Applications of Graded Manifolds to Poisson Geometry By

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Graded Manifolds to Poisson Geometry By Applications of graded manifolds to Poisson geometry by Miquel Cueca Ten Under the supervision of Prof. Dr. Henrique Bursztyn Instituto de Matematica Pura e Aplicada Rio de Janeiro, Brasil August 2019 Abstract In this thesis we use graded manifolds to study Poisson and related higher geome- tries shedding light on many new aspects of their connection. The relation between graded manifolds and classical geometric objects is based on a new geometrization functor that allows us to think of graded manifolds as collections of vector bun- dles carrying some additional structure. As a consequence of this geometrization of graded manifolds, we prove a graded version of the Frobenius theorem about in- tegrability of involutive distributions, classify odd degree symplectic Q-manifolds, relate the geometry of higher Courant algebroids to shifted cotangent bundles and semi-direct products of the adjoint representation (up to homotopy) of a Lie alge- broid, and give a new description of the infinitesimal data of a multiplicative Dirac structure. 1 Acknowledgements This thesis was possible thanks to my advisor Henrique Bursztyn. It is impossible to summarize his work and influence on me. During the last five years Henrique was really generous and spent a lot of his time teaching me, solving my doubts, listening to my silly mathematical ideas or just talking about life. He was always there to attract my attention to the right points or give his support in difficult days. I appreciate the freedom that he gave me as well as the way he explained to me the \big picture" whenever I was lost. Apart from his crazy idea that all sentences in English must have a subject, I have realized (sometimes many years after) that his advices always pointed in the right direction. I am grateful to him for these five years showing me the realm of Poisson geometry. There are also people involuntarily responsible for this story. The first one is Marco Zambon who, during a summer school at ICMAT, introduced me to the world of symplectic geometry and encouraged me to do my PhD at IMPA. The second one is Alexei Kotov, who gave a mini-course on Supergeometry at IMPA in January of 2015. After these interesting lectures, I start to learn more about supermanifolds and Henrique Bursztyn provided me with the unpublished manuscript [24]. This was the starting point for this work. I am also grateful to all the Poisson geometry community in Rio de Janeiro for many conversations, discussions and seminars. I am particularly grateful to Henrique's student's who overlapped with me at IMPA: Hudson Lima, Inocencio Ortiz, Mateus de Melo, Daniel Alvarez, Dan Ag¨ueroand Clarice Netto. Last but not least, I want to thank the \supermathematicians" Alejandro Cabr- era, Fernando del Carpio-Marek and Rajan Mehta for explaining to me their works on graded manifolds and spending their time with my troubles to understand graded geometry. Also, I thank the hospitality of Smith College during my two visits to Rajan Mehta. I thank CNPq for the financial support in the last 5 years. Finally, I should mention that the great mathematical environment at IMPA also contributed to my work. It is not easy to find an institution where interesting seminars, in many differ- ent areas, take place daily. I am very thankful to the Graduate Students Association (APG) for its concern and many initiatives to make this mathematically interesting environment more warm in contrast with the direction of IMPA who has forgotten the human aspects behind the students, and ignored our social environment. I hope this will change in the future. 