Sismologie Solaire Et Stellaire Pascal Lambert

Total Page:16

File Type:pdf, Size:1020Kb

Sismologie Solaire Et Stellaire Pascal Lambert Sismologie solaire et stellaire Pascal Lambert To cite this version: Pascal Lambert. Sismologie solaire et stellaire. Astrophysique [astro-ph]. Université Paris-Diderot - Paris VII, 2007. Français. tel-00140766v3 HAL Id: tel-00140766 https://tel.archives-ouvertes.fr/tel-00140766v3 Submitted on 7 Dec 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École Doctorale d’Astronomie et d’Astrophysique d’Ile-de-France Universite´ Paris VII - Denis Diderot These` de Doctorat présentée pour obtenir le grade de Docteur de l’Université Paris VII - Denis Diderot Spécialité : Astrophysique et Méthodes Associées par Pascal Lambert Sismologie solaire et stellaire Thèse dirigée par Sylvaine TURCK-CHIEZE Soutenue publiquement le 21 mars 2007 devant le jury composé de : Pr. Cécile Ferrari ..........................................Présidente du jury Dr. Rafael A. Garc´ia ..................................... CorrespondantCEA Dr. Eric Michel .................................................Examinateur Dr. Pere L. Palle´ .................................................Rapporteur Dr. Sylvie Roques ................................................Rapporteur Dr. Sylvaine Turck-Chieze` .................................Directricedethèse Service d’Astrophysique DAPNIA/DSM/CEA – Saclay iii Résumé Titre : sismologie solaire et stellaire Laboratoire d’accueil : Service d’Astrophysique, DSM/DAPNIA, CEA/Saclay Résumé : La thèse présentée ici se place dans le cadre de la sismologie du Soleil et des étoiles, dans une période de transition entre une bonne connaissance du Soleil grâce à l’héliosismologie et le développe- ment actuel de l’astérosismologie, et, entre une vision statique et une vision dynamique des étoiles. Le but de mon travail a été de participer à cet effort en dépasser la vision statique des intérieurs stellaires et via le développement d’outils d’analyse des données des missions spatiales. Ainsi le modèle solaire standard actuel, la représentation théorique de l’intérieur solaire, présente des limites, mises en avant par une récente révision de ses abondances. Nous montrons que l’écart entre le modèle standard et les observations sismiques est fortement dégradé motivant l’introduction de processus dynamiques dans les modèles. Nous avons aussi entrepris l’introduction d’effets magnétiques dans les couches superficielles pour améliorer la prédiction des fréquences et l’analyse sismique. Les missions spatiales astérosismiques, présentes et futures, permettent d’avoir accès à des informations sur la dynamique des étoiles (rotation, convection, . .). Pour améliorer ces informations contenues dans les spectres d’oscillations, il est néces- saire d’effectuer une bonne identification des modes ainsi qu’une extraction précise de ces paramètres. Nous montrons comment améliorer ceci en développant une analyse du diagramme-échelle basée sur la récente transformée en curvelette. Cette méthode a pu être validées grâce à des simulations ainsi que dans le cadre d’exercices pour la préparation à la mission CoRoT. Nous nous sommes également intéressé à l’étoile Procyon observée par MOST. Mots-clés : astérosismologie - héliosismologie - Soleil - CoRoT - analyse de données - modèle solaire standard - rotation v Abstract Title : solar and stellar seismology Laboratory : Service d’Astrophysique, DSM/DAPNIA, CEA/Saclay Abstract : The thesis presented here takes place within the framework of the seismology of the Sun and stars, in a transition period between the good knowledge of the Sun thanks to the helioseismology and a current development of the asteroseismology, and, between a static and a dynamic vision of stars. The purpose of my work was to participate in this effort to exceed the static vision of the stellar inside and through the development of data analysis tools for space missions. So the