that typically involves a doubling of geometric structures. We investigate this relation from the point of view of graded ge- ometry, introducing an approach based on deformations of graded Poisson structures and derive the corresponding gravity actions. We consider in particular natural deformations of the 2-graded symplectic manifold T ∗[2]T [1]M that are based on a metric g, a closed Neveu-Schwarz 3-form H (locally expressed in terms of a Kalb-Ramond 2-form B) and a scalar dilaton φ. The derived bracket formalism relates this structure to the generalized differential geometry of a Courant algebroid, which has the appropriate stringy symme- tries, and yields a connection with non-trivial curvature and torsion on the generalized “doubled” tangent bundle E =∼ TM ⊕ T ∗M. Projecting onto TM with the help of a natural non-isotropic splitting of E, we obtain a connection and curvature invariants that reproduce the NS-NS sector of supergravity in 10 dimensions. Further results include a fully generalized Dorfman bracket, a generalized Lie bracket and new formulas for torsion and curvature tensors associated to generalized tangent bundles. A byproduct is a unique Koszul-type formula for the torsionful connection naturally associated to a non-symmetric metric, which resolves ambiguity problems and inconsistencies of traditional approaches to non-symmetric gravity theories. Keywords: Differential and Algebraic Geometry, Classical Theories of Gravity, Super- gravity Models, Superstrings and Heterotic Strings ArXiv ePrint: 1903.09112 Open Access, c The Authors. https://doi.org/10.1007/JHEP01(2020)007 Article funded by SCOAP3. Contents 1 Introduction 1 2 Summary of essential notions 4 3 Graded Poisson algebra of T ∗[2]T [1]M 8 3.1 Deformed graded Poisson brackets 8 JHEP01(2020)007 3.2 Derived structure 10 4 Courant algebroid connection 12 4.1 Generalized torsion, Lie bracket and connection 12 4.2 Connection for the derived deformed Courant algebroid 16 4.3 Comparison with other definitions of torsion 17 4.4 Curvature invariants 19 5 Deformation with metric g, 2-form B and dilaton φ 20 5.1 Deformed graded Poisson algebra 20 5.2 Derived structure 22 5.2.1 Courant σ-model 24 5.3 Connection and curvature 25 5.3.1 Koszul formula 26 5.3.2 Metric connection with torsion 27 5.4 Supergravity bosonic NS-NS sector 28 6 Discussion and comments 30 A Generalized differential geometry 33 1 Introduction Deformations of Poisson structures in classical physics and deformations of canonical com- mutation relations in quantum mechanics can be used to describe interactions. This ap- proach is well-established in the context of electromagnetism and is an arguably slightly more general alternative to gauge theories. It allows for instance the inclusion of magnetic monopole sources [1] (see also [2]) and it can also deal rather elegantly with first order actions. In the electromagnetic case, the deformation µ µ µ ν {pµ, pν} = eFµν(x), {x , pν} = δν , {x , x } = 0 – 1 – of the canonical Poisson structure is based on a local change of phase space coordinates µ µ (x , pµ) 7→ (x , pµ + eAµ(x)) generated by a gauge field Aµ(x). This is a simple appli- cation of Moser’s lemma [3]. Gauge transformations δAµ = ∂µλ correspond to canonical transformations of the deformed Poisson structure. The undeformed “free” Hamiltonian H = p2/2m in conjuction with the deformed Poisson structure yields the correct Lorentz µ µν forcep ˙ = eF x˙ ν withx ˙ ν = pν/m. Globally, the deformation is non-trivial whenever the field strength belongs to a non-trivial cohomology class. So far little is known about gravitational interactions from this point of view. Here we will show how to implement the approach in the context of supergravity. The deformation data that will enable us to formulate a Supergravity action is a Riemannian metric g, a JHEP01(2020)007 closed Neveu-Schwarz 3-form field strength H and a dilaton scalar field φ. Locally, on a contractible patch, the Neveu-Schwarz field can be expressed as H = dB in terms of the Kalb-Ramond 2-form B, which is defined up to 1-form Λ (gauge) transformations B 7→ B + dΛ. The 1-form gauge parameter Λ is itself defined only up to a total derivative. Globally, this is the structure of an abelian bundle gerbe (a higher geometric analog of a line bundle). In analogy to the electromagnetic case mentioned above, the fields g, B and φ generate a deformation via a local change of phase space coordinates. But unlike the electromagnetic case, the deformed Poisson structure cannot entirely be formulated in terms of gauge invariant quantities, since Λ transformations act non-trivially — as is in fact