Symplectic Foliations, Currents, and Local Lie Groupoids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometric Quantization of Poisson Manifolds Via Symplectic Groupoids
Geometric Quantization of Poisson Manifolds via Symplectic Groupoids Daniel Felipe Bermudez´ Montana~ Advisor: Prof. Alexander Cardona Gu´ıo, PhD. A Dissertation Presented in Candidacy for the Degree of Bachelor of Science in Mathematics Universidad de los Andes Department of Mathematics Bogota,´ Colombia 2019 Abstract The theory of Lie algebroids and Lie groupoids is a convenient framework for study- ing properties of Poisson Manifolds. In this work we approach the problem of geometric quantization of Poisson Manifolds using the theory of symplectic groupoids. We work the obstructions of geometric prequantization and show how they can be understood as Lie algebroid's integrability obstructions. Furthermore, by examples, we explore the complete quantization scheme using polarisations and convolution algebras of Fell line bundles. ii Acknowledgements Words fall short for the the graditute I have for people I will mention. First of all I want to thank my advisors Alexander Cardona Guio and Andres Reyes Lega. Alexander Cardona, his advice and insighfull comments guided through this research. I am extremely thankfull and indebted to him for sharing his expertise and knowledge with me. Andres Reyes, as my advisor has tough me more than I could ever ever give him credit for here. By example he has shown me what a good scientist, educator and mentor should be. To my parents, my fist advisors: Your love, support and caring have provided me with the moral and emotional support to confront every aspect of my life; I owe it all to you. To my brothers: the not that productive time I spent with you have always brought me a lot joy - thank you for allowing me the time to research and write during this work. -
Coisotropic Embeddings in Poisson Manifolds 1
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 361, Number 7, July 2009, Pages 3721–3746 S 0002-9947(09)04667-4 Article electronically published on February 10, 2009 COISOTROPIC EMBEDDINGS IN POISSON MANIFOLDS A. S. CATTANEO AND M. ZAMBON Abstract. We consider existence and uniqueness of two kinds of coisotropic embeddings and deduce the existence of deformation quantizations of certain Poisson algebras of basic functions. First we show that any submanifold of a Poisson manifold satisfying a certain constant rank condition, already con- sidered by Calvo and Falceto (2004), sits coisotropically inside some larger cosymplectic submanifold, which is naturally endowed with a Poisson struc- ture. Then we give conditions under which a Dirac manifold can be embedded coisotropically in a Poisson manifold, extending a classical theorem of Gotay. 1. Introduction The following two results in symplectic geometry are well known. First: a sub- manifold C of a symplectic manifold (M,Ω) is contained coisotropically in some symplectic submanifold of M iff the pullback of Ω to C has constant rank; see Marle’s work [17]. Second: a manifold endowed with a closed 2-form ω can be em- bedded coisotropically into a symplectic manifold (M,Ω) so that i∗Ω=ω (where i is the embedding) iff ω has constant rank; see Gotay’s work [15]. In this paper we extend these results to the setting of Poisson geometry. Recall that P is a Poisson manifold if it is endowed with a bivector field Π ∈ Γ(∧2TP) satisfying the Schouten-bracket condition [Π, Π] = 0. A submanifold C of (P, Π) is coisotropic if N ∗C ⊂ TC, where the conormal bundle N ∗C is defined as the anni- ∗ hilator of TC in TP|C and : T P → TP is the contraction with the bivector Π. -
Lectures on the Geometry of Poisson Manifolds, by Izu Vaisman, Progress in Math- Ematics, Vol
