Peculiar Variations of White Dwarf Pulsation Frequencies And

Total Page:16

File Type:pdf, Size:1020Kb

Peculiar Variations of White Dwarf Pulsation Frequencies And PECULIAR VARIATIONS OF WHITE DWARF PULSATION FREQUENCIES AND MAESTRO by James Ruland Dalessio A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Spring 2013 c 2013 James Ruland Dalessio All Rights Reserved PECULIAR VARIATIONS OF WHITE DWARF PULSATION FREQUENCIES AND MAESTRO by James Ruland Dalessio Approved: Edmund R. Novak, Ph.D. Chair of the Department of Physics and Astronomy Approved: George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Henry L. Shipman, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Judith L. Provencal, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: James MacDonald, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Donald E. Winget, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Stephen M. Barr, Ph.D. Member of dissertation committee ACKNOWLEDGEMENTS Firstly, I thank Judi Provencal, who has put up with my antics for over 6 years. For all practical purposes, Judi served as my research advisor throughout my graduate career. Judi found the perfect balance of guidance and freedom for me to grow throughout graduate school and we've had a lot fun along the way. I'd also like to thank Harry Shipman, who served as my official advisor. Harry was always there to mentor me in both my teaching and my research. The data used for this research would not have been obtained if it weren't for the diligent work of Denis Sullivan, Fergal Mullally, and JJ Hermes. To them, I am forever indebted for the many hours they spent observing and reducing data. I'd also like to thank Roy Østensen for his work searching for a DB in the Kepler field and spearheading Kepler observations of KIC 8626021. Whenever I had a tough theoretical question, Mike Montgomery was always happy to help whether it was through email or Skype. Fergal Mullally offered extremely helpful suggestions and discussion as referee of my first major publication. I learned a lot about computers from Staszek Zola, and we had a lot of laughs. I also enjoyed time spent with members of the WET team, including Susan Thompson, Kepler, Agnes Kim, Denis Sullivan, Don Winget, and the many many others. In the early years of graduate school, I spent many hours studying with fellow graduate students including Josh Wickman, Dana Saxson, and Mary Oksala. Thanks to you folks for keeping me sane in the first few years. The Final Countdown will forever remind me of the qualifiers. I also met many graduate students in my field at other institutions. I always look forward to seeing JJ Hermes, Ross Falcon, Brad Barlow, Paul Chote, Bart Dunlap, and others. I have greatly enjoyed our conversations over the last few years. iv I've had the opportunity to TA, instruct several courses, and develop lab cur- riculum. I enjoyed TA'ing for Peter Georgopolus and working with Almas Khan, Abby Pillitteri, and Mary Oksala along the way. I thank Dermott Mullan and those at the Delaware Space Grant Consortium for two full years of funding. I also thank Mount Cuba/Crystal Trust for funding me for the first few semesters. Without some physical activity I would have gone (completely) crazy. Special thanks to Mark Poindexter and the folks at Wilbur for organizing our weekly basketball games and to Joe Wiseman, Lori Marinucci, and the New Castle county softball crew for organizing the many years of