to be expected in view of the gerbe structure. The deformations are thus necessarily local, but they nevertheless extend to a globally well-defined structure. The appropriate geometric setting needed to accomodate all fields, turns out to be graded Poisson structures and it is closely related to Generalized Geometry. The deforma- tion data in fact defines a so-called generalized metric, but this observation shall not be the main focus of this paper. Generalized Geometry unifies aspects of Riemannian, symplectic and complex geometry. It typically involves the study of a doubled (tangent plus cotan- gent) bundle TM ⊕ T ∗M with structure group O(d, d), or extensions of it, interpreted as a generalized tangent bundle. The natural notion of symmetry on the generalized tangent bundle is encoded in Courant algebroids with an ad-invariant pairing on sections, an an- chor map into tangent space and a Dorfman bracket. Unlike the more familiar Lie-bracket, the Dorfman bracket is not anti-symmetric in order to assure suitable integrability prop- erties and it satisfies a restricted Jacobi identity. Compatibility conditions between these objects must also hold. Exact Courant algebroids E =∼ TM ⊕ T ∗M have been classified by Severaˇ [4] in terms of the third cohomology class H3(M, R). In the recent past the generalized differential geometry of TM ⊕ T ∗M has been ex- ploited to show — with various suitable assumptions — that supergravity, as the supersym- metric theory of gravity in its own right, but also as the effective field theory of superstrings of type IIA and IIB, can be described as some kind of Einstein’s General Relativity on this doubled vector bundle. For example, the works [5–7] and others show this in the frame- work of Generalized Geometry. In Double Field Theory, where also the coordinates of the base manifold (spacetime) are doubled, similar results — upon suitable projection onto standard target spacetime — were found, see e.g. [8]. As mentioned above, here we shall take a different approach based on deformations of graded Poisson structures. It is known that the aforementioned Generalized Geometry – 2 – structures are special cases of graded Poisson algebras in the derived bracket formalism: the 2-graded symplectic manifold T ∗[2]T [1]M, admitting a Hamiltonian (shifted) vector field, with its sheaf of graded Poisson algebras generated by the polynomial functions, was related to the exact Courant algebroid on T [1]M ⊕ T ∗[1]M ≃ T ∗M ⊕ TM in Severa’sˇ letter 7 [4] to Alan Weinstein. Roytenberg, in [9] and in his PhD thesis [10], further analysed graded symplectic manifolds and found a 1-1 correspondence between symplectic NQ-manifolds of degree 2 and Courant algebroids. The key was to notice that the bracket and the pairing are derived brackets of the Poisson bracket with the Hamiltonian as differential. The relation between Courant algebroid and derived brackets and other applications to Lie algebroids are explained by Kosmann-Schwarzbach in [11]. Graded Poisson algebras JHEP01(2020)007 and graded Lie algebras are also relevant in the context of the BRST and BV quantization of the path integral of field theories with local symmetries. Another closely related and fruitful setup for the exploitation of the rich structures of graded manifolds are the AKSZ models [12]. They associate topological field theories to graded symplectic manifolds by lifting the graded and symplectic construction on a pair of manifolds M, N to the mapping space Map(M, N). For further details see e.g. the review on supergeometry [13]. Worth mentioning, amongst the numerous works, is the exploration of the AKSZ construction by Ikeda [14], Schaller and Strobl in [15], and Cattaneo and Felder in [16] and [17] for N = T [1]N0 related to the Poisson σ-model. It is natural to conjecture that the “generalized General Relativity nature” of super- gravity can be described in terms of the differential graded symplectic manifold T ∗[2]T [1]M, with M being d-dimensional target spacetime. Indeed, this is the program of this pa- per: starting from a deformation of the graded Poisson algebra encoded in local vielbeins, we reconstruct the NS-NS sector of 10-dimensional supergravity from a derived general- ized connection and corresponding curvature invariant. The construction uses the derived bracket approach to Generalized Geometry and some additional natural geometric struc- tures, which we shall describe in detail. Structure of the article. In the following section 2 we will review the necessary back- ground on Generalized Geometry and graded symplectic manifolds. The notation will be fixed in this part.