2 Cos de podadora m`anegues d'astral l'encomana que m'has fet l'aigua li ha fet mal doncs tira-li farina i se t’endurir`a A la llum de la de mediterr`aniaque m'has vist cr´eixer,a la roja terra dels ametllers i tarongers dels quals s´ocfruit, a la t`ebiasorra de la platja i el suau vent del mar que sempre em portes esperan¸ca. Per`osobretot, a la gent, al poble que m'ha envoltat amb la seva estima, calor i for¸ca. Especialment agra¨ıt a aquelles quatre dones de la meva infantesa que, lligades per sempre mes a un temps passat, em van mostrar una forma diferent de veure les coses. Als meus pares i germ`a,pels bons moments, l’educaci´oi la paci`enciarebuda al llarg de molts anys. A la fam´ıliaen el sentit m´esample, per mostrar-me d'on vinc i qui s´ocaix´ıcom donar suport als moments dif´ıcilsmalgrat en certes ocasions convertir-se en una pesada llosa. Al Trompo, que en certa forma tamb´e´esfam´ılia, per oferir-me l'oportunitat de con`eixergent diversa, aleat`oriaaix´ıcom mostrar-me la cruesa de la paraula treball. Als amics que el temps m'ha deixat triar, n'he fet un grapat cadascun diferent de l'anterior i possiblement tots bojos com jo. Gr`aciesper somiar junts, per com- partir amb mi els moments f`acilso dif´ıcils,de riures o de lluita, de festes o estudis. Hem anat creixent junts amb els anys, fent-se majors que hi diuen, no s´ocmes que experi`encies amb tots vosaltres. A les parelles i als amants, per estimar-me i deixar-se estimar. Tristeza n~aotem fim felicidade sim A chuva do Rio que me viu chegando h´acinco anos com medo, a quente noite carioca do samba que se transforma em funk e viu o medo ir embora. A morna areia da praia e o vento do Atl^antico que continuam me trazendo esperan¸ca. A cerveja es- tupidamente gelada em torno da qual sempre apareceram amigos, conversas, choros e risadas. A Cata, Marcos, Mateus, Miguel e Yaya, que me acompanharam nessa luta matem´aticapelo doutorado. Por fazer do IMPA um lugar humano e me ensinar matem´aticaao mesmo tempo que compartilhamos as ilus~oesda vida. Aos amigos que fizeram do Rio minha casa e n~aos´oa cidade onde eu moro. Cinco anos que passaram mais r´apidodo que eu consegui perceber; grato pela amizade. A Felipe, que conheci na primeira semana e me acompanhou nesses cinco anos; obrigado por me guiar nos mil e um Rios que convivem, violenta e injustamente, nesta cidade. Por me acolher na sua casa quando precisei e me dar for¸canos mo- mentos de loucura matem´atica. 3 Contents 1 Introduction6 2 Graded manifolds 14 2.1 The category GMn ............................ 14 2.2 Vector fields and tangent vectors . 16 2.2.1 Vector fields . 17 2.2.2 Q-manifolds . 18 2.2.3 Tangent vectors at a point . 20 2.3 Submanifolds . 21 2.4 Graded Poisson and symplectic manifolds . 22 3 Geometrization of graded manifolds 25 3.1 The category CoBn ............................ 26 3.1.1 The geometrization functor . 27 3.1.2 Relation with other geometrizations . 32 3.2 Geometrization of submanifolds . 33 3.3 Geometrization of vector fields . 34 3.4 Geometrization of Q-manifolds . 36 3.4.1 Degree 1: Lie algebroids . 37 3.4.2 Degree 2 . 38 3.4.3 Degree n: Ln-algebroids . 40 3.5 Geometrization of graded Poisson manifolds . 42 3.5.1 Degree 1: Lie algebroids . 42 3.5.2 Degree 2 . 43 3.6 Geometrization of PQ-manifolds . 45 3.6.1 Degree 1: Lie bialgebroids . 45 3.6.2 Degree 2 . 46 4 The Frobenius theorem for graded manifolds 49 4.1 Distributions on graded manifolds . 49 4.2 The Frobenius theorem . 50 4.3 Integral submanifolds . 54 5 Lie algebroids through graded manifolds 56 5.1 Homology for Lie algebroids . 56 5.1.1 Left and right representations . 56 5.1.2 Divergence and generating operators . 58 4 5.1.3 Graded manifold approach . 60 5.1.4 The Lie bialgebroid case . 63 5.1.5 The derived category . 64 5.2 Semi-direct products with 2-term representations up to homotopy . 65 5.2.1 2-term representations up to homotopy . 66 5.2.2 VB-algebroids and Q-bundles . 67 5.2.3 L1-algebroids and Q-manifolds . 69 6 The geometry of graded cotangent bundles 72 6.1 Graded cotangent bundle of a graded manifold . 72 6.1.1 T ∗[n + 1]M and homotopy Poisson structures . 73 6.1.2 T ∗[2n + 1]M and odd degree symplectic manifolds . 75 6.2 Graded cotangent bundles of 1-manifolds . 77 6.2.1 Classical description of the manifolds T ∗[k]A[1] . 78 6.2.2 The symplectic structure . 80 6.3 The symplectic Q-structures of T ∗[k]A[1] . 85 6.3.1 Q-structures and twists . 85 6.3.2 Q-cohomology . 87 6.3.3 Brackets and higher Dirac structures . 88 6.3.4 Relation with the coadjoint representation up to homotopy . 90 6.4 AKSZ σ-models and integrating objects . 91 6.4.1 AKSZ σ-models . 91 6.4.2 Speculations on the integration of Q-manifolds . 