softball. I've recently also enjoyed playing softball (and post-game activities) with the Honey Badgers, despite our incredibly terrible performance on the field. In last few years, John Meyer and I have become good friends and have had many epic physics and philosophy conversations over lunch. I've also enjoyed our mini video game marathons. Its been a blast and I look forward to starting a software company with John in the very near future. Thanks to my mom, my in-laws Art and Diane, and my sister in-law Amanda, who all took turns taking care of Aria while I worked on the final stretch of my Ph.D. Extra thanks to my mom, who has always supported me, even in those years when I was especially “difficult”. A special thanks to my step-father for his helpful advice and diligent proof-reading, and for keeping me in touch with mainstream astronomy. My father did not get to see me finish graduate school, but no doubt he would be very proud. Lastly and most of all, I thank my wife, who is as patient as she is beautiful. During the course of graduate school Lindsay and I were engaged, married, and wel- comed our first child. Lindsay has supported me during every step of this long process and I wouldn't have made it without her. v To my wife vi TABLE OF CONTENTS LIST OF TABLES :::::::::::::::::::::::::::::::: x LIST OF FIGURES ::::::::::::::::::::::::::::::: xi ABSTRACT ::::::::::::::::::::::::::::::::::: xvii PART I PECULIAR VARIATIONS OF WHITE DWARF PULSATION FREQUENCIES :::::::::::::::::::::::: 1 Chapter 1 BACKGROUND, FORMALISM, AND METHODOLOGY :::: 2 1.1 White Dwarf Asteroseismology :::::::::::::::::::::: 2 1.1.1 Introduction :::::::::::::::::::::::::::: 2 1.1.2 Cooling Processes ::::::::::::::::::::::::: 5 1.1.3 Rotation and Magnetic Fields :::::::::::::::::: 6 1.1.4 Pulsation Timing Based Planet Detection ::::::::::: 7 1.1.5 Combination and Harmonic Modes ::::::::::::::: 8 1.2 Miscellaneous Considerations :::::::::::::::::::::: 9 1.2.1 Creating a Lightcurve :::::::::::::::::::::: 9 1.2.2 Linearizing a Non-Linear Model ::::::::::::::::: 10 1.3 Fourier Analysis :::::::::::::::::::::::::::::: 10 1.3.1 The Fourier Transform :::::::::::::::::::::: 10 1.3.1.1 Definition :::::::::::::::::::::::: 10 vii 1.3.1.2 Properties :::::::::::::::::::::::: 11 1.3.2 Identifying Sinusoidal Variations in a Lightcurve :::::::: 12 1.3.3 Frequency Bootstrapping ::::::::::::::::::::: 13 1.4 The O − C Method :::::::::::::::::::::::::::: 14 1.4.1 Introduction :::::::::::::::::::::::::::: 14 1.4.2 Mathematical Description :::::::::::::::::::: 15 1.4.3 Causes of Perturbations to O − C:::::::::::::::: 18 1.4.3.1 Error in the Frequency ::::::::::::::::: 18 1.4.3.2 Movement of the Source :::::::::::::::: 18 1.4.3.3 Intrinsic Frequency Perturbations ::::::::::: 21 1.4.3.4 Indistinguishable Processes :::::::::::::: 21 1.4.4 Calculating O − C:::::::::::::::::::::::: 22 1.4.5 Phase Ambiguity ::::::::::::::::::::::::: 23 2 EC 20058-5234 :::::::::::::::::::::::::::::::: 25 2.1 Observations and Data Preparation ::::::::::::::::::: 25 2.2 Fourier Analysis :::::::::::::::::::::::::::::: 27 2.3 O − C Analysis :::::::::::::::::::::::::::::: 34 2.4 Amplitude Modulation :::::::::::::::::::::::::: 46 3 KIC 8626021 ::::::::::::::::::::::::::::::::: 58 3.1 Observations and Data Preparation ::::::::::::::::::: 58 3.2 Fourier Analysis :::::::::::::::::::::::::::::: 61 3.3 O − C Analysis :::::::::::::::::::::::::::::: 61 3.4 Amplitude Modulation :::::::::::::::::::::::::: 