Recommended publications
  • Some Results in Supergeometry
    Some results in supergeometry Harmonic maps from super Riemann surfaces and Automorphism supergroups of supermanifolds Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨atzu K¨oln vorgelegt von Dominik Ostermayr aus Dachau 2017 Berichterstatter: PD Dr. Alexander Alldridge Prof. Dr. George Marinescu Prof. Dr. Tilmann Wurzbacher Tag der m¨undlichen Pr¨ufung: 20. Januar 2017 Kurzzusammenfassung Die vorliegende Arbeit besteht aus zwei unabh¨angigenund eigenst¨andigen Teilen. Gegenstand des ersten Teils sind harmonische Abbildungen von super-Riemannschen Fl¨achen nach komplex-projektiven R¨aumenund projektiven R¨aumenbez¨uglich des Super- schiefk¨orpers D: In beiden F¨allenwird die Theorie der Gauß-Transformierten entwickelt und der Begriff der Isotropie studiert, insbesondere mit Hinblick auf den Zusammenhang zu holomorphen Differentialen auf der super-Riemannschen Fl¨ache. Uberdies¨ geben wir eine Definition f¨urharmonische Abbildungen endlichen Typs f¨ureine spezielle Klasse von n n+1 Abbildungen nach CP j und erhalten so eine Klassifikation bestimmter harmonischer super-Tori. Ferner untersuchen wir die Gleichungen, die von den unterliegenden Objek- ten erf¨ulltwerden und geben ein Beispiel eines harmonischen super-Torus in DP 2 dessen unterliegende Abbildung nicht harmonisch ist. Im zweiten Teil studieren wir einen klassischen Satz, der besagt, dass die Gruppe der Automorphismen einer Mannigfaltigkeit, die eine G-Struktur endlichen Typs erhalten, eine Lie-Gruppe bildet, im Kontext von Supermannigfaltigkeiten. Wir verallgemeinern dieses Theorem auf die Kategorie der cs Mannigfaltigkeiten und illustrieren es anhand einiger, sowohl klassische Objekte verallgemeinernder als auch genuin supergeometrischer, Beispiele. Insbesondere ist es n¨otigeine neue Klasse von Supermannigfaltigkeiten einzuf¨uhren - gemischte Supermannigfaltigkeiten. iii Abstract This thesis consists of two independent and self-contained parts.
    [Show full text]
  • Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and Their Applications
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), 415–471 INTRODUCTION TO GRADED GEOMETRY, BATALIN-VILKOVISKY FORMALISM AND THEIR APPLICATIONS Jian Qiu and Maxim Zabzine Abstract. These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible toboth physicists and mathematicians. Table of Contents 1. Introduction and motivation 416 2. Supergeometry 417 2.1. Idea 418 2.2. Z2-graded linear algebra 418 2.3. Supermanifolds 420 2.4. Integration theory 421 3. Graded geometry 423 3.1. Z-graded linear algebra 423 3.2. Graded manifold 425 4. Odd Fourier transform and BV-formalism 426 4.1. Standard Fourier transform 426 4.2. Odd Fourier transform 427 4.3. Integration theory 430 4.4. Algebraic view on the integration 433 5. Perturbation theory 437 5.1. Integrals in Rn-Gaussian Integrals and Feynman Diagrams 437 2010 Mathematics Subject Classification: primary 58A50; secondary 16E45, 97K30. Key words and phrases: Batalin-Vilkovisky formalism, graded symplectic geometry, graph homology, perturbation theory.