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number 2, April 1996 Lectures on the geometry of Poisson manifolds, by Izu Vaisman, Progress in Math- ematics, vol. 118, Birkh¨auser, Basel and Boston, 1994, vi + 205 pp., $59.00, ISBN 3-7643-5016-4 For a symplectic manifold M, an important construct is the Poisson bracket, which is defined on the space of all smooth functions and satisfies the following properties: 1. f,g is bilinear with respect to f and g, 2. {f,g} = g,f (skew-symmetry), 3. {h, fg} =−{h, f }g + f h, g (the Leibniz rule of derivation), 4. {f, g,h} {+ g,} h, f { + }h, f,g = 0 (the Jacobi identity). { { }} { { }} { { }} The best-known Poisson bracket is perhaps the one defined on the function space of R2n by: n ∂f ∂g ∂f ∂g (1) f,g = . { } ∂q ∂p − ∂p ∂q i=1 i i i i X Poisson manifolds appear as a natural generalization of symplectic manifolds: a Poisson manifold isasmoothmanifoldwithaPoissonbracketdefinedonits function space. The first three properties of a Poisson bracket imply that in local coordinates a Poisson bracket is of the form given by n ∂f ∂g f,g = πij , { } ∂x ∂x i,j=1 i j X where πij may be seen as the components of a globally defined antisymmetric contravariant 2-tensor π on the manifold, called a Poisson tensor or a Poisson bivector field. The Jacobi identity can then be interpreted as a nonlinear first-order differential equation for π with a natural geometric meaning. The Poisson tensor # π of a Poisson manifold P induces a bundle map π : T ∗P TP in an obvious way. -
Symplectic Operad Geometry and Graph Homology
1 SYMPLECTIC OPERAD GEOMETRY AND GRAPH HOMOLOGY SWAPNEEL MAHAJAN Abstract. A theorem of Kontsevich relates the homology of certain infinite dimensional Lie algebras to graph homology. We formulate this theorem using the language of reversible operads and mated species. All ideas are explained using a pictorial calculus of cuttings and matings. The Lie algebras are con- structed as Hamiltonian functions on a symplectic operad manifold. And graph complexes are defined for any mated species. The general formulation gives us many examples including a graph homology for groups. We also speculate on the role of deformation theory for operads in this setting. Contents 1. Introduction 1 2. Species, operads and reversible operads 6 3. The mating functor 10 4. Overview of symplectic operad geometry 13 5. Cuttings and Matings 15 6. Symplectic operad theory 19 7. Examples motivated by PROPS 23 8. Graph homology 26 9. Graph homology for groups 32 10. Graph cohomology 34 11. The main theorem 38 12. Proof of the main theorem-Part I 39 13. Proof of the main theorem-Part II 43 14. Proof of the main theorem-Part III 47 Appendix A. Deformation quantisation 48 Appendix B. The deformation map on graphs 52 References 54 1. Introduction This paper is my humble tribute to the genius of Maxim Kontsevich. Needless to say, the credit for any new ideas that occur here goes to him, and not me. For how I got involved in this wonderful project, see the historical note (1.3). In the papers [22, 23], Kontsevich defined three Lie algebras and related their homology with classical invariants, including the homology of the group of outer 1 2000 Mathematics Subject Classification. -
Arxiv:1104.4852V2 [Math.DS] 25 Aug 2014
LECTURES ON FOLIATION DYNAMICS: BARCELONA 2010 STEVEN HURDER Contents 1. Introduction 1 2. Foliation Basics 3 3. Topological Dynamics 4 4. Derivatives 7 5. Counting 11 6. Exponential Complexity 15 7. Entropy and Exponent 19 8. Minimal Sets 22 9. Classification Schemes 24 10. Matchbox Manifolds 27 11. Topological Shape 33 12. Shape Dynamics 34 Appendix A. Homework 36 References 36 1. Introduction The study of foliation dynamics seeks to understand the asymptotic properties of leaves of foliated manifolds, their statistical properties such as orbit growth rates and geometric entropy, and to classify geometric and topological \structures" which are associated to the dynamics, such as the minimal sets of the foliation. The study is inspired by the seminal work of Smale [189] (see also arXiv:1104.4852v2 [math.DS] 25 Aug 2014 the comments by Anosov [13]) outlining a program of study for the differentiable dynamics for a Cr-diffeomorphism f : N ! N of a closed manifold N, r ≥ 1. The themes of this approach included: (1) Classify dynamics as hyperbolic, or otherwise; (2) Describe the minimal/transitive closed invariant sets and attractors; (3) Understand when the system is structurally stable under Cr-perturbations, for r ≥ 1; (4) Find invariants (such as cohomology, entropy or zeta functions) characterizing the system. Smale also suggested to study these topics for large group actions, which leads directly to the topics of these notes. The study of the dynamics of foliations began in ernest in the 1970's with the research programs of Georges Reeb, Stephen Smale, Itiro Tamura, and their students. 2000 Mathematics Subject Classification. -