91 7 IM-Dirac structures 93 7.1 Degenerate Courant algebroids and IM-Dirac structures . 93 7.1.1 LA-Courant algebroids and morphic Dirac structures . 97 7.2 Example: T [1]A∗[1]............................ 99 7.2.1 Integration to multiplicative Dirac structures . 104 7.3 Graded symplectic Q-groupoids . 105 A More on graded manifolds 108 A.1 Vector bundles . 108 A.2 Differential forms and Cartan calculus . 109 A.3 Graded symplectic manifolds (2-form definition) . 111 A.4 Graded groupoids and graded algebroids . 113 B Double vector bundles and 2-manifolds 117 B.1 Basic properties . 117 B.2 VB-groupoids and VB-algebroids .
Recommended publications
  • Geometric Quantization of Poisson Manifolds Via Symplectic Groupoids
    Geometric Quantization of Poisson Manifolds via Symplectic Groupoids Daniel Felipe Bermudez´ Montana~ Advisor: Prof. Alexander Cardona Gu´ıo, PhD. A Dissertation Presented in Candidacy for the Degree of Bachelor of Science in Mathematics Universidad de los Andes Department of Mathematics Bogota,´ Colombia 2019 Abstract The theory of Lie algebroids and Lie groupoids is a convenient framework for study- ing properties of Poisson Manifolds. In this work we approach the problem of geometric quantization of Poisson Manifolds using the theory of symplectic groupoids. We work the obstructions of geometric prequantization and show how they can be understood as Lie algebroid's integrability obstructions. Furthermore, by examples, we explore the complete quantization scheme using polarisations and convolution algebras of Fell line bundles. ii Acknowledgements Words fall short for the the graditute I have for people I will mention. First of all I want to thank my advisors Alexander Cardona Guio and Andres Reyes Lega. Alexander Cardona, his advice and insighfull comments guided through this research. I am extremely thankfull and indebted to him for sharing his expertise and knowledge with me. Andres Reyes, as my advisor has tough me more than I could ever ever give him credit for here. By example he has shown me what a good scientist, educator and mentor should be. To my parents, my fist advisors: Your love, support and caring have provided me with the moral and emotional support to confront every aspect of my life; I owe it all to you. To my brothers: the not that productive time I spent with you have always brought me a lot joy - thank you for allowing me the time to research and write during this work.
    [Show full text]
  • From Topological Field Theory to Deformation Quantization and Reduction
    Cattaneo, Alberto (2006). From topological field theory to deformation quantization and reduction. In: International Congress of Mathematicians. Vol. III. 339-365. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: 2006. International Congress of Mathematicians. Vol. III. 339-365. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2006 From topological field theory to deformation quantization and reduction Cattaneo, Alberto Cattaneo, Alberto (2006). From topological field theory to deformation quantization and reduction. In: International Congress of Mathematicians. Vol. III. 339-365. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: 2006. International Congress of Mathematicians. Vol. III. 339-365. From topological field theory to deformation quantization and reduction Alberto S. Cattaneo∗ Abstract. This note describes the functional-integral quantization of two-dimensional topolog- ical field theories together with applications to problems in deformation quantization of Poisson manifolds and reduction of certain submanifolds. A brief introduction to smooth graded mani- folds and to the Batalin–Vilkovisky formalism is included. Mathematics Subject Classification (2000). Primary 81T45; Secondary 51P05, 53D55, 58A50, 81T70. Keywords. Topological quantum field theory, BV formalism, graded manifolds, deformation quantization, formality, Poisson reduction, L∞- and A∞-algebras. 1. Introduction: a 2D TFT 0 1.1. The basic setting. Let be a smooth compact 2-manifold. On M1 := ()⊕ 1() one may define the following very simple action functional: S(ξ,η) := η dξ, ξ ∈ 0(), η ∈ 1(), (1.1) which is invariant under the distribution 0 ⊕ dβ, β ∈ 0().