    [Show full text]
  • Natural Operators in the View of Cartan Geometries
    NATURAL OPERATORS IN THE VIEW OF CARTAN GEOMETRIES Martin Panak´ Abstract. We prove, that r-th order gauge natural operators on the bundle of Cartan connections with a target in the gauge natural bundles of the order (1, 0) (”tensor bundles”) factorize through the curvature and its invariant derivatives up to order r−1. On the course to this result we also prove that the invariant derivations (a generalization of the covariant derivation for Cartan geometries) of the curvature function of a Cartan connection have the tensor character. A modification of the theorem is given for the reductive and torsion free geometries. In [P] we have shown that Cartan connections on principal fibered bundles with a given structure group, say H, with values in g (H ⊂ G Lie groups, h, g their Lie alge- bras) are (all) sections of a gauge natural bundle which we call the bundle of Cartan connections and we will write C for it. In fact it is a bundle of elements of Car- tan connections. It is a functor on the category PBm(H) of principal bundles with a structure group H and principal bundle morphisms with local diffeomorphisms as base maps. For each principal bundle P the bundle CP can be viewed as a subbundle of the bundle of principal connections on the associated bundle P ×H G. We use the terms gauge natural bundle and gauge natural operator in the sense of [KMS]. We will study r-th order gauge natural operators on the bundle of Cartan connec- tions with gauge natural bundles of the order (1, 0) as target spaces.
    [Show full text]
  • Geometric Horizons ∗ Alan A
    Physics Letters B 771 (2017) 131–135 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Geometric horizons ∗ Alan A. Coley a, David D. McNutt b, , Andrey A. Shoom c a Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada b Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway c Department of Mathematics and Statistics, Memorial University, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada a r t i c l e i n f o a b s t r a c t Article history: We discuss black hole spacetimes with a geometrically defined quasi-local horizon on which the Received 21 February 2017 curvature tensor is algebraically special relative to the alignment classification. Based on many examples Accepted 2 May 2017 and analytical results, we conjecture that a spacetime horizon is always more algebraically special (in Available online 19 May 2017 all of the orders of specialization) than other regions of spacetime. Using recent results in invariant Editor: M. Trodden theory, such geometric black hole horizons can be identified by the alignment type II or D discriminant conditions in terms of scalar curvature invariants, which are not dependent on spacetime foliations. The above conjecture is, in fact, a suite of conjectures (isolated vs dynamical horizon; four vs higher dimensions; zeroth order invariants vs higher order differential invariants). However, we are particularly interested in applications in four dimensions and especially the location of a black hole in numerical computations. © 2017 The Author(s). Published by Elsevier B.V.
    [Show full text]
  • WHAT IS Q-CURVATURE? 1. Introduction Throughout His Distinguished Research Career, Tom Branson Was Fascinated by Con- Formal
    WHAT IS Q-CURVATURE? S.-Y. ALICE CHANG, MICHAEL EASTWOOD, BENT ØRSTED, AND PAUL C. YANG In memory of Thomas P. Branson (1953–2006). Abstract. Branson’s Q-curvature is now recognized as a fundamental quantity in conformal geometry. We outline its construction and present its basic properties. 1. Introduction Throughout his distinguished research career, Tom Branson was fascinated by con- formal differential geometry and made several substantial contributions to this field. There is no doubt, however, that his favorite was the notion of Q-curvature. In this article we outline the construction and basic properties of Branson’s Q-curvature. As a Riemannian invariant, defined on even-dimensional manifolds, there is apparently nothing special about Q. On a surface Q is essentially the Gaussian curvature. In 4 dimensions there is a simple but unrevealing formula (4.1) for Q. In 6 dimensions an explicit formula is already quite difficult. What is truly remarkable, however, is how Q interacts with conformal, i.e. angle-preserving, transformations. We shall suppose that the reader is familiar with the basics of Riemannian differ- ential geometry but a few remarks on notation are in order. Sometimes, we shall write gab for a metric and ∇a for the corresponding connection. Let us write Rab and R for the Ricci and scalar curvatures, respectively. We shall use the metric to ‘raise and lower’ indices in the usual fashion and adopt the summation convention whereby one implicitly sums over repeated indices. Using these conventions, the Laplacian is ab a the differential operator ∆ ≡ g ∇a∇b = ∇ ∇a. A conformal structure on a smooth manifold is a metric defined only up to smoothly varying scale.