Odd and Even Poisson Brackets 1
Odd and even Poisson brackets 1 Y. Kosmann-Schwarzbach Centre de Math´ematiques (Unit´eMixte de Recherches du C.N.R.S. 7640) Ecole Polytechnique F-91128 Palaiseau, France Abstract On a Poisson manifold, the divergence of a hamiltonian vector field is a derivation of the algebra of functions, called the modular vector field. In the case of an odd Poisson bracket on a supermanifold, the divergence of a hamilto- nian vector field is a generator of the odd bracket, and it is nontrivial, whether the Poisson structure is symplectic or not. The quantum master equation is a Maurer-Cartan equation written in terms of an odd Poisson bracket (an- tibracket) and of a generator of square 0 of this bracket. The derived bracket of the antibracket with respect to the quantum BRST differential defines the even graded Lie algebra structure of the space of quantum gauge parameters. 1 Introduction In the “geometry of Batalin-Vilkovisky quantization” [13] [14], a supermanifold (M, A) of dimension n|n is equipped with an odd Poisson structure. More precisely, A is a sheaf of Z2-graded Gerstenhaber algebras. A Z2-graded Gerstenhaber algebra A is a Z2-graded commutative, associative algebra, with a bracket, [ , ], satisfying [f,g]= −(−1)(|f|−1)(|g|−1)[g, f] , [f, [g, h]] = [[f,g], h]+(−1)(|f|−1)(|g|−1)[g, [f, h]] , [f,gh] = [f,g]h +(−1)(|f|−1)|g|g[f, h] , 1Quantum Theory and Symmetries, H.-D. Doebner et al.. eds., World Scientific, 2000, 565-571. 1 for all f,g,h ∈ A, where |f| denotes the degree of f. -
Arxiv:1811.07395V2 [Math.SG] 4 Jan 2021 I Lers I Leris Vagba,Lernhr Al Lie-Rinehart Brackets
GRADED POISSON ALGEBRAS ALBERTO S. CATTANEO, DOMENICO FIORENZA, AND RICCARDO LONGONI Abstract. This note is an expanded and updated version of our entry with the same title for the 2006 Encyclopedia of Mathematical Physics. We give a brief overview of graded Poisson algebras, their main properties and their main applications, in the contexts of super differentiable and of derived algebraic geometry. Contents 1. Definitions 2 1.1. Graded vector spaces 2 1.2. Graded algebras and graded Lie algebras 2 1.3. Graded Poisson algebra 2 1.4. Batalin–Vilkovisky algebras 3 2. Examples 4 2.1. Schouten–Nijenhuis bracket 4 2.2. Lie algebroids 5 2.3. Lie algebroid cohomology 6 2.4. Lie–Rinehart algebras 6 2.5. Lie–Rinehart cohomology 7 2.6. Hochschild cohomology 7 2.7. Graded symplectic manifolds 7 2.8. Shifted cotangent bundle 8 2.9. Examples from algebraic topology 8 2.10. ShiftedPoissonstructuresonderivedstacks 8 3. Applications 9 arXiv:1811.07395v2 [math.SG] 4 Jan 2021 3.1. BRST quantization in the Hamiltonian formalism 9 3.2. BV quantization in the Lagrangian formalism 11 4. Related topics 11 4.1. AKSZ 11 4.2. Graded Poisson algebras from cohomology of P∞ 12 References 12 Key words and phrases. Poisson algebras, Poisson manifolds, (graded) symplectic manifolds, Lie algebras, Lie algebroids, BV algebras, Lie-Rinehart algebras, graded manifolds, Schouten– Nijenhuis bracket, Hochschild cohomology, BRST quantization, BV quantization, AKSZ method, derived brackets. A. S. C. acknowledges partial support of SNF Grant No. 200020-107444/1. 1 2 A.S.CATTANEO,D.FIORENZA,ANDR.LONGONI 1. Definitions 1.1. -
REFER Hivu:- IC/89/61 INTERNATIONAL CENTRE for THEORETICAL PHYSICS