    [Show full text]
  • Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and Their Applications
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), 415–471 INTRODUCTION TO GRADED GEOMETRY, BATALIN-VILKOVISKY FORMALISM AND THEIR APPLICATIONS Jian Qiu and Maxim Zabzine Abstract. These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible toboth physicists and mathematicians. Table of Contents 1. Introduction and motivation 416 2. Supergeometry 417 2.1. Idea 418 2.2. Z2-graded linear algebra 418 2.3. Supermanifolds 420 2.4. Integration theory 421 3. Graded geometry 423 3.1. Z-graded linear algebra 423 3.2. Graded manifold 425 4. Odd Fourier transform and BV-formalism 426 4.1. Standard Fourier transform 426 4.2. Odd Fourier transform 427 4.3. Integration theory 430 4.4. Algebraic view on the integration 433 5. Perturbation theory 437 5.1. Integrals in Rn-Gaussian Integrals and Feynman Diagrams 437 2010 Mathematics Subject Classification: primary 58A50; secondary 16E45, 97K30. Key words and phrases: Batalin-Vilkovisky formalism, graded symplectic geometry, graph homology, perturbation theory.
    [Show full text]
  • Coisotropic Embeddings in Poisson Manifolds 1
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 361, Number 7, July 2009, Pages 3721–3746 S 0002-9947(09)04667-4 Article electronically published on February 10, 2009 COISOTROPIC EMBEDDINGS IN POISSON MANIFOLDS A. S. CATTANEO AND M. ZAMBON Abstract. We consider existence and uniqueness of two kinds of coisotropic embeddings and deduce the existence of deformation quantizations of certain Poisson algebras of basic functions. First we show that any submanifold of a Poisson manifold satisfying a certain constant rank condition, already con- sidered by Calvo and Falceto (2004), sits coisotropically inside some larger cosymplectic submanifold, which is naturally endowed with a Poisson struc- ture. Then we give conditions under which a Dirac manifold can be embedded coisotropically in a Poisson manifold, extending a classical theorem of Gotay. 1. Introduction The following two results in symplectic geometry are well known. First: a sub- manifold C of a symplectic manifold (M,Ω) is contained coisotropically in some symplectic submanifold of M iff the pullback of Ω to C has constant rank; see Marle’s work [17]. Second: a manifold endowed with a closed 2-form ω can be em- bedded coisotropically into a symplectic manifold (M,Ω) so that i∗Ω=ω (where i is the embedding) iff ω has constant rank; see Gotay’s work [15]. In this paper we extend these results to the setting of Poisson geometry. Recall that P is a Poisson manifold if it is endowed with a bivector field Π ∈ Γ(∧2TP) satisfying the Schouten-bracket condition [Π, Π] = 0. A submanifold C of (P, Π) is coisotropic if N ∗C ⊂ TC, where the conormal bundle N ∗C is defined as the anni- ∗ hilator of TC in TP|C and : T P → TP is the contraction with the bivector Π.