    [Show full text]
  • List of Symbols, Notation, and Useful Expressions
    Appendix A List of Symbols, Notation, and Useful Expressions In this appendix the reader will find a more detailed description of the conventions and notation used throughout this book, together with a brief description of what spinors are about, followed by a presentation of expressions that can be used to recover some of the formulas in specified chapters. A.1 List of Symbols κ ≡ κijk Contorsion ξ ≡ ξijk Torsion K Kähler function I ≡ I ≡ I KJ gJ GJ Kähler metric W(φ) Superpotential V Vector supermultiplet φ,0 (Chiral) Scalar supermultiplet φ,ϕ Scalar field V (φ) Scalar potential χ ≡ γ 0χ † For Dirac 4-spinor representation ψ† Hermitian conjugate (complex conjugate and transposition) φ∗ Complex conjugate [M]T Transpose { , } Anticommutator [ , ] Commutator θ Grassmannian variable (spinor) Jab, JAB Lorentz generator (constraint) qX , X = 1, 2,... Minisuperspace coordinatization π μαβ Spin energy–momentum Moniz, P.V.: Appendix. Lect. Notes Phys. 803, 263–288 (2010) DOI 10.1007/978-3-642-11575-2 c Springer-Verlag Berlin Heidelberg 2010 264 A List of Symbols, Notation, and Useful Expressions Sμαβ Spin angular momentum D Measure in Feynman path integral [ , ]P ≡[, ] Poisson bracket [ , ]D Dirac bracket F Superfield M P Planck mass V β+,β− Minisuperspace potential (Misner–Ryan parametrization) Z IJ Central charges ds Spacetime line element ds Minisuperspace line element F Fermion number operator eμ Coordinate basis ea Orthonormal basis (3)V Volume of 3-space (a) νμ Vector field (a) fμν Vector field strength ij π Canonical momenta to hij π φ Canonical
    [Show full text]
  • The Language of Differential Forms
    Appendix A The Language of Differential Forms This appendix—with the only exception of Sect.A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of deriving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where all tensor indices referred to the diffeomorphisms of the curved space–time are “hidden” inside the variables, with great formal simplifications and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and oper- ational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [22] of the bibliography. Let us finally notice that in this appendix we will follow the conventions introduced in Chap. 12, Sect. 12.1: latin letters a, b, c,...will denote Lorentz indices in the flat tangent space, Greek letters μ, ν, α,... tensor indices in the curved manifold. For the matter fields we will always use natural units = c = 1. Also, unless otherwise stated, in the first three Sects.