REFER hivU:- IC/89/61 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THEORY OF SINGULAR LAGRANGIANS Jose F. Carinena INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION IC/89/61 1. INTRODUCTION International Atomic Energy Agency There are different approaches in Classical Mechanics and one usually speaks of New- tonian, Lagrangian and Hamiltonian Mechanics. The main guide for Newtonian mechan- and ics is the determinism principle, according to which the knowledge of the positions and United Nations Educational Scientific and Cultural Organization velocities of the points of a mechanical system at a fixed time determines their future positions and velocities [1]. The idea is then to use a system of second order differential INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS equations in normal form i- = /U*J>), (l.i) because the theorem of existence and uniqueness of the solution of such systems fits well to the deterrninism principle. In the following, for the sake of simplicity, we will restrict ourselves to the study of cases in which the functions /' do not depend on the time t. Such a study may be reduced to that of an associated Erst order system THEORY OF SINGULAR LAGRANGIANS • (1.2) Jose F. Carinena ** International Centre for Theoretical Physics, Trieste, Italy. and these equations can be geometrically interpreted as a set of differential equations locally determining the integral curves of a vector field (1.3) which is a special kind of vector field in the tangent bundle of the configuration space, to be studied later on. The introduction of the Lagrangian mechanics is based on the observation that, at least for conservative systems, the equations of motion may also be Been as the Euler equations determining the solution curves of a variational problem [1-3]; the action J Ldi, with L = T ~ V, is extremal for the actual path when compared with other fixed-endpoint paths. -
Lectures on Poisson Geometry
Rui Loja Fernandes and Ioan Marcut˘ , Lectures on Poisson Geometry March 15, 2014 Springer Foreword These notes grew out of a one semester graduate course taught by us at UIUC in the Spring of 2014. Champaign-Urbana, January 2014 Rui Loja Fernandes and Ioan Marcut˘ , v Preface The aim of these lecture notes is to provide a fast introduction to Poisson geometry. In Classical Mechanics one learns how to describe the time evolution of a me- chanical system with n degrees of freedom: the state of the system at time t is de- n n scribed by a point (q(t); p(t)) in phase space R2 . Here the (q1(t);:::;q (t)) are the configuration coordinates and the (p1(t);:::; pn(t)) are the momentum coordi- nates of the system. The evolution of the system in time is determined by a function n h : R2 ! R, called the hamiltonian: if (q(0); p(0)) is the initial state of the system, then the state at time t is obtained by solving Hamilton’s equations: ( q˙i = ¶H ; ¶ pi (i = 1;:::;n): p˙ = − ¶H ; i ¶qi This description of motion in mechanics is the departing point for Poisson ge- ometry. First, one starts by defining a new product f f ;gg between any two smooth functions f and g, called the Poisson bracket, by setting: n ¶ f ¶g ¶ f ¶g f f ;gg := ∑ i − i : i=1 ¶ pi ¶q ¶q ¶ pi One then observes that, once a function H has been fixed, Hamilton’s equations can be written in the short form: x˙i = fH;xig; (i = 1;:::;2n) i i where x denotes any of the coordinate functions (q ; pi). -
Arxiv:2009.06344V2 [Math.GT] 8 Dec 2020 Ojcue Hc Eeete Omltdb Hrtno Who Or Thurston by Formulated Either Were Which Conjectures Thinking Was Thurston Simultaneously
A GLIMPSE INTO THURSTON’S WORK KEN’ICHI OHSHIKA AND ATHANASE PAPADOPOULOS Abstract. We present an overview of some significant results of Thur- ston and their impact on mathematics. The final version of this article will appear as Chapter 1 of the book In the tradition of Thurston: Geo- metry and topology, ed. K. Ohshika and A. Papadopoulos, Springer Verlag, 2020. Keywords foliation, contact structure, symplectic structure, conformal geometry, holomorphic motion, Kleinian groups, circle packing, auto- matic groups, tiling, mapping class groups, Teichm¨uller space, fash- ion design, linkage, Anti-de Sitter geometry, higher Teichm¨uller theory, Grothendieck–Thurston theory, asymmetric metric, Schwarzian deriv- ative, computer science, Ehrenpreis conjecture, transitional geometry, 3-manifolds, geometric structures, (G,X)-structures, Dehn surgery, hy- perbolic