Local Hazard Mitigation Plan Annex to Santa Barbara County Multi-Jurisdictional Hazard Mitigation Plan – July 2017

Total Page:16

File Type:pdf, Size:1020Kb

Local Hazard Mitigation Plan Annex to Santa Barbara County Multi-Jurisdictional Hazard Mitigation Plan – July 2017 City of Santa Barbara Local Hazard Mitigation Plan Annex to Santa Barbara County Multi-Jurisdictional Hazard Mitigation Plan – July 2017 City of Santa Barbara Annex to Santa Barbara County 2017 Multi-Hazard Mitigation Plan Contents SECTION 1 INTRODUCTION ...................................................................................................... 3 SECTION 2 PLAN PURPOSE AND AUTHORITY ................................................................... 4 SECTION 3 PLANNING PROCESS ............................................................................................. 6 Overview ................................................................................................................................. 8 Mitigation Advisory Committee (MAC) ................................................................................. 9 MAC Members ........................................................................................................................ 9 Overview of MAC Meetings ................................................................................................. 10 City Local Hazard Mitigation Planning Team ...................................................................... 11 SECTION 4 CAPABILITY ASSESSMENT ................................................................................ 14 Governance ........................................................................................................................... 14 Departmental Responsibilities, Plans, and Capabilities ......................................................... 15 SECTION 5 HAZARD ASSESSMENT ....................................................................................... 25 5.1.1 Earthquake ............................................................................................................. 28 5.1.2 Wildfire ................................................................................................................. 35 5.1.3 Landslide and other Earth Movements .................................................................. 43 5.1.4 Flood ...................................................................................................................... 47 5.1.5 Climate-related Hazards ........................................................................................ 53 5.1.6 Energy Shortage and Resiliency ............................................................................ 59 5.1.7 Oil Spills ................................................................................................................ 60 5.1.8 Dam Failure ........................................................................................................... 61 5.1.9 Agricultural Pests .................................................................................................. 63 5.1.10 Epidemic/Pandemic/Vector Borne Disease ........................................................... 66 5.1.11 Hazardous Materials Release................................................................................. 68 5.1.12 Terrorism ............................................................................................................... 69 5.1.13 Cyber Threats ........................................................................................................ 70 5.1.14 Aircraft Crashes ..................................................................................................... 71 5.1.15 Train Accidents ..................................................................................................... 71 5.1.16 Tsunami ................................................................................................................. 72 5.1.17 Civil Disturbance ................................................................................................... 75 1 | Page 5.1.18 Marine Invasive Species ........................................................................................ 75 SECTION 6 VULNERABILITY ASSESSMENT ................................................................ 77 6.1 Overview ............................................................................................................... 77 6.2 Scientific Loss Estimation Analysis ...................................................................... 83 6.3 Critical Facilities Analysis .................................................................................... 97 6.4 Qualitative Estimate of Impacts Analysis ........................................................... 104 SECTION 7 MITIGATION STRATEGY ................................................................................... 112 SECTION 8 PLAN MAINTENANCE ....................................................................................... 