83 4 GD 66 ::::::::::::::::::::::::::::::::::::: 104 4.1 Observations and Data Preparation ::::::::::::::::::: 104 4.2 Fourier Analysis :::::::::::::::::::::::::::::: 106 4.3 O − C Analysis :::::::::::::::::::::::::::::: 115 4.4 Amplitude Modulation :::::::::::::::::::::::::: 148 5 DISCUSSION ::::::::::::::::::::::::::::::::: 175 5.1 Pulsation Timing Based White Dwarf Planet Detection :::::::: 175 viii 5.2 Cooling and Secular Processes :::::::::::::::::::::: 176 5.3 Combination and Harmonic Modes ::::::::::::::::::: 176 5.4 Model Validation and the Reliability of the Results :::::::::: 177 5.5 Characterization of the Frequency and Amplitude Variations ::::: 178 PART II MAESTRO ::::::::::::::::::::::::::::: 181 6 THE MAESTRO FRAMEWORK :::::::::::::::::::: 182 6.1 Introduction :::::::::::::::::::::::::::::::: 182 6.2 Installation :::::::::::::::::::::::::::::::: 182 6.3 File Organization ::::::::::::::::::::::::::::: 183 6.4 Using MAESTRO ::::::::::::::::::::::::::::: 184 6.5 Configuration ::::::::::::::::::::::::::::::: 186 6.6 Creating a New Directive ::::::::::::::::::::::::: 186 6.6.1 The Manifest ::::::::::::::::::::::::::: 186 6.6.2 Argument Configuration ::::::::::::::::::::: 187 6.6.3 Flag Configuration :::::::::::::::::::::::: 187 6.6.4 Help Text Configuration ::::::::::::::::::::: 188 6.6.5 Creating the MatLab Code for a Directive ::::::::::: 188 7 THE MAESTRO REDUCTION ALGORITHM ::::::::::: 190 7.1 Introduction :::::::::::::::::::::::::::::::: 190 7.2 Preparation :::::::::::::::::::::::::::::::: 193 7.3 Calibration :::::::::::::::::::::::::::::::: 194 7.4 Star Finding ::::::::::::::::::::::::::::::::
Recommended publications
  • Red Giant Sun May Not Destroy Earth
    Site Index Subscriptions Shop Newsletters HOME ANIMALS ENVIRONMENT HISTORY NEWS HOME ANIMAL NEWS ANCIENT WORLD ENVIRONMENT NEWS CULTURES NEWS SCIENCE & SPACE NEWS KIDS WEIRD NEWS MAPS NEWS Red Giant Sun May Not Destroy Earth PEOPLE & PLACES PHOTOGRAPHY Anne Minard for National Geographic News 15 Most Popular News Pages VIDEO September 14, 2007 WORLD MUSIC The first glimpse of a planet that survived its star's red giant phase is Photos in the News offering a glimmer of hope that Earth might make it past our sun's News Videos NATIONAL eventual expansion. GEOGRAPHIC MAGAZINE The newfound planet, dubbed V391 Pegasi b, is much larger than Earth but likely ADVERTISEMENT MAGAZINES orbited its star as closely as our planet orbits the sun (explore a virtual solar system). SHOP LATEST PHOTOS IN THE NEWS SUBSCRIPTIONS When the aging star mushroomed into a red Photo Gallery: Frozen Inca Mummy TV & FILM giant about a hundred times its previous size, Goes On Display V391 Pegasi b was pushed out to an orbit TRAVEL WITH US nearly twice as far away. OUR MISSION Solar Plane Sets Record, Makers Say "After this finding, we now know that planets with an orbital distance similar to the Earth can survive the red giant expansion of their parent Hubble Fans Dispute "Sharpest" Title Enlarge Photo stars," said lead author Roberto Silvotti of the National Institute of Astrophysics in Napoli, Italy. Printer Friendly • Catalog Quick "But this does not automatically mean that even More Photos in the News Shop Email to a Friend the Earth, much smaller and much more vulnerable [than V391 Pegasi b], will survive" our • Books & Atlases RELATED sun's expansion billions of years from now, he NATIONAL GEOGRAPHIC'S PHOTO OF THE DAY • Clothing & Future Universe Will "Stop said.