current standard solar model, the theoretical representation of the solar interior, presents limits, emphases by a recent revision of its abundances. We show that the discrepancy between the standard model and the seismic observations is strongly degraded, motivating the introduction of dynamic processes in the models. We also introduced magnetic effects in the superficial layers to improve the prediction of the frequencies and the seismic analysis. The asteroseismic present and future space missions allow us to have access to information on the dynamics of stars (rotation, convection, . .). To improve this information, contained in the oscillation spectra, it is necessary to proceed a good identification of the modes as well as an accurate extraction of these parameters. We show how to improve this by developing an analysis of the echelle diagramme based on the recent curvelet transform. This method has been validated thanks to simulations and within the framework of exercises for the preparation for the CoRoT mission. We have also analysed the case of the star Procyon as observed by the MOST mission. Keywords : asteroseismology - helioseismology - Sun - data analysis - standard solar model - rotation A ma grand-mère Remerciements Et voilà ... c’est fini. Merci à toi lecteur qui t’apprête à plonger dans la lecture de ce manuscrit ... et bon courage. Il y a presque 10 ans (ça passe vite quand même ...), à quelques semaines du bac, je n’imaginais même pas me retrouver ainsi à avoir rédiger cette thèse ... Ce qui est sûr c’est que j’y suis alors j’en profite pour remercier toutes celles et tous ceux que j’ai pû cotoyer, rencontrer et qui m’auront supporté tout ce temps. Evidemment, je commencerai par dire un grand merci du fond du cœur à mes parents pour m’avoir toujours soutenu et encouragé dans mes choix, mes décisions et les épreuves rencontrées. Je pense aussi à ma chère petite sœur, ma famille (merci encore) et mes amis les plus proches, chacun se reconnaîtra. Je tiens aussi à remercier Sylvaine Turck-Chièze pour m’avoir permis d’être acceuilli au sein du Service d’Astrophysique, le dynamisme et la motivation dont elle fait preuve pour défendre et soutenir sa science, ses projets, et surtout pour avoir ses encouragements et sa confiance durant les derniers mois de ma thèse. Un grand merci à Sylvie Roques et Pere Pallé qui m’auront fait le plaisir d’être les rapporteurs de cette thèse. Ainsi quà Cécile Ferrari pour avoir accepter de présider mon jury de thèse et Eric Michel pour sa participation à mon jury. Merci à l’ensemble du Service d’Astrophysique pour l’accueil dont j’aurai bénéficié durant ces 3 années (presque 3 ans et demi). Muchas gracias amistosas a Rafael A. García (y Merche) (qui ne pourra pas reprocher d’avoir mal ortographié son nom pour une fois) por su paciencia, su sostén y su disponibilidad (asi como para su talento de gran defensor) durante 3 años. Spezial danke für Herr Doktor Jérôme Ballot que j’aurais eu le plaisir de cotoyer durant 2 ans et qui aura eu l’immense mérite de me supporter (et de m’encourager) durant tout ce temps. Egalement merci à mon officemate Sacha Brun pour ses encouragements et ses discussions toujours passionnées que ce soit sur le Soleil ou la fiabilité de la R25 (Hellboy rules). Un très grand merci (par désordre alphabétique) à Vincent et Philippe (pour m’avoir aidé à plonger dans le grand bain de la vie parisienne), Doris viele Danke für alles, Jean-Luc (qui a tout appris à Pipo Inzaghi), Adam (comme quoi une entente plus que cordiale est possible entre frog & rosbeef), Pascal (avise collègue), Médéric (mais si c’est très bien les Mac), Savita, Delphine, Sandrine (les 2), Ana, Mat- thias, Laurène, Lilia, Pascal et les autres thèsards et post-doc rencontrés pour leur sympathie et amitié, de même que Yael, Fred, Hervé, Marc, Thierry, Phi, Stéphane, Pierre-Alain, Lydie, Roland et Elizabeth pour m’avoir donné l’opportunité de diffuser notre science. Sans