139 2 | Page SECTION 1 INTRODUCTION The plan was prepared in 2015-2016 as part of an update to the Santa Barbara City 2011 Hazard Mitigation Plan. The City of Santa Barbara participated in the County wide Mitigation Advisory Committee (MAC), reviewed all portions of the previous hazard mitigation plan pertaining to the City, and incorporated relevant components into this plan. This plan serves as a complete hazard mitigation planning tool for the City of Santa Barbara. It contains updated capability assessment information, a new vulnerability assessment, and an updated/revised mitigation strategy. The methodology and process for developing this annex is explained throughout the following sections. Across the United States, natural and manmade disasters have led to increasing levels of death, injury, property damage, and interruption of business and government services. The impact on families and individuals can be immense and damages to businesses can result in regional economic consequences. The time, money and effort to respond to and recover from these disasters divert public resources and attention from other important programs and problems. Santa Barbara City, California recognizes the consequences of disasters and the need to reduce the impacts of natural hazards. The elected and appointed officials of the City also know that with careful selection, mitigation actions in the form of projects and programs can become a long-term, cost effective means for reducing the impact of natural hazards. The Santa Barbara City Hazard Mitigation Plan (the Plan), was prepared and formulated with input and coordination from the Mitigation Advisory Committee (MAC), with support from Santa Barbara County, City Office of Emergency Services and City Departments. The process to develop the Plan included nearly a year of coordination with representatives from each City department. The Plan guides the City of Santa Barbara toward greater disaster preparedness and resistance in harmony with the character and needs of its community. The City of Santa Barbara is located on the south coast of Santa Barbara County. Due to the Santa Ynez mountain range that blocks colder air from the north, Santa Barbara enjoys mild and pleasant weather. It sits at an elevation of roughly 50 feet above sea level and has a land area of 19 square miles. The city received its name when the California Mission Santa Barbara was founded there in 1786. The mission was known as the Queen of the Missions due to its beauty and the beauty of its surroundings. Attractions in Santa Barbara include the Waterfront, Downtown retail, entertainment and cultural districts, Santa Barbara Museums of Art and Natural History, the Santa Barbara Zoo, and special events such Old Spanish Days – Fiesta Santa Barbara. Santa Barbara is retail, tourism, government, education, and medical center of the County. It is home to the Santa Barbara Regional Airport, which provides commercial services for Ventura, Santa Barbara and San Luis Obispo Counties. Mitigation is commonly defined as actions taken to reduce or eliminate risks to people and property from hazards and their effects. Hazard mitigation focuses attention and resources on actions that will reduce or eliminate long term risks to persons or property from natural hazards. The impact of expected yet often unpredictable natural and human-caused events can be reduced through planning. History has demonstrated that it is less expensive to mitigate against disaster damage than to repeatedly repair damage in the aftermath. A mitigation plan states the aspirations and specific courses of action jurisdictions intend to follow to reduce vulnerability and exposure to future hazard events. 3 | Page It is the City’s hope the Plan continues to be used as a tool for all stakeholders to increase public awareness of local hazards and risks, while at the same time providing information about options and resources available to reduce those risks. Informing and instructing the public about potential hazards will help the City protect themselves against the effects of the hazards, and will enable informed decision making on where to live, play and locate homes and businesses. The emphasis of the Plan is on the assessment and avoidance of identified risks, implementing loss reduction measures for existing exposures and ensuring critical services and facilities survive a disaster. Hazard mitigation strategies and measures avoid losses by limiting new exposures in identified hazard areas, alter the hazard by eliminating or reducing the frequency of occurrence, divert the hazard by redirecting the impact by means of a structure or adapt to the hazard by modifying structures or standards. Federal legislation has historically provided funding for disaster
Recommended publications
  • Be Aware of Potential Risk of Dam Failure in Your Community
    Be Aware of Potential Risk of Dam Failure in Your Community Approximately 15,000 dams in the United States are classified as high-hazard potential (HHP), meaning that their failure could result in loss of life. Dams can fail for a number of reasons, including overtopping caused by floods, acts of sabotage, or structural failure of materials used in dam construction. The worst dam failure in the United States occurred in 1889 in Johnstown, Pennsylvania. Over 2,200 died, with many more left homeless. Dams present risks but they also provide many benefits, including irrigation, flood control, and recreation. Dams have been identified as a key resource of our national infrastructure that is vulnerable to terrorist attack. States have the primary responsibility for protecting their populations from dam failure. Of the approximately 94,400 dams in the United States, State governments regulate about 70 percent. About 27,000 dams throughout our Nation could incur damage or fail, resulting in significant property damage, lifeline disruption (utilities), business disruption, displacement of families from their homes, and environmental damage. The most important steps you can take to protect yourself from dam failure are to know your risk. Contact government offices to learn if an Emergency Action Plan (EAP) is in place and to evacuate when directed by emergency response officials. An EAP is a formal document that identifies potential emergency conditions at a dam and specifies preplanned actions to be followed by the dam owner to reduce property damage and loss of life. The plan may save lives and property damage through timely evacuations of those who live, work, or enjoy recreation near a high-hazard potential dam.