    [Show full text]
  • The Everchanging Pulsating White Dwarf GD358
    Astronomy & Astrophysics manuscript no. gd358 January 23, 2003 (DOI: will be inserted by hand later) The Everchanging Pulsating White Dwarf GD358 S.O. Kepler1, R. Edward Nather2, Don E. Winget2, Atsuko Nitta3, S. J. Kleinman3, Travis Metcalfe2;4, Kazuhiro Sekiguchi5, Jiang Xiaojun6, Denis Sullivan7, Tiri Sullivan7, Rimvydas Janulis8, Edmund Meistas8, Romualdas Kalytis8, Jurek Krzesinski9, Waldemar OgÃloza9, Staszek Zola10, Darragh O’Donoghue11, Encarni Romero-Colmenero11, Peter Martinez11, Stefan Dreizler12, Jochen Deetjen12, Thorsten Nagel12, Sonja L. Schuh12, Gerard Vauclair13, Fu Jian Ning13, Michel Chevreton14, Jan-Erik Solheim15, Jose M. Gonzalez Perez15, Frank Johannessen15, Antonio Kanaan16, Jos´eEduardo Costa1, Alex Fabiano Murillo Costa1, Matt A. Wood17, Nicole Silvestri17, T.J. Ahrens17, Aaron Kyle Jones18;¤, Ansley E. Collins19;¤, Martha Boyer20;¤, J. S. Shaw21, Anjum Mukadam2, Eric W. Klumpe22, Jesse Larrison22, Steve Kawaler23, Reed Riddle23, Ana Ulla24, and Paul Bradley25 1 Instituto de F´ısicada UFRGS, Porto Alegre, RS - Brazil e-mail: [email protected] 2 Department of Astronomy & McDonald Observatory, University of Texas, Austin, TX 78712, USA 3 Sloan Digital Sky Survey, Apache Pt. Observatory, P.O. Box 59, Sunspot, NM 88349, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA e-mail: [email protected] 5 Subaru National Astronomical Observatory of Japan e-mail: [email protected] 6 Beijing Astronomical Observatory, Academy of Sciences, Beijing 100080, China e-mail: [email protected] 7 University of Victoria, Wellington, New Zealand 8 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 9 Mt. Suhora Observatory, Cracow Pedagogical University, Ul. Podchorazych 2, 30-084 Cracow, Poland 10 Jagiellonian University, Krakow, Poland e-mail: [email protected] 11 South African Astronomical Observatory 12 Universitat T¨ubingen,Germany 13 Universit´ePaul Sabatier, Observatoire Midi-Pyr´en´ees,CNRS/UMR5572, 14 av.
    [Show full text]
  • Does GD356 Have a Terrestrial Planetary Companion
    Mon. Not. R. Astron. Soc. 404, 1984–1991 (2010) doi:10.1111/j.1365-2966.2010.16417.x Does GD 356 have a terrestrial planetary companion? Dayal T. Wickramasinghe,1 Jay Farihi,2 Christopher A. Tout,1,3,4 Lilia Ferrario1 and Richard J. Stancliffe4 1Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia 2Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH 3Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA 4Centre for Stellar and Planetary Astrophysics, Monash University, PO Box 28M, VIC 3800, Australia Accepted 2010 January 25. Received 2010 January 20; in original form 2009 November 2 Downloaded from ABSTRACT GD 356 is unique among magnetic white dwarfs because it shows Zeeman-split Balmer lines in pure emission. The lines originate from a region of nearly uniform field strength (δB/B ≈ 0.1) that covers 10 per cent of the stellar surface in which there is a temperature inversion. The energy source that heats the photosphere remains a mystery but it is likely to be associated with http://mnras.oxfordjournals.org/ the presence of a companion. Based on current models, we use archival Spitzer Infrared Array Camera (IRAC) observations to place a new and stringent upper limit of 12 MJ for the mass of such a companion. In the light of this result and the recent discovery of a 115-min photometric period for GD 356, we exclude previous models that invoke accretion and revisit the unipolar inductor model that has been proposed for this system. In this model, a highly conducting planet with a metallic core orbits the magnetic white dwarf and, as it cuts through field lines, a current is set flowing between the two bodies.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Arxiv:2001.10147V1
    Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis.