    [Show full text]
  • Lectures on the Geometry of Poisson Manifolds, by Izu Vaisman, Progress in Math- Ematics, Vol
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number 2, April 1996 Lectures on the geometry of Poisson manifolds, by Izu Vaisman, Progress in Math- ematics, vol. 118, Birkh¨auser, Basel and Boston, 1994, vi + 205 pp., $59.00, ISBN 3-7643-5016-4 For a symplectic manifold M, an important construct is the Poisson bracket, which is defined on the space of all smooth functions and satisfies the following properties: 1. f,g is bilinear with respect to f and g, 2. {f,g} = g,f (skew-symmetry), 3. {h, fg} =−{h, f }g + f h, g (the Leibniz rule of derivation), 4. {f, g,h} {+ g,} h, f { + }h, f,g = 0 (the Jacobi identity). { { }} { { }} { { }} The best-known Poisson bracket is perhaps the one defined on the function space of R2n by: n ∂f ∂g ∂f ∂g (1) f,g = . { } ∂q ∂p − ∂p ∂q i=1 i i i i X Poisson manifolds appear as a natural generalization of symplectic manifolds: a Poisson manifold isasmoothmanifoldwithaPoissonbracketdefinedonits function space. The first three properties of a Poisson bracket imply that in local coordinates a Poisson bracket is of the form given by n ∂f ∂g f,g = πij , { } ∂x ∂x i,j=1 i j X where πij may be seen as the components of a globally defined antisymmetric contravariant 2-tensor π on the manifold, called a Poisson tensor or a Poisson bivector field. The Jacobi identity can then be interpreted as a nonlinear first-order differential equation for π with a natural geometric meaning. The Poisson tensor # π of a Poisson manifold P induces a bundle map π : T ∗P TP in an obvious way.
    [Show full text]
  • Adaptive Geometric Numerical Integration of Mechanical Systems Modin, Klas
    Adaptive Geometric Numerical Integration of Mechanical Systems Modin, Klas 2009 Link to publication Citation for published version (APA): Modin, K. (2009). Adaptive Geometric Numerical Integration of Mechanical Systems. Matematikcentrum. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Adaptive Geometric Numerical Integration of Mechanical Systems Klas Modin Faculty of Engineering Centre for Mathematical Sciences Numerical Analysis Numerical Analysis Centre for Mathematical Sciences Lund University Box 118 SE-221 00 Lund Sweden http://www.maths.lth.se/ Doctoral Theses in Mathematical Sciences 2009:3 ISSN 1404-0034 ISBN 978-91-628-7778-1 LUTFNA-1005-2009 c Klas Modin, 2009 Printed in Sweden by MediaTryck, Lund 2009 Acknowledgements I would like to thank my supervisors Claus Führer and Gustaf Söderlind at Lund University for all the inspiring discussions we have had.
    [Show full text]
  • Symplectic Operad Geometry and Graph Homology
    1 SYMPLECTIC OPERAD GEOMETRY AND GRAPH HOMOLOGY SWAPNEEL MAHAJAN Abstract. A theorem of Kontsevich relates the homology of certain infinite dimensional Lie algebras to graph homology. We formulate this theorem using the language of reversible operads and mated species. All ideas are explained using a pictorial calculus of cuttings and matings. The Lie algebras are con- structed as Hamiltonian functions on a symplectic operad manifold. And graph complexes are defined for any mated species. The general formulation gives us many examples including a graph homology for groups. We also speculate on the role of deformation theory for operads in this setting. Contents 1. Introduction 1 2. Species, operads and reversible operads 6 3. The mating functor 10 4. Overview of symplectic operad geometry 13 5. Cuttings and Matings 15 6. Symplectic operad theory 19 7. Examples motivated by PROPS 23 8. Graph homology 26 9. Graph homology for groups 32 10. Graph cohomology 34 11. The main theorem 38 12. Proof of the main theorem-Part I 39 13. Proof of the main theorem-Part II 43 14. Proof of the main theorem-Part III 47 Appendix A. Deformation quantisation 48 Appendix B. The deformation map on graphs 52 References 54 1. Introduction This paper is my humble tribute to the genius of Maxim Kontsevich. Needless to say, the credit for any new ideas that occur here goes to him, and not me. For how I got involved in this wonderful project, see the historical note (1.3). In the papers [22, 23], Kontsevich defined three Lie algebras and related their homology with classical invariants, including the homology of the group of outer 1 2000 Mathematics Subject Classification.