oublier le fidèle Toby évidemment. Enfin merci à ceux qui auront rendu beaucoup de choses plus faciles, John, Paul, George & Ringo, Radiohead, Boards of Canada, the Silver Mount Zion, Mark Lanegan, Sufjan Stevens, Sonic Youth, the Super Furry Animals, Grandaddy, Elbow, Portishead, Pink Floyd, Mogwaï, Autechre, Minus Story, Ar- cade Fire, Tricatel and co., Stanley K., Orson W., Steven S., Peter J., Graham, John, Terry, Eric, Terry & Michael . " Quand nous en serons au temps des cerise Et gai rossignol et merle moqueur Seront tous en fête Les belles auront la folie en tête Et les amoureux du soleil au coeur Quand nous en serons au temps des cerises Sifflera le merle moqueur " xi Remarques preliminaires´ : Dans l’ensemble de ce manuscrit, j’utiliserai les unités du Système International, qui n’est pas encore • répandu comme il le devrait dans la communauté. Par commodité, je maintiendra i tout de même l’emploi de certaines unités usuelles : le parsec (1 pc 30.856 1015 m), l’année-lumière (1 a.l. 9.460 1015 m ), ≈ ≈ l’unité astronomique (1 U.A. 1.49 1011 m) et les unités solaires : masse (M 1.980 1030 kg), rayon ≈ ⊙ ≈ (R 6.960 108 m) et luminosité (L 3.826 1026 W). ⊙ ≈ ⊙ ≈ Dans les expressions mathématiques, les grandeurs vectorielles seront en gras, e.g. 3 au lieu de 3 . • −→ xii xiii Table des matières Résumé iii Abstract v Table des figures xviii Liste des tableaux xix I Introduction 1 Introduction générale 3 II Évolution et structure stellaire 13 1 Évolution et structure stellaire 15 1.1 Évolution stellaire : de la nébuleuse primordiale au Soleil ................. 16 1.1.1 La jeunesse d’une étoile .............................. 16 1.1.2 Vie et mort d’un soleil ............................... 16 1.1.3 Au-delà de la séquence principale ......................... 20 1.2 Structure interne des étoiles : théories et modèles ..................... 20 1.2.1 Les équations de la structure interne .......................
Recommended publications
  • The Everchanging Pulsating White Dwarf GD358
    Astronomy & Astrophysics manuscript no. gd358 January 23, 2003 (DOI: will be inserted by hand later) The Everchanging Pulsating White Dwarf GD358 S.O. Kepler1, R. Edward Nather2, Don E. Winget2, Atsuko Nitta3, S. J. Kleinman3, Travis Metcalfe2;4, Kazuhiro Sekiguchi5, Jiang Xiaojun6, Denis Sullivan7, Tiri Sullivan7, Rimvydas Janulis8, Edmund Meistas8, Romualdas Kalytis8, Jurek Krzesinski9, Waldemar OgÃloza9, Staszek Zola10, Darragh O’Donoghue11, Encarni Romero-Colmenero11, Peter Martinez11, Stefan Dreizler12, Jochen Deetjen12, Thorsten Nagel12, Sonja L. Schuh12, Gerard Vauclair13, Fu Jian Ning13, Michel Chevreton14, Jan-Erik Solheim15, Jose M. Gonzalez Perez15, Frank Johannessen15, Antonio Kanaan16, Jos´eEduardo Costa1, Alex Fabiano Murillo Costa1, Matt A. Wood17, Nicole Silvestri17, T.J. Ahrens17, Aaron Kyle Jones18;¤, Ansley E. Collins19;¤, Martha Boyer20;¤, J. S. Shaw21, Anjum Mukadam2, Eric W. Klumpe22, Jesse Larrison22, Steve Kawaler23, Reed Riddle23, Ana Ulla24, and Paul Bradley25 1 Instituto de F´ısicada UFRGS, Porto Alegre, RS - Brazil e-mail: [email protected] 2 Department of Astronomy & McDonald Observatory, University of Texas, Austin, TX 78712, USA 3 Sloan Digital Sky Survey, Apache Pt. Observatory, P.O. Box 59, Sunspot, NM 88349, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA e-mail: [email protected] 5 Subaru National Astronomical Observatory of Japan e-mail: [email protected] 6 Beijing Astronomical Observatory, Academy of Sciences, Beijing 100080, China e-mail: [email protected] 7 University of Victoria, Wellington, New Zealand 8 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 9 Mt. Suhora Observatory, Cracow Pedagogical University, Ul. Podchorazych 2, 30-084 Cracow, Poland 10 Jagiellonian University, Krakow, Poland e-mail: [email protected] 11 South African Astronomical Observatory 12 Universitat T¨ubingen,Germany 13 Universit´ePaul Sabatier, Observatoire Midi-Pyr´en´ees,CNRS/UMR5572, 14 av.
