University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 2007 Do Killing–Yano tensors form a Lie algebra? David Kastor University of Massachusetts - Amherst,
[email protected] Sourya Ray University of Massachusetts - Amherst Jennie Traschen University of Massachusetts - Amherst,
[email protected] Follow this and additional works at: https://scholarworks.umass.edu/physics_faculty_pubs Part of the Physics Commons Recommended Citation Kastor, David; Ray, Sourya; and Traschen, Jennie, "Do Killing–Yano tensors form a Lie algebra?" (2007). Classical and Quantum Gravity. 1235. Retrieved from https://scholarworks.umass.edu/physics_faculty_pubs/1235 This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
[email protected]. Do Killing-Yano tensors form a Lie algebra? David Kastor, Sourya Ray and Jennie Traschen Department of Physics University of Massachusetts Amherst, MA 01003 ABSTRACT Killing-Yano tensors are natural generalizations of Killing vec- tors. We investigate whether Killing-Yano tensors form a graded Lie algebra with respect to the Schouten-Nijenhuis bracket. We find that this proposition does not hold in general, but that it arXiv:0705.0535v1 [hep-th] 3 May 2007 does hold for constant curvature spacetimes. We also show that Minkowski and (anti)-deSitter spacetimes have the maximal num- ber of Killing-Yano tensors of each rank and that the algebras of these tensors under the SN bracket are relatively simple exten- sions of the Poincare and (A)dS symmetry algebras.