    [Show full text]
  • Table of Contents
    Fairfield County, South Carolina, Emergency Operations Plan TABLE OF CONTENTS HEADING PAGE Introduction/Letter of Promulgation vii Legal Basis--Fairfield County Ordinance viii I. AUTHORITIES AND REFERENCES 1 A. Purpose 1 B. Authority 1 C. References 1 D. Maps 2 II. SITUATION AND ASSUMPTIONS 2 A. Situation 2 B. Assumptions 4 III. MISSION 5 IV. CONCEPT OF OPERATIONS 5 A. General 5 B. Municipalities 5 C. Fairfield County Government 5 D. State Government 6 E. Federal Government 6 F. Other Supporting Organizations 6 G. Actions by Phases of Emergency Management 6 H. Level of Readiness 8 I. Requesting Aid 8 J. Incident Command System 9 K. Damage Assessment 9 V. ORGANIZATION AND ASSIGNMENT OF RESPONSIBILITIES 9 A. County Government 9 B. Municipalities 12 C. Incident Command 13 D. Responsibilities 13 E. Coordinating Instructions 14 TABLE OF CONTENTS (CONTINUED) PAGE HEADING VI. ADMINISTRATION AND LOGISTICS 14 A. Reporting Requirements 14 B. Computer Capability 14 C. Logistics 15 D. Mutual Aid Agreements 15 E. Support 15 F. Augmenting Response Staff 15 G. Documentation 15 H. Resources 15 VII. DIRECTION AND CONTROL 16 A. Emergency Operating Center (EOC) 16 B. Line of Succession 16 VIII. PLAN DEVELOPMENT AND MAINTENANCE 17 A. Implementation 17 B. Development 17 C. Maintenance 17 IX. DISTRIBUTION 17 ATTACHMENTS 18 1. Organization Chart 19 2. Tasks and Responsibilities 20 3. Alert List 21 4. Supporting Plans and Their Sources 22 TABLE OF CONTENTS (CONTINUED) HEADING PAGE ANNEXES A. Emergency Operations Center Appendix 1--Organization Chart 9 Appendix 2--Alert List 10 Appendix 3--Call Down System for EOC Activation 12 Appendix 4--Layout of EOC 13 B.
    [Show full text]
  • Attachment B Flooding and Dam Failure
    page 6-B-1 Attachment B Flooding and Dam Failure The Hazard Nature of the Flooding occurs when normally dry land is inundated with water (or Hazard flowing mud). Flooding may result from: bodies of water overflowing their banks, including artificial ones like dams and levees; structural failure of dams and levees; rapid accumulation of runoff or surface water; hurricane- caused storm surges or earthquake-caused tsunamis; or erosion of a shoreline. (Coastal flooding and erosion are not treated in this attachment.) Typically, the two parameters of most concern for flood planning are suddenness of onset--in the case of flash floods and dam failures--and flood elevation in relation to topography and structures. Other factors contributing to damage are the velocity or "energy" of moving water, the debris carried by the water, and extended duration of flood conditions. Flooding can happen at any time of the year, but predominates in the late Winter and early Spring due to melting snow, breakaway ice jams, and rainy weather patterns. Risk Area All States and territories are at risk from flooding. Apart from a rainy climate, local risk factors, usually present in combination, include: Rivers, These are bodies of water often subject to overflowing. The size of the Streams, and stream can be misleading; small streams that receive substantial rain or Drainageways snowmelt, locally or upstream, can overflow their banks. High-velocity, low elevation flooding can be dangerous and damaging. Six inches of moving water can knock a person off his or her feet; 12 inches of water flowing at 10 miles per hour carries the force of a 100 mile-per-hour wind, although the force would be distributed differently on obstacles.