    [Show full text]
  • Courant Algebroids: Cohomology and Matched Pairs
    The Pennsylvania State University The Graduate School Eberly College of Science Courant Algebroids: Cohomology and Matched Pairs A Dissertation in Mathematics by Melchior Gr¨utzmann c 2009Melchior Gr¨utzmann Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2009 The dissertation of Melchior Gr¨utzmann was reviewed and approved1 by the following: Ping Xu Professor of Mathematics Dissertation Advisor Co-Chair of Committee Mathieu Sti´enon Professor of Mathematics Co-Chair of Committee Martin Bojowald Professor of Physics Luen-Chau Li Professor of Mathematics Adrian Ocneanu Professor of Mathematics Aissa Wade Professor of Mathematics Gr´egory Ginot Professor of Mathematics of Universit´eParis 6 Special Signatory Alberto Bressan Professor of Mathematics Director of graduate studies 1The signatures are on file in the Graduate School. Abstract Courant Algebroids: Cohomology and Matched Pairs We introduce Courant algebroids, providing definitions, some historical notes, and some elementary properties. Next, we summarize basic properties of graded manifolds. Then, drawing on the work by Roytenberg and others, we introduce the graded or supergraded language demostrating a cochain com- plex/ cohomology for (general) Courant algebroids. We review spectral se- quences and show how this tool is used to compute cohomology for regular Courant algebroids with a split base. Finally we analyze matched pairs of Courant algebroids including the complexified standard Courant algebroid of a complex manifold and the matched pair arising from a holomorphic Courant algebroid. iii Contents Acknowledgements vi 1 Introduction 1 2 Basic notions 3 2.1 Courant algebroids and Dirac structures ............ 3 2.1.1 Lie algebroids ....................... 3 2.1.2 Lie bialgebroids .....................
    [Show full text]
  • Deformed Weitzenböck Connections, Teleparallel Gravity and Double
    Deformed Weitzenböck Connections and Double Field Theory Victor A. Penas1 1 G. Física CAB-CNEA and CONICET, Centro Atómico Bariloche, Av. Bustillo 9500, Bariloche, Argentina [email protected] ABSTRACT We revisit the generalized connection of Double Field Theory. We implement a procedure that allow us to re-write the Double Field Theory equations of motion in terms of geometric quantities (like generalized torsion and non-metricity tensors) based on other connections rather than the usual generalized Levi-Civita connection and the generalized Riemann curvature. We define a generalized contorsion tensor and obtain, as a particular case, the Teleparallel equivalent of Double Field Theory. To do this, we first need to revisit generic connections in standard geometry written in terms of first-order derivatives of the vielbein in order to obtain equivalent theories to Einstein Gravity (like for instance the Teleparallel gravity case). The results are then easily extrapolated to DFT. arXiv:1807.01144v2 [hep-th] 20 Mar 2019 Contents 1 Introduction 1 2 Connections in General Relativity 4 2.1 Equationsforcoefficients. ........ 6 2.2 Metric-Compatiblecase . ....... 7 2.3 Non-metricitycase ............................... ...... 9 2.4 Gauge redundancy and deformed Weitzenböck connections .............. 9 2.5 EquationsofMotion ............................... ..... 11 2.5.1 Weitzenböckcase............................... ... 11 2.5.2 Genericcase ................................... 12 3 Connections in Double Field Theory 15 3.1 Tensors Q and Q¯ ...................................... 17 3.2 Components from (1) ................................... 17 3.3 Components from T e−2d .................................. 18 3.4 Thefullconnection...............................∇ ...... 19 3.5 GeneralizedRiemanntensor. ........ 20 3.6 EquationsofMotion ............................... ..... 23 3.7 Determination of undetermined parts of the Connection . ............... 25 3.8 TeleparallelDoubleFieldTheory .
    [Show full text]
  • Bounding Curvature by Modifying General Relativity
    Bounding Curvature by Modifying General Relativity David R. Fiske Department of Physics, University of Maryland, College Park, MD 20742-4111 and Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 The existence of singularities is one the most surprising predictions of Einstein's general relativity. I review some work that tries to eliminate singularities in the theory by forcibly bounding curvature scalars. Although the authors of the original papers sought a possible effective theory in high curvature regions that might help develop either quantum gravity or string theory, the technical difficulties of calculating field equations within the modified theories is quite formidable and likely makes it impossible to gain any analytic insights. I also briefly discuss possible applications of these methods to numerical relativity. I. INTRODUCTION General relativity admits solutions that include essential, physical singularities. Although these singularities likely indicate a break down of the classical theory, the \next" theory has not yet been fully developed. Given the lack of a non-perturbative theory describing regions of high curvature, some authors have been motivated to examine corrections to general relativity that bound certain curvature invariants to values less than appropriate powers of the Planck length, both in the context of cosmologies [1, 2] and in the context of low-dimensional black holes [3]. This work was motivated by the hope that some features of the more fundamental theory can be found by such considerations and by the hope that predictions of this ad hoc theory might help in the formulation of the fundamental theory. The problem of singular solutions is also of interest from a less fundamental point of view.