    [Show full text]
  • Arxiv:2001.10147V1
    Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis.
    [Show full text]
  • Asteroseismology
    Asteroseismology Gerald Handler Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland Email: [email protected] Abstract Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen. Introduction: variable and pulsating stars Nearly all the physical processes that determine the structure and evolution of stars occur in their (deep) interiors. The production of nuclear energy that powers stars takes place in their cores for most of their lifetime. The effects of the physical processes that modify the simplest models of stellar evolution, such as mixing and diffusion, also predominantly take place in the inside of stars. The light that we receive from the stars is the main information that astronomers can use to study the universe. However, the light of the stars is radiated away from their surfaces, carrying no memory of its origin in the deep interior. Therefore it would seem that there is no way that the analysis of starlight tells us about the physics going on in the unobservable stellar interiors. However, there are stars that reveal more about themselves than others. Variable stars are objects for which one can observe time-dependent light output, on a time scale shorter arXiv:1205.6407v1 [astro-ph.SR] 29 May 2012 than that of evolutionary changes.
    [Show full text]
  • CURRICULUM VITAE Name: Matthew A. Wood Address
    CURRICULUM VITAE Name: Matthew A. Wood Address: Department of Physics and Astronomy Texas A&M University{Commerce Tel: 903-886-5488 Email: [email protected] Education: Ph.D., Astronomy: The University of Texas at Austin, May 1990 M.A., Astronomy: The University of Texas at Austin, Dec. 1985 B.Sci., Physics: Iowa State University, May 1983 Work Experience: 8/12 { Present Deptartment Head & Professor Department of Physics and Astronomy Texas A&M University{Commerce 8/04 { 7/12 Professor Department of Physics & Space Sciences Florida Institute of Technology 8/96 { 7/04 Associate Professor Florida Institute of Technology 6/91 { 7/96 Assistant Professor Florida Institute of Technology 6/90 { 5/91 NSF{NATO Postdoctoral Fellow D´epartement de Physique Universit´ede Montr´eal Societies: American Astronomical Society International Astronomical Union Royal Astronomical Society Sigma Pi Sigma Florida Academy of Sciences Visiting Scientist: International Ultraviolet Explorer Satellite (NASA/Goddard) Kitt Peak National Observatory Mauna Kea Observatory Keck Observatory Hubble Space Telescope McDonald Observatory Proposal Reviewer: NSF / NASA / NOAO / NOVA (Dutch NSF) Referee: The Astrophysical Journal (Main Journal and Letters) Monthly Notices of the Royal Astronomical Society Astronomy and Astrophysics SCIENCE Publications of the Astronomical Society of the Pacific Astrophysics and Space Science Matthew A. Wood Curriculum Vitae Page 2 Major Grants: PI on grants totaling USD $1.9 million. Selected recent: NASA Kepler Mission (PI) \Cataclysmic Variables
    [Show full text]
  • The Proceedings of the 1St International Workshop O Laboratory Astrophysics Experiments with Large Lasers
    CONF-960297— The Proceedings of the 1st International Workshop o Laboratory Astrophysics Experiments with Large Lasers B. A. Remington W.H. Goldstein August 9,1996 DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government Neither die United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any infonriation,apparatas,prodnc^orprocessdisdosed,ori«presentsthatitsnsewonldnotinfrmgeprivatelyownedright8. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement; recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Govenunent or the University of California, and shall notbe used for advertising or product endorsement purposes. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (615) 576-8401, FTS 626-8401 Available to the public from the National Technical Information Service US. Department of Commerce 5285 Port Royal Rcu, Springfield, VA 22161 WorkperfonnedundertheatispicesoftheU^.Departmentof Energy by IawrenceLivennoreNationalLaboratory-under Contract W-7405-Eng-48. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document Contents Conference Photo i Title Page ii Scientific Committee/ Organizing Committee iii Preface iv-v Summary vi-xi I.
