Some Results in Supergeometry
Total Page:16
File Type:pdf, Size:1020Kb
Some results in supergeometry Harmonic maps from super Riemann surfaces and Automorphism supergroups of supermanifolds Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨atzu K¨oln vorgelegt von Dominik Ostermayr aus Dachau 2017 Berichterstatter: PD Dr. Alexander Alldridge Prof. Dr. George Marinescu Prof. Dr. Tilmann Wurzbacher Tag der m¨undlichen Pr¨ufung: 20. Januar 2017 Kurzzusammenfassung Die vorliegende Arbeit besteht aus zwei unabh¨angigenund eigenst¨andigen Teilen. Gegenstand des ersten Teils sind harmonische Abbildungen von super-Riemannschen Fl¨achen nach komplex-projektiven R¨aumenund projektiven R¨aumenbez¨uglich des Super- schiefk¨orpers D: In beiden F¨allenwird die Theorie der Gauß-Transformierten entwickelt und der Begriff der Isotropie studiert, insbesondere mit Hinblick auf den Zusammenhang zu holomorphen Differentialen auf der super-Riemannschen Fl¨ache. Uberdies¨ geben wir eine Definition f¨urharmonische Abbildungen endlichen Typs f¨ureine spezielle Klasse von n n+1 Abbildungen nach CP j und erhalten so eine Klassifikation bestimmter harmonischer super-Tori. Ferner untersuchen wir die Gleichungen, die von den unterliegenden Objek- ten erf¨ulltwerden und geben ein Beispiel eines harmonischen super-Torus in DP 2 dessen unterliegende Abbildung nicht harmonisch ist. Im zweiten Teil studieren wir einen klassischen Satz, der besagt, dass die Gruppe der Automorphismen einer Mannigfaltigkeit, die eine G-Struktur endlichen Typs erhalten, eine Lie-Gruppe bildet, im Kontext von Supermannigfaltigkeiten. Wir verallgemeinern dieses Theorem auf die Kategorie der cs Mannigfaltigkeiten und illustrieren es anhand einiger, sowohl klassische Objekte verallgemeinernder als auch genuin supergeometrischer, Beispiele. Insbesondere ist es n¨otigeine neue Klasse von Supermannigfaltigkeiten einzuf¨uhren - gemischte Supermannigfaltigkeiten. iii Abstract This thesis consists of two independent and self-contained parts. The first part is concerned with harmonic maps form super Riemann surfaces in complex projective spaces and projective spaces associated with the super skew-field D: In both cases, we develop the theory of Gauß transforms and study the notion of isotropy, in particular its relation to holomorphic differentials on the super Riemann surface. Moreover, we give a n n+1 definition of finite type harmonic maps for a special class of maps into CP j and thus obtain a classification for certain harmonic super tori. Furthermore, we investigate the equations satisfied by the underlying objects and give an example of a harmonic super torus in DP 2 whose underlying map is not harmonic. In the second part, we study a classical theorem stating that the group of automorphisms of a manifold M preserving a G-structure of finite type is a Lie group in the context of supermanifolds. We generalize this statement to the category of cs manifolds and give some examples, some of which being generalizations of classical notions, others being particular to the super case. Notably, we have to introduce a new class of supermanifolds which we call mixed supermanifolds. v Contents Kurzzusammenfassung iii Abstract v Harmonic maps from super Riemann surfaces 1 Automorphism supergroups of supermanifolds 87 Erkl¨arung 125 vii Harmonic maps from super Riemann surfaces Dominik Ostermayr Contents 1 Introduction 3 2 Supergeometry 10 2.1 Recollections on supergeometry . 10 2.1.1 Supermanifolds . 10 2.1.2 Functor of points approach . 10 2.1.3 Tangent bundles . 10 2.1.4 Lie supergroups . 11 2.1.5 The forgetful functor . 11 2.2 The supergroup U(n m)............................. 11 | 2.3 The supergroup Q(n) .............................. 15 n m 2.4 The Grassmannians Grk l(C | ) ........................ 17 | 2.5 The projective spaces DP n ........................... 19 3 Super Riemann surfaces 20 3.1 Basics . 20 3.2 Examples of super Riemann surfaces . 21 3.2.1 The superconformal plane . 21 3.2.2 Split super Riemann surfaces . 22 3.2.3 Genus 0 . 23 3.2.4 Genus 1 . 24 3.3 Points, Divisors, Infinitesimal Neighbourhoods . 26 3.4 Blow ups of JP and parabolic structures . 27 3.4.1 Construction . 28 3.4.2 Lifting the superconformal structure to a parabolic structure . 29 3.5 Holomorphic sections of vector bundles and their regularity . 29 3.6 Connections on super Riemann surfaces . 30 3.6.1 Koszul-Malgrange holomorphic structures . 30 3.6.2 Flat g-valued 1-forms . 32 4 Generalities on harmonic maps 32 5 Harmonic maps into U(n m) 34 | 5.1 Zero curvature representation . 34 5.2 Harmonic maps and framings . 35 5.3 Supersymmetric harmonic maps and elliptic integrable systems . 36 5.3.1 Basics on elliptic integrable systems . 