    [Show full text]
  • Graded-And-Microformal-Prop
    The University of Manchester Research Graded Geometry, Q-Manifolds, and Microformal Geometry DOI: 10.1002/prop.201910023 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Voronov, T. (2019). Graded Geometry, Q-Manifolds, and Microformal Geometry: LMS/EPSRC Durham Symposium on Higher Structures in M-Theory. Fortschritte der Physik. https://doi.org/10.1002/prop.201910023 Published in: Fortschritte der Physik Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:06. Oct. 2021 Graded geometry, Q-manifolds, and microformal geometry 1,2 Theodore Th. Voronov ¤ below), to which we give a brief introduction as well. We give an exposition of graded and microformal ge- “Thick morphisms” (defined for ordinary manifolds, ometry, and the language of Q-manifolds. Q-manifolds supermanifolds or graded manifolds) generalize ordinary are supermanifolds endowed with an odd vector field of maps or supermanifold morphisms, but are not maps square zero.
    [Show full text]
  • Geometry of Membrane Sigma Models by Jan Vysok´Y
    Geometry of Membrane Sigma Models by Jan Vysok´y A thesis submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN MATHEMATICS (Double Doctoral Agreement between Jacobs University and Czech Technical University) Date of Defense: 15th July, 2015 Approved Dissertation Committee: Prof. Dr. Peter Schupp (supervisor, chair) Dr. Branislav Jurˇco(supervisor) Prof. Dr. Dr. h.c. mult. Alan T. Huckleberry Prof. Dr. Olaf Lechtenfeld Bibliographic entry Title: Geometry of membrane sigma models Author: Ing. Jan Vysok´y Czech Technical University in Prague (CTU) Faculty of Nuclear Sciences and Physical Engineering Department of Physics Jacobs University Bremen (JUB) Department of Physics and Earth Sciences Degree Programme: Co-directed double Ph.D. (CTU - JUB) Application of natural sciences (CTU) Mathematical sciences (JUB) Field of Study: Methematical engineering (CTU) Mathematical sciences (JUB) Supervisors: Ing. Branislav Jurˇco,CSc., DSc. Charles University Faculty of Mathematics and Physics Mathematical Institute of Charles University Prof. Dr. Peter Schupp Jacobs University Bremen Department of Physics and Earth Sciences Academic Year: 2014/2015 Number of Pages: 209 Keywords: generalized geometry, string theory, sigma models, membranes. Abstract String theory still remains one of the promising candidates for a unification of the theory of gravity and quantum field theory. One of its essential parts is relativistic description of moving multi-dimensional objects called membranes (or p-branes) in a curved spacetime. On the classical field theory level, they are described by an action functional extremalising the volume of a manifold swept by a propagating membrane. This and related field theories are collectively called membrane sigma models.
    [Show full text]
  • Symplectic Foliations, Currents, and Local Lie Groupoids
    c 2018 Daan Michiels SYMPLECTIC FOLIATIONS, CURRENTS, AND LOCAL LIE GROUPOIDS BY DAAN MICHIELS DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Doctoral Committee: Professor Susan Tolman, Chair Professor Rui Loja Fernandes, Director of Research Professor Ely Kerman Professor James Pascaleff Abstract This thesis treats two main topics: calibrated symplectic foliations, and local Lie groupoids. Calibrated symplectic foliations are one possible generalization of taut foliations of 3-manifolds to higher dimensions. Their study has been popular in recent years, and we collect several interesting results. We then show how de Rham’s theory of currents, and Sullivan’s theory of structure currents, can be applied in trying to understand the calibratability of symplectic foliations. Our study of local Lie groupoids begins with their definition and an exploration of some of their basic properties. Next, three main results are obtained. The first is the generalization of a theorem by Mal’cev. The original theorem characterizes the local Lie groups that are part of a (global) Lie group. We give the corresponding result for local Lie groupoids. The second result is the generalization of a theorem by Olver which classifies local Lie groups in terms of Lie groups. Our generalization classifies, in terms of Lie groupoids, those local Lie groupoids that have integrable algebroids. The third and final result demonstrates a relationship between the associativity of a local Lie groupoid, and the integrability of its algebroid. In a certain sense, the monodromy groups of a Lie algebroid manifest themselves combinatorially in a local integration, as a lack of associativity.