    [Show full text]
  • M-Eigenvalues of the Riemann Curvature Tensor at That Point Are All Positive
    M-eigenvalues of The Riemann Curvature Tensor ∗ Hua Xianga† Liqun Qib‡ Yimin Weic§ a School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, P.R. China b Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong c School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai, 200433, P. R. of China August 31, 2018 Abstract The Riemann curvature tensor is a central mathematical tool in Ein- stein’s theory of general relativity. Its related eigenproblem plays an im- portant role in mathematics and physics. We extend M-eigenvalues for the elasticity tensor to the Riemann curvature tensor. The definition of M-eigenproblem of the Riemann curvature tensor is introduced from the minimization of an associated function. The M-eigenvalues of the Rie- mann curvature tensor always exist and are real. They are invariants of the Riemann curvature tensor. The associated function of the Rie- mann curvature tensor is always positive at a point if and only if the M-eigenvalues of the Riemann curvature tensor are all positive at that point. We investigate the M-eigenvalues for the simple cases, such as the 2D case, the 3D case, the constant curvature and the Schwarzschild so- lution, and all the calculated M-eigenvalues are related to the curvature invariants. Keywords. Eigenproblem, M-eigenvalue, Curvature tensor, Riemann ten- sor, Ricci tensor, Elasticity tensor, Schwarzschild solution, Invariant. 1 Introduction arXiv:1802.10248v6 [math.DG] 30 Aug 2018 The eigenproblem of tensor is an very important topic theoretically and practi- cally. In [9, 10, 18, 24], the elasticity tensor is investigated, including the strong ellipticity, the positive definiteness, the M-eigenvalues, etc.
    [Show full text]
  • (TEGR) As a Gauge Theory: Translation Or Cartan Connection? M Fontanini, E
    Teleparallel gravity (TEGR) as a gauge theory: Translation or Cartan connection? M Fontanini, E. Huguet, M. Le Delliou To cite this version: M Fontanini, E. Huguet, M. Le Delliou. Teleparallel gravity (TEGR) as a gauge theory: Transla- tion or Cartan connection?. Physical Review D, American Physical Society, 2019, 99, pp.064006. 10.1103/PhysRevD.99.064006. hal-01915045 HAL Id: hal-01915045 https://hal.archives-ouvertes.fr/hal-01915045 Submitted on 7 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Teleparallel gravity (TEGR) as a gauge theory: Translation or Cartan connection? M. Fontanini1, E. Huguet1, and M. Le Delliou2 1 - Universit´eParis Diderot-Paris 7, APC-Astroparticule et Cosmologie (UMR-CNRS 7164), Batiment Condorcet, 10 rue Alice Domon et L´eonieDuquet, F-75205 Paris Cedex 13, France.∗ and 2 - Institute of Theoretical Physics, Physics Department, Lanzhou University, No.222, South Tianshui Road, Lanzhou, Gansu 730000, P R China y (Dated: November 7, 2018) In this paper we question the status of TEGR, the Teleparallel Equivalent of General Relativity, as a gauge theory of translations. We observe that TEGR (in its usual translation-gauge view) does not seem to realize the generally admitted requirements for a gauge theory for some symmetry group G: namely it does not present a mathematical structure underlying the theory which relates to a principal G-bundle and the choice of a connection on it (the gauge field).
    [Show full text]