    [Show full text]
  • Peculiar Variations of White Dwarf Pulsation Frequencies And
    PECULIAR VARIATIONS OF WHITE DWARF PULSATION FREQUENCIES AND MAESTRO by James Ruland Dalessio A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Spring 2013 c 2013 James Ruland Dalessio All Rights Reserved PECULIAR VARIATIONS OF WHITE DWARF PULSATION FREQUENCIES AND MAESTRO by James Ruland Dalessio Approved: Edmund R. Novak, Ph.D. Chair of the Department of Physics and Astronomy Approved: George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Henry L. Shipman, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Judith L. Provencal, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: James MacDonald, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Copyleftc 2001 by Travis Scott Metcalfe This Information Is Free
    ° Copyleft c 2001 by Travis Scott Metcalfe This information is free; you can redistribute it under the terms of the GNU General Public License as published by the Free Software Foundation. The Dissertation Committee for Travis Scott Metcalfe Certi¯es that this is the approved version of the following dissertation: COMPUTATIONAL ASTEROSEISMOLOGY COMMITTEE: R. Edward Nather, Co-Supervisor Donald E. Winget, Co-Supervisor Paul Charbonneau Kepler Oliveira J. Craig Wheeler COMPUTATIONAL ASTEROSEISMOLOGY by TRAVIS SCOTT METCALFE, B.S., M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Ful¯llment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN August 2001 We are the stars which sing, we sing with our light; we are the birds of ¯re, we fly over the sky. |Dead Can Dance Song of the Stars Acknowledgements When I was looking for the right graduate program in astronomy during the spring of 1996, I only visited three places. Texas was the last of the three, and my visit was only a few days before the universal deadline for making a decision on where to go. I formed my ¯rst impression of Ed Nather and Don Winget while we ate lunch and talked in the WET lab during my visit. By the end of our discussion, I knew I would come to Texas and work with them. Thanks to the unwavering support of my advisers, I am the ¯rst of my class to ¯nish. Only four of my ten original classmates are still working toward their Ph.D.; If not for Ed and Don, I might not have continued in the program myself.
    [Show full text]
  • Pulsating White Dwarfs: New Insights
    The Astronomy and Astrophysics Review (2019) 27:7 https://doi.org/10.1007/s00159-019-0118-4 REVIEW ARTICLE Pulsating white dwarfs: new insights Alejandro H. Córsico1,2 · Leandro G. Althaus1,2 · Marcelo M. Miller Bertolami1,2 · S. O. Kepler3 Received: 11 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Stars are extremely important astronomical objects that constitute the pillars on which the Universe is built, and as such, their study has gained increasing interest over the years. White dwarf stars are not the exception. Indeed, these stars constitute the final evolutionary stage for more than 95% of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the structure, evolution and chemical enrichment of our Galaxy and its components—including the star formation history of the Milky Way. Several important studies have emphasized the advantage of using white dwarfs as reliable clocks to date a variety of stellar populations in the solar neighborhood and in the nearest stellar clusters, including the thin and thick disks, the Galactic spheroid and the system of globular and open clusters. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Not less relevant than these applications, the study of matter at high densities has benefited from our detailed knowledge about evolutionary and observational properties of white dwarfs. In this sense, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model, that is, neutrino physics, axion physics and also radiation from “extra dimensions”, and even B Alejandro H.