36 5.3.2 The underlying map of a supersymmetric harmonic map in terms of a framing . 37 n m n m 6 Harmonic maps into Grk l(C | ) and the special case CP | 39 | 6.1 The Gauß transform . 39 6.2 Isotropic harmonic maps . 41 6.3 Examples for the Gauß transform . 45 n n+1 6.4 2(n + 1)-orthogonal non-isotropic harmonic maps in CP | . 48 6.4.1 The 2(n + 1)-symmetric space P SU(n + 1 n + 1)/P ST . 48 | 6.4.2 Primitive maps . 50 6.4.3 Primitive maps from pseudo-commuting flows . 53 6.4.4 Finite type classification of 2(n+1)-orthogonal non-isotropic harmonic tori . 58 6.4.5 Example: The case n =1 ........................ 63 7 Harmonic maps into DP n 66 7.1 The Gauß transform . 66 7.2 Isotropic harmonic maps . 67 7.3 Examples for the Gauß transform . 70 7.4 Periodic harmonic sequences in DP 2n ...................... 71 7.4.1 The (2n + 1)-symmetric space P SQ(2n + 1)/P SQ(1)2n+1 . 71 7.4.2 Primitive maps . 72 7.4.3 A class of 2n + 1-orthogonal non-isotropic harmonic maps . 74 7.4.4 Example: The case n =1 ........................ 76 8 Outlook 78 2 1 Introduction Harmonic maps and supergeometry The purpose of this study is to prove some foundational results about harmonic maps in supergeometry. More precisely, we study harmonic maps from a super Riemann surface into complex projective spaces and in special cases into general complex Grassmannians. Harmonic maps from Riemann surfaces into various target spaces are by now a classical topic in differential geometry. Such maps occur naturally in surface theory, for instance. The parametrization of a surface in R3 is minimal if and only if it is conformal and harmonic. It has constant mean curvature if and only if its Gauß map is harmonic. We refer to [33] for a treatment of these results. In the context of the anti-self-dual Yang-Mills equation, such maps appear as a symmetry reduction from four to two dimensions [53]. Consequently, a central problem is to develop techniques which allow for a classification and construction of such maps. For a review of this broad subject, we refer the reader to the survey articles [24, 25]. Closer to the specific subject of the present article are [11, 18, 56, 57]. Supergeometry is the extension of ordinary geometry which allows for commuting and anti- commuting coordinate functions. Many notions, constructions, and results from differential geometry carry over to the graded setting directly. In particular, there is a notion of Riemannian supermanifolds. However, the Riemannian structure might be even or odd. Another genuinely supergeometric notion is supersymmetry, the simplest instance of which is the concept of a super Riemann surface. The complex analytic properties have been studied in pioneering works in the 1980s, among others [2, 51], and more recently in [54, 55]. In this setting there exists a natural notion of harmonic maps from super Riemann surfaces to Riemannian supermanifolds [20, 34, 36, 46] which are the central objects of this article. In view of the plethora of results available in the non-graded setup, it is beyond the scope of this thesis to give a comprehensive treatment. Instead, we will concentrate on some selected aspects. Gauß transform, isotropy and harmonic maps of finite type In order to put our results into context, we first give a brief account on the relevant results in the ungraded setting. The energy of a map f : Σ M between a compact Riemann → surface and a Riemannian manifold is defined by E(f) = df (0,1) , df (1,0) , h C|T Σ C|T Σ iC ZΣ where , denotes the complex bilinear extension of the given Riemannian structure to h− −iC TMC. Critical points are called harmonic maps and are characterized in a local complex 3 coordinate z by LC (df )(∂ ) = 0, ∇∂z¯ C z where LC denotes the pullback of the Levi-Civita connection. Due to a result of Koszul ∇ and Malgrange [39], a complex vector bundle with connection (E, ) on a Riemann surface ∇ has a holomorphic structure such that the holomorphic sections are locally characterized by s = 0. ∇∂z¯ Using this result, harmonicity can be stated in a coordinate free manner. The map f is (1,0) harmonic if and only if (df ) (1,0) is a holomorphic section of (T Σ ) TM , where C |T Σ ∗ ⊗ C the second factor is equipped with the Koszul-Malgrange structure. In particular, the differential either vanishes identically or its zeros are isolated. In the case M = CP n, the harmonic map equation is equivalent to LC df (1,0)(∂ ) = 0, (1.1) ∇∂z¯ z (1,0) (0,1) n where dfC = df + df according to the type decomposition on CP . In view of the n (1,0) isomorphism (T CP ) ∼= Hom(γ, γ⊥), where γ is the tautological line bundle, if f is not (1,0) 1+n antiholomorphic, df (∂z) defines a line in C outside a discrete set of points. One n can always extend this to a give a new map f1 : Σ CP , the Gauß transform.