geometry, Thurston norm, Smith conjecture, Cannon–Thurston map, discrete conformal geometry, discrete Riemann mapping theorem. AMS codes 57N10, 57M50, 20F34, 20F65, 22E40, 30F20, 32G15, 30F60, 30F45, 37D40, 57M25, 53A40, 57D30, 58D05, 57A35, 00A30, 01A60, 20F10, 68Q70, 57M05, 57M07, 57Q15, 57D15, 58A10, 58F10, 65Y25. Contents 1. Introduction 1 2. On Thurston’s works 2 3. On Thurston’s impact 34 4. In guise of a conclusion 46 References 46 1. Introduction arXiv:2009.06344v2 [math.GT] 8 Dec 2020 In this chapter, we present an overview of some significant results of Thurston and their impact on mathematics. The chapter consists of two parts. In the first part, we review some works of Thurston, grouped in topics. The choice of the topics reflects our own taste and our degree of knowledge. The choice of the order of these topics was almost random. -
Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids with Real Poisson Geometry
Holomorphic Poisson Manifolds and Holomorphic Lie Algebroids Camille Laurent-Gengoux Mathieu Stiénon ∗ Département de mathématiques E.T.H. Zürich Université de Poitiers Departement Mathematik 86962 Futuroscope-Chasseneuil, France 8092 Zürich, Switzerland [email protected] [email protected] Ping Xu † Department of Mathematics Penn State University University Park, PA 16802, U.S.A. [email protected] Dedicated to the memory of Paulette Libermann Abstract We study holomorphic Poisson manifolds and holomorphic Lie algebroids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of Magri-Morosi and describe a double complex which computes the holomorphic Poisson cohomology. A holomorphic Lie algebroid structure on a vector bundle A → X is shown to be equivalent to a matched pair of complex Lie algebroids (T 0,1X,A1,0), in the sense of Lu. The holomorphic Lie algebroid cohomology of A is isomorphic to the cohomology of the elliptic Lie algebroid T 0,1X ⊲⊳A1,0. In the case when (X,π) is a holomorphic Poisson manifold ∗ and A = (T X)π, such an elliptic Lie algebroid coincides with the Dirac structure corresponding to the associated generalized complex structure of the holomorphic Poisson manifold. arXiv:0707.4253v4 [math.DG] 14 Jul 2008 ∗Research supported by the European Union through the FP6 Marie Curie R.T.N. ENIGMA (Contract number MRTN-CT-2004-5652). †Research partially supported by NSF grants DMS-0306665 and DMS-0605725 & NSA grant H98230-06-1-0047 1 Contents 1 Introduction 2 2 Holomorphic Poisson manifolds 5 2.1 Definition ...................................... -
Momentum Maps and Hamiltonian Reduction, by J.-P
BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 2, Pages 215–223 S 0273-0979(04)01039-0 Article electronically published on November 29, 2004 Momentum maps and Hamiltonian reduction, by J.-P. Ortega and T. S. Ratiu, Progress in Math., vol. 222, Birkh¨auser Boston, Inc., Boston, MA, 2004, xxxiv + 497 pp., $69.95, ISBN 0-8176-4307-9 The term reduction of a Hamiltonian system is used in the literature in several different ways. It may describe the induced dynamics on an invariant manifold or the dynamics of the system projected to the space of orbits of the symmetry group. It may include a study of the structure of the orbit space or a search for a structure of the original system which is reproduced on the orbit space. Because of these ambiguities, there are different approaches to reduction which give a rich variety of descriptions of Hamiltonian dynamics. 1. Hamiltonian systems and symmetries The phase space of a Hamiltonian system is a symplectic manifold (P, ω), that is a smooth manifold endowed with a closed, non-degenerate form ω. Non-degeneracy of ω means that, for each smooth function f on P , there exists a unique vector field Xf on P such that (1) Xf ω = df . Here denotes the left interior product (contraction) of vector fields and forms. The vector field Xf is called the Hamiltonian vector field of f.Thus,wehavea ∞ linear map f → Xf of the space C (P ) of smooth functions on P into the space X (P ) of smooth vector fields on P .IfP is connected, the kernel of this map consists of constant functions on P.