    [Show full text]
  • Stars, Galaxies, and Beyond, 2012
    Stars, Galaxies, and Beyond Summary of notes and materials related to University of Washington astronomy courses: ASTR 322 The Contents of Our Galaxy (Winter 2012, Professor Paula Szkody=PXS) & ASTR 323 Extragalactic Astronomy And Cosmology (Spring 2012, Professor Željko Ivezić=ZXI). Summary by Michael C. McGoodwin=MCM. Content last updated 6/29/2012 Rotated image of the Whirlpool Galaxy M51 (NGC 5194)1 from Hubble Space Telescope HST, with Companion Galaxy NGC 5195 (upper left), located in constellation Canes Venatici, January 2005. Galaxy is at 9.6 Megaparsec (Mpc)= 31.3x106 ly, width 9.6 arcmin, area ~27 square kiloparsecs (kpc2) 1 NGC = New General Catalog, http://en.wikipedia.org/wiki/New_General_Catalogue 2 http://hubblesite.org/newscenter/archive/releases/2005/12/image/a/ Page 1 of 249 Astrophysics_ASTR322_323_MCM_2012.docx 29 Jun 2012 Table of Contents Introduction ..................................................................................................................................................................... 3 Useful Symbols, Abbreviations and Web Links .................................................................................................................. 4 Basic Physical Quantities for the Sun and the Earth ........................................................................................................ 6 Basic Astronomical Terms, Concepts, and Tools (Chapter 1) ............................................................................................. 9 Distance Measures ......................................................................................................................................................
    [Show full text]
  • The Full Appendices with All References
    Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection.
    [Show full text]
  • Arxiv:1907.00115V1 [Astro-Ph.SR] 28 Jun 2019
    Noname manuscript No. (will be inserted by the editor) Pulsating white dwarfs: new insights Alejandro H. C´orsico, Leandro G. Althaus, Marcelo M. Miller Bertolami, S. O. Kepler Received: July 2, 2019/ Accepted: July 2, 2019 Abstract Stars are extremely important astronomical objects that constitute the pillars on which the Universe is built, and as such, their study has gained increasing interest over the years. White dwarf stars are not the exception. Indeed, these stars constitute the final evolutionary stage for more than 95 per cent of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the structure, evolution and chemical enrichment of our Galaxy and its components — including the star formation history of the Milky Way. Several important studies have emphasized the advantage of using white dwarfs as reliable clocks to date a variety of stellar populations in the solar neighborhood and in the nearest stellar clusters, including the thin and thick disks, the Galactic spheroid and the system of globular and open clusters. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Not less relevant than these applications, the study of matter at high densities has benefited from our detailed knowledge about evolutionary and observational properties of white dwarfs. In this sense, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model, that is, neutrino physics, axion physics and also radiation from “extra dimensions”, and even crystallization.
    [Show full text]
  • Research Report 2000
    University of Cape Town RESEARCH REPORT 2000 Faculty of Science This report can also be found on UCT’s webpage: http://www.uct.ac.za Editor: Ms M. Ward CONTENTS FACULTY OF SCIENCE Dean’s Introduction 1 Centre for Marine Studies 3 Department of Archaeology 6 Department of Astronomy 12 Department of Biochemistry 16 Department of Botany 21 Department of Chemistry 29 Department of Computer Science 38 Department of Environmental and Geographical Science 43 Department of Geological Sciences 51 Department of Mathematics and Applied Mathematics 58 Department of Microbiology 71 Department of Oceanography 75 Department of Physics 79 Department of Statistical Sciences 84 Department of Zoology 95 Office of the Dean of Science 112 FACULTY OF SCIENCE The Faculty of Science at UCT prides itself on the high quality of its research. Various measures confirm the Faculty’s research stature: for example, it has the largest proportions of NRF A- and B-rated scientists in the country. Furthermore, it boasts an exceptional publication output of around 3.5 journal articles per academic staff member, on average. The information summarised in this report provides further evidence of the impact made globally by our scientists, through publication in the international peer-reviewed literature and participation in international conferences. In addition, much of the research output recorded in this report is directed, with considerable success, towards problems of relevance to the economic and social well-being of South Africans. Details of some particular research-related achievements of members of the Science Faculty follow. The Innovation Fund, administered by the Department of Arts, Culture, Science and Technology, is a programme of support that addresses problems “serious enough to impede socio-economic development or affect our ability to compete …”.
    [Show full text]