    [Show full text]
  • Sonoma County Multi-Jurisdictional Hazard Mitigation Plan Meeting Summary
    Sonoma County Multi-Jurisdictional Hazard Mitigation Plan Meeting Summary Date/Time of Meeting: Thursday, September 24, 2020 Location: Digital Subject: Steering Committee Meeting No. 2 Project Name: Sonoma County Multi‐Jurisdictional Hazard Mitigation Plan Update In Attendance Attendees: 25 (21 SoCo, 4 TT) Planning Team: Lisa Hulette, Bart Spencer, Rob Flaner, Carol Baumann, Des Alexander Not Present: N/A Summary Prepared by: Des Alexander Quorum – Yes or No Yes Item Action Welcome and Introductions Lisa Hulette welcomed members of the steering committee to Previous steering committee the 2nd meeting for Sonoma County’s MJHMP update meeting notes were approved Des Alexander did a roll call, where 21 committee members were in attendance, with 4 members of Tetra Tech also on the call. No members of the public were on the call. Planning Process Motion to approve meeting summary for Steering Committee meeting 1 was made by Shari Meads, seconded by Kim Jordan, and approved All planning partners who wish to participate in process have been contacted Lisa and Bart discussed the draft mission/vision statement document that was sent to committee members. The document featured several sample mission and vision statements, as well as several goals and objectives Although several members did not have a comment, most of the comments that were made were focused on using fewer and more general words; making sure equity was factored into mitigation process, actions, and outcome; placing more emphasis on disaster mitigation with green infrastructure; separate natural and man‐made hazards in the goals section Meeting Summary Item Action Hazards of Concern The homework from the last meeting was briefly discussed.
    [Show full text]
  • Dam Failure Refers to a Collapse, Overtopping, Breaching Or Any Related Condition That Causes Downstream Flooding
    HAZARD: DAM FAILURE DAM FAILURE PROFILE: Dam failure refers to a collapse, overtopping, breaching or any related condition that causes downstream flooding. Approximately one-third of all dam failures are caused by overtopping due to inadequate spillway capacity, one-third are caused by seepage through or under the structure, and the remainder from improper design or construction or because of earthquake or landside events which trigger the failure of the dam. Examples of dam failure in the United States include the Johnstown Flood in 1889 resulting in 2209 deaths, the Saugus, California dam collapse in the Los Angeles Aqueduct system in 1928 resulting in 450 deaths, and the Teton Dam breach on the Snake River in Idaho during a flash flood in 1976 resulting in 11 deaths. During Hurricane Agnes in 1972, concern about the Conowingo Dam on the Susquehanna River led to the opening of all flood gates to release pressure when the water level was three feet higher than the dam’s rated capacity. COUNTY PERSPECTIVE AND HISTORY: According to the Maryland Department of the Environment, Garrett County has 28 dams, of which 11 are rated as high hazard dams as shown on Figure 33. The Maryland Hazard Analysis rates Garrett County’s composite risk for dam failure at 4 on a scale of one to five. The county’s planning committee agrees with this risk. The largest dams in the county include the Savage River Dam, the Bloomington Dam on the Potomac River, and the Deep Creek Lake Dam as shown on the map on Figure 34.
    [Show full text]
  • Dam Awareness May 2018
    Dam Awareness May 2018 Introduction There is a general lack of knowledge, understanding, and awareness of dams and their risks, leaving those most affected by dams unprepared to deal with the impacts of their failures. This fact sheet provides a general overview of dams for consideration and use by the intended audience, based on their situation. Responsibility and Liability for Dam Safety Dams are owned and operated by individuals, private and public organizations, and various levels of government (federal, state, local, tribal). The responsibility for operating and maintaining a safe dam rests with the owner. Common law holds that the storage of water is a hazardous activity. Maintaining a safe dam is a key element in preventing failure and limiting the liability that an owner could face. The extent of an owner’s liability varies from state to state and depends on statutes and case law precedents. Federally owned and regulated dams are subject to federal regulations and guidelines and applicable federal and state laws. Owners can be fiscally and criminally liable for any failure of a dam and all damages resulting from its failure. Any uncontrolled release of the reservoir, whether the result of an intentional release or dam failure, can have devastating effects on persons, property, and the environment (FEMA, 2016a). Any malfunction or abnormality outside the design assumptions and parameters that adversely affect a dam’s primary function of impounding water is considered a dam failure. Lesser degrees of failure can progressively lead to or heighten the risk of a catastrophic failure, which may result in an uncontrolled release of the reservoir and can have a severe effect on persons and properties downstream (FEMA, 2016b).