    [Show full text]
  • The Fate of Planets
    The Fate of Planets Eva Villaver Universidad Autónoma de Madrid, Dpto. Física Teórica, Módulo 15, Facultad de Ciencias, Campus de Cantoblanco, 28049 Madrid, Spain. e-mail: [email protected] Abstract. As a star evolves off the Main Sequence, it endures major structural changes that are capable of determining the fate of the planets orbiting it. Throughout its evolution along the Red Giant Branch, the star increases its radius by two orders of magnitude. Later, during the Asymptotic Giant Branch, it loses most of its initial mass. Finally, during the Planetary Nebulae phase, it emits intense radiation before ultimately beginning its fade as a white dwarf. We show how the several competing processes (stellar mass-loss, gravitational and frictional drag, tidal forces, planet accretion and evaporation) affect the survival of planets around evolved stars. Keywords: Planets, Evolved Stars, Giant and White Dwarf stars PACS: 97.82.j, 97.10.Me, 97.20.Li PLANET'S FATE BEYOND THE MAIN SEQUENCE The Red Giant Branch Phase Once the nuclear burning has been exhausted in the core, low- and intermediate mass stars evolve into the Red Giant Branch (RGB) phase. During the RGB, hydrogen burning continues in a shell outside the helium core, which now, devoid of energy sources, is contracting and heating up. The stellar evolution timescales (in the absence of significant mass loss) are set by the rate of consumption of the nuclear fuel. As the core contracts the envelope expands and cools. The stellar effective temperature decreases while the star’s radius and luminosity increase. There are several competing processes that affect the orbital distance between the star and the planet as the star evolves off the Main Sequence (MS): the changes in the mass of both the planet and the star (M˙p and M˙∗ respectively), the gravitational and frictional drag (Fg and Ff ), and the tidal force.
    [Show full text]
  • Hot Subdwarf Stars in Close-Up View: Orbits, Rotation, Abundances and Masses of Their Unseen Companions
    Hot Subdwarf Stars in Close-up View: Orbits, Rotation, Abundances and Masses of their Unseen Companions Den Naturwissenschaftlichen Fakult¨aten der Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg zur Erlangung des Doktorgrades vorgelegt von Stephan Geier aus Stadtsteinach Als Dissertation genehmigt von den Naturwissenschaftlichen Fakult¨aten der Universit¨at Erlangen-N¨urnberg Tag der m¨undlichen Pr¨ufung: 18. M¨arz 2009 Vositzender der Promotionskommission: Prof. Dr. E. B¨ansch Erstberichterstatter: Prof. Dr. U. Heber Zweitberichterstatter: Prof. Dr. P. Podsiadlowski, University of Oxford Drittberichterstatter: Prof. Dr. K. Werner, Universit¨at T¨ubingen Contents 1 Hot subdwarf stars: A review 9 1.1 Generalproperties ............................... .... 9 1.2 Single star formation and evolution scenarios . ............ 10 1.3 Hot subdwarf binaries: Observations, formation and evolution........... 12 1.4 Pulsating hot subdwarfs and asteroseismology . ............ 15 1.5 Hot subdwarf atmospheres and diffusion processes . .......... 20 1.6 Hot subdwarfs and extrasolar planets . ......... 21 1.7 Hotsubdwarfsashyper-velocitystars . ........ 23 1.8 Hot subdwarfs and globular clusters . ........ 24 1.9 Hot subdwarfs and the UV-upturn in early-type galaxies . ........... 25 1.10 Hot subdwarf stars, supernovae and cosmology . ........... 26 2 Hot subdwarf stars in close binary systems: Previous work and new discov- eries 30 2.1 Generalstatistics ............................... ..... 30 2.2 Determination of hot subdwarf and companion masses in close binaries . 33 2.3 Orbital parameters of new close binary subdwarfs . ........... 34 2.3.1 Target selection, observations and data reduction . ........... 35 2.3.2 Radial velocity measurements, power spectra and RV curves........ 35 2.3.3 Constraints on the nature of the unseen companions . ......... 36 2.3.4 Results ....................................