    [Show full text]
  • Odd and Even Poisson Brackets 1
    Odd and even Poisson brackets 1 Y. Kosmann-Schwarzbach Centre de Math´ematiques (Unit´eMixte de Recherches du C.N.R.S. 7640) Ecole Polytechnique F-91128 Palaiseau, France Abstract On a Poisson manifold, the divergence of a hamiltonian vector field is a derivation of the algebra of functions, called the modular vector field. In the case of an odd Poisson bracket on a supermanifold, the divergence of a hamilto- nian vector field is a generator of the odd bracket, and it is nontrivial, whether the Poisson structure is symplectic or not. The quantum master equation is a Maurer-Cartan equation written in terms of an odd Poisson bracket (an- tibracket) and of a generator of square 0 of this bracket. The derived bracket of the antibracket with respect to the quantum BRST differential defines the even graded Lie algebra structure of the space of quantum gauge parameters. 1 Introduction In the “geometry of Batalin-Vilkovisky quantization” [13] [14], a supermanifold (M, A) of dimension n|n is equipped with an odd Poisson structure. More precisely, A is a sheaf of Z2-graded Gerstenhaber algebras. A Z2-graded Gerstenhaber algebra A is a Z2-graded commutative, associative algebra, with a bracket, [ , ], satisfying [f,g]= −(−1)(|f|−1)(|g|−1)[g, f] , [f, [g, h]] = [[f,g], h]+(−1)(|f|−1)(|g|−1)[g, [f, h]] , [f,gh] = [f,g]h +(−1)(|f|−1)|g|g[f, h] , 1Quantum Theory and Symmetries, H.-D. Doebner et al.. eds., World Scientific, 2000, 565-571. 1 for all f,g,h ∈ A, where |f| denotes the degree of f.
    [Show full text]
  • Arxiv:1811.07395V2 [Math.SG] 4 Jan 2021 I Lers I Leris Vagba,Lernhr Al Lie-Rinehart Brackets
    GRADED POISSON ALGEBRAS ALBERTO S. CATTANEO, DOMENICO FIORENZA, AND RICCARDO LONGONI Abstract. This note is an expanded and updated version of our entry with the same title for the 2006 Encyclopedia of Mathematical Physics. We give a brief overview of graded Poisson algebras, their main properties and their main applications, in the contexts of super differentiable and of derived algebraic geometry. Contents 1. Definitions 2 1.1. Graded vector spaces 2 1.2. Graded algebras and graded Lie algebras 2 1.3. Graded Poisson algebra 2 1.4. Batalin–Vilkovisky algebras 3 2. Examples 4 2.1. Schouten–Nijenhuis bracket 4 2.2. Lie algebroids 5 2.3. Lie algebroid cohomology 6 2.4. Lie–Rinehart algebras 6 2.5. Lie–Rinehart cohomology 7 2.6. Hochschild cohomology 7 2.7. Graded symplectic manifolds 7 2.8. Shifted cotangent bundle 8 2.9. Examples from algebraic topology 8 2.10. ShiftedPoissonstructuresonderivedstacks 8 3. Applications 9 arXiv:1811.07395v2 [math.SG] 4 Jan 2021 3.1. BRST quantization in the Hamiltonian formalism 9 3.2. BV quantization in the Lagrangian formalism 11 4. Related topics 11 4.1. AKSZ 11 4.2. Graded Poisson algebras from cohomology of P∞ 12 References 12 Key words and phrases. Poisson algebras, Poisson manifolds, (graded) symplectic manifolds, Lie algebras, Lie algebroids, BV algebras, Lie-Rinehart algebras, graded manifolds, Schouten– Nijenhuis bracket, Hochschild cohomology, BRST quantization, BV quantization, AKSZ method, derived brackets. A. S. C. acknowledges partial support of SNF Grant No. 200020-107444/1. 1 2 A.S.CATTANEO,D.FIORENZA,ANDR.LONGONI 1. Definitions 1.1.
    [Show full text]