    [Show full text]
  • Assessing the Consequences of Dam Failures. a How-To Guide
    This document was prepared by Risk Assessment, Mapping, and Planning Partners 8401 Arlington Boulevard Fairfax, Virginia 22031 Table of Contents ACRONYMS AND ABBREVIATIONS ................................................................................ iii SECTION ONE INTRODUCTION ..............................................................................................1-1 1.1 What This Guide Provides.................................................................... 1-1 1.2 Purpose of This Guide .......................................................................... 1-1 1.3 Limitations of the Guide....................................................................... 1-1 1.4 Audience for This Guide....................................................................... 1-2 1.5 How This Guide Is Organized .............................................................. 1-2 1.6 Further Application of Recommended Procedures ................................ 1-3 SECTION TWO OVERVIEW OF ASSESSMENT METHODOLOGY ...........................2-1 2.1 Define the Inundation Area................................................................... 2-1 2.2 Create an Inventory of Assets ............................................................... 2-1 2.3 Estimate the Potential Consequences .................................................... 2-1 2.4 Determine the Impacts.......................................................................... 2-1 2.5 Limitations of the Recommended Approach ......................................... 2-2 SECTION THREE
    [Show full text]
  • Hazard Vulnerability Assessment
    SAN MATEO COUNTY HAZARD VULNERABILITY ASSESSMENT HAZARD VULNERABILITY ASSESSMENT APPENDIX TO THE EMERGENCY OPERATIONS PLAN (HAZARD + RISK = VULNERABILITY) San Mateo County Sheriff’s Office Homeland Security Division Office of Emergency Services J A N U A R Y 2 , 2 0 1 5 SAN MATEO COUNTY HAZARD VULNERABILITY ASSESSMENT County of San Mateo Sheriff’s Office Homeland Security Division Office of EmergencyServices 400 County Center Redwood City, CA 94063 650-363-4955 www.smcsheriff.com i 01/02/2015 SAN MATEO COUNTY HAZARD VULNERABILITY ASSESSMENT TABLE OF CONTENTS GENERAL ............................................................................................................................. 1 SAN MATEO COUNTY PROFILE ................................................................................................ 3 HAZARD 1: DAM FAILURE ...................................................................................................... 5 HAZARD 2: DROUGHT ......................................................................................................... 11 HAZARD 3: EARTHQUAKES ................................................................................................... 15 HAZARD 4: EXTREME HEAT .................................................................................................. 23 HAZARD 5: FLOODING ......................................................................................................... 25 HAZARD 6: HAZARDOUS MATERIALS ....................................................................................
    [Show full text]
  • PDF Linkchapter
    Index (Italic page numbers indicate major references) Abalone Cove landslide, California, Badger Spring, Nevada, 92, 94 Black Dyke Formation, Nevada, 69, 179, 180, 181, 183 Badwater turtleback, California, 128, 70, 71 abatement districts, California, 180 132 Black Mountain Basalt, California, Abrigo Limestone, Arizona, 34 Bailey ash, California, 221, 223 135 Acropora, 7 Baked Mountain, Alaska, 430 Black Mountains, California, 121, Adams Argillite, Alaska, 459, 462 Baker’s Beach, California, 267, 268 122, 127, 128, 129 Adobe Range, Nevada, 91 Bald Peter, Oregon, 311 Black Point, California, 165 Adobe Valley, California, 163 Balloon thrust fault, Nevada, 71, 72 Black Prince Limestone, Arizona, 33 Airport Lake, California, 143 Banning fault, California, 191 Black Rapids Glacier, Alaska, 451, Alabama Hills, California, 152, 154 Barrett Canyon, California, 202 454, 455 Alaska Range, Alaska, 442, 444, 445, Barrier, The, British Columbia, 403, Blackhawk Canyon, California, 109, 449, 451 405 111 Aldwell Formation, Washington, 380 Basin and Range Province, 29, 43, Blackhawk landslide, California, 109 algae 48, 51, 53, 73, 75, 77, 83, 121, Blackrock Point, Oregon, 295 Oahu, 6, 7, 8, 10 163 block slide, California, 201 Owens Lake, California, 150 Basin Range fault, California, 236 Blue Lake, Oregon, 329 Searles Valley, California, 142 Beacon Rock, Oregon, 324 Blue Mountains, Oregon, 318 Tatonduk River, Alaska, 459 Bear Meadow, Washington, 336 Blue Mountain unit, Washington, 380 Algodones dunes, California, 101 Bear Mountain fault zone, California,
    [Show full text]
  • October 3, 2018