    [Show full text]
  • Asteroseismology
    Asteroseismology Gerald Handler Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland Email: [email protected] Abstract Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen. Introduction: variable and pulsating stars Nearly all the physical processes that determine the structure and evolution of stars occur in their (deep) interiors. The production of nuclear energy that powers stars takes place in their cores for most of their lifetime. The effects of the physical processes that modify the simplest models of stellar evolution, such as mixing and diffusion, also predominantly take place in the inside of stars. The light that we receive from the stars is the main information that astronomers can use to study the universe. However, the light of the stars is radiated away from their surfaces, carrying no memory of its origin in the deep interior. Therefore it would seem that there is no way that the analysis of starlight tells us about the physics going on in the unobservable stellar interiors. However, there are stars that reveal more about themselves than others. Variable stars are objects for which one can observe time-dependent light output, on a time scale shorter arXiv:1205.6407v1 [astro-ph.SR] 29 May 2012 than that of evolutionary changes.
    [Show full text]
  • Pulsating Components in Binary and Multiple Stellar Systems---A
    Research in Astron. & Astrophys. Vol.15 (2015) No.?, 000–000 (Last modified: — December 6, 2014; 10:26 ) Research in Astronomy and Astrophysics Pulsating Components in Binary and Multiple Stellar Systems — A Catalog of Oscillating Binaries ∗ A.-Y. Zhou National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; [email protected] Abstract We present an up-to-date catalog of pulsating binaries, i.e. the binary and multiple stellar systems containing pulsating components, along with a statistics on them. Compared to the earlier compilation by Soydugan et al.(2006a) of 25 δ Scuti-type ‘oscillating Algol-type eclipsing binaries’ (oEA), the recent col- lection of 74 oEA by Liakos et al.(2012), and the collection of Cepheids in binaries by Szabados (2003a), the numbers and types of pulsating variables in binaries are now extended. The total numbers of pulsating binary/multiple stellar systems have increased to be 515 as of 2014 October 26, among which 262+ are oscillating eclipsing binaries and the oEA containing δ Scuti componentsare updated to be 96. The catalog is intended to be a collection of various pulsating binary stars across the Hertzsprung-Russell diagram. We reviewed the open questions, advances and prospects connecting pulsation/oscillation and binarity. The observational implication of binary systems with pulsating components, to stellar evolution theories is also addressed. In addition, we have searched the Simbad database for candidate pulsating binaries. As a result, 322 candidates were extracted. Furthermore, a brief statistics on Algol-type eclipsing binaries (EA) based on the existing catalogs is given. We got 5315 EA, of which there are 904 EA with spectral types A and F.
    [Show full text]
  • WASP-33: the First Delta Scuti Exoplanet Host Star
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 November 1, 2018 Letter to the Editor WASP-33: The first δ Scuti exoplanet host star E. Herrero1, J.C. Morales1, I. Ribas1, and R. Naves2 1 Institut de Ci`encies de l’Espai (CSIC-IEEC), Campus UAB, Facultat de Ci`encies, Torre C5 parell, 2a pl, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected], [email protected] 2 Observatori Montcabrer, C/Jaume Balmes, 24, Cabrils, Spain, e-mail: [email protected] Received ¡date¿ / Accepted ¡date¿ ABSTRACT We report the discovery of photometric oscillations in the host star of the exoplanet WASP-33 b (HD 15082). The data were obtained in the R band in both transit and out-of-transit phases from the 0.3-m telescope and the Montcabrer Observatory and the 0.8-m telescope at the Montsec Astronomical Observatory. Proper fitting and subsequent removal of the transit signal reveals stellar photometric variations with a semi-amplitude of about 1 mmag. The detailed analysis of the periodogram yields a structure of significant signals around a frequency of 21 cyc d−1, which is typical of δ Scuti-type variable stars. An accurate study of the power spectrum reveals a possible commensurability with the planet orbital motion with a factor of 26, but this remains to be confirmed with additional time-series data that will permit the identification of the significant frequencies. These findings make WASP-33 the first transiting exoplanet host star with δ Sct variability and a very interesting candidate to search for star-planet interactions.