    Cuyama Valley Groundwater Basin Groundwater Sustainability Plan Hydrogeologic Conceptual Model Draft Prepared by: October 2018 Table of Contents Chapter 2 Basin Setting .......................................................................................................2-2 Acronyms 2-3 2.1 Hydrogeologic Conceptual Model ..........................................................................2-4 2.1.1 Useful Terminology ................................................................................................2-4 2.1.2 Regional Geologic and Structural Setting ..............................................................2-5 2.1.3 Geologic History ....................................................................................................2-5 2.1.4 Geologic Formations/Stratigraphy .........................................................................2-8 2.1.5 Faults and Structural Features ............................................................................. 2-17 2.1.6 Basin Boundaries ................................................................................................ 2-26 2.1.7 Principal Aquifers and Aquitards .......................................................................... 2-26 2.1.8 Natural Water Quality Characterization ................................................................ 2-32 2.1.9 Topography, Surface Water and Recharge .......................................................... 2-36 2.1.10 Hydrogeologic Conceptual Model Data Gaps .....................................................
    [Show full text]
  • Dam Failures in the U.S
    NPDP-01 V0 NPDP-01 V0 Dam Failures in the U.S. National Performance of Dams Program Dept. of Civil & Environmental Engineering Stanford University September 2018 NPDP-01 V1 Introduction This document presents a compilation of data sum- The 1889 Johnstown Flood and the Failure maries on dam failures1 and the life safety con- sequences from the flooding caused by failures that of the South Fork Dam have occurred in the United States. It has been prepared One of the most catastrophic events to occur in the by the National Performance of Dams Program (NPDP) U.S. was the failure of the South Fork Dam near at the Department of Civil and Environmental Johnstown, Pennsylvania on May 31, 1889. The dam Engineering at Stanford University. failed after days of rain. Once the dam failed, 20 million gallons of water were released, traveling 14 miles to Johnstown. Along its way, the flood carried Dam Failures in the U.S. trees, livestock, homes, factories, and even a The historic record on the performance of dams reveals locomotive into the city. that dam failures are a somewhat frequent occurrence in the U.S. Over the period-of-record there have been an average of nearly 10 failures a year. Many failures are of small dams, that result in limited flooding and as a result limited downstream impact. In the vast majority of cases (more than 96% of the time), the flooding that occurs when a dam is breached does not result in life- safety consequences or significant property damage. The small fraction of dam failures that cause fatalities, have resulted in some of the largest disasters associated with the failure of man-made systems in the U.S.
    [Show full text]
  • Dam Emergency Action Plan (EAP) Template
    <Insert Dam Name> Emergency Action Plan 2016 Dam Emergency Action Plan (EAP) Template Developed by the Rhode Island Emergency Management Agency in coordination with the Rhode Island Department of Environmental Management. 1 <Insert Dam Name> Emergency Action Plan Page intentionally left blank 2 <Insert Dam Name> Emergency Action Plan Table of Contents Emergency Action Plan Distribution ............................................................................................................ 6 Executive Summary ...................................................................................................................................... 7 Section 1: Introduction ................................................................................................................................. 8 1.1 Situation ........................................................................................................................................ 8 1.2 Scope ............................................................................................................................................. 8 1.3 Authorities .................................................................................................................................... 8 1.3.1 Federal .................................................................................................................................. 8 1.3.2 State .....................................................................................................................................
    [Show full text]