    [Show full text]
  • CURRICULUM VITAE Name: Matthew A. Wood Address
    CURRICULUM VITAE Name: Matthew A. Wood Address: Department of Physics and Astronomy Texas A&M University{Commerce Tel: 903-886-5488 Email: [email protected] Education: Ph.D., Astronomy: The University of Texas at Austin, May 1990 M.A., Astronomy: The University of Texas at Austin, Dec. 1985 B.Sci., Physics: Iowa State University, May 1983 Work Experience: 8/12 { Present Deptartment Head & Professor Department of Physics and Astronomy Texas A&M University{Commerce 8/04 { 7/12 Professor Department of Physics & Space Sciences Florida Institute of Technology 8/96 { 7/04 Associate Professor Florida Institute of Technology 6/91 { 7/96 Assistant Professor Florida Institute of Technology 6/90 { 5/91 NSF{NATO Postdoctoral Fellow D´epartement de Physique Universit´ede Montr´eal Societies: American Astronomical Society International Astronomical Union Royal Astronomical Society Sigma Pi Sigma Florida Academy of Sciences Visiting Scientist: International Ultraviolet Explorer Satellite (NASA/Goddard) Kitt Peak National Observatory Mauna Kea Observatory Keck Observatory Hubble Space Telescope McDonald Observatory Proposal Reviewer: NSF / NASA / NOAO / NOVA (Dutch NSF) Referee: The Astrophysical Journal (Main Journal and Letters) Monthly Notices of the Royal Astronomical Society Astronomy and Astrophysics SCIENCE Publications of the Astronomical Society of the Pacific Astrophysics and Space Science Matthew A. Wood Curriculum Vitae Page 2 Major Grants: PI on grants totaling USD $1.9 million. Selected recent: NASA Kepler Mission (PI) \Cataclysmic Variables
    [Show full text]
  • Limits on Unresolved Planetary Companions to White Dwarf
    Limits on Unresolved Planetary Companions to White Dwarf Remnants of 14 Intermediate-Mass Stars Mukremin Kilic1,4, Andrew Gould2, and Detlev Koester3 ABSTRACT We present Spitzer IRAC photometry of white dwarf remnants of 14 stars with M =3 − 5 M⊙. We do not detect mid-infrared excess around any of our targets. By demanding a 3σ photometric excess at 4.5 µm for unresolved companions, we rule out planetary mass companions down to 5, 7, or 10 MJ for 13 of our targets based on the Burrows et al. (2003) substellar cooling models. Combined with previous IRAC observations of white dwarf remnants of intermediate-mass stars, we rule out ≥ 10MJ companions around 40 white dwarfs and ≥ 5MJ companions around 10 white dwarfs. Subject headings: infrared: stars — planetary systems — stars: low-mass, brown dwarfs — white dwarfs 1. INTRODUCTION Radial velocity, transit, and microlensing searches are succesful in finding planets around stars less massive than 2M⊙ (see Udry & Santos 2007; Marcy et al. 2005; Gould 2009; Mazeh 2009, and references therein). However, these techniques have limitations for higher mass stars. The main problem is that intermediate- and high-mass stars are big, they are rare, and they do not have many usable lines for radial velocity studies. The short (≤ 1 Gyr) main-sequence lifetimes of intermediate-mass stars and the small radii of the remnant white arXiv:0909.2038v2 [astro-ph.SR] 18 Sep 2009 dwarfs (WDs) imply that the planetary systems around massive stars can be effectively studied after the hosts have been transformed into WDs (Ignace 2001; Burleigh et al.
    [Show full text]