STELLARSTELLAR ARCHEOLOGY:ARCHEOLOGY: What White Dwarf Tell Us About the History of the Galaxy

Dr.Dr. TerryTerry D.D. OswaltOswalt Department of Physics & Space Sciences Florida Institute of Technology [email protected]

“Stars, Companions and Their Interactions: A Memorial to Robert H. Koch” Villanova University, Villanova PA, August 10, 2011 Current Collaborators

Florida Tech Jingkun Zhao Tomomi Otani, Perry Bird, Matthew Bourque, Andrew Colson, Beverly Watson

U. Arizona Jay Holberg

Austin Peay St. U. J. Allyn Smith

Iowa St. U. Lee Ann Willson, Qian Wang

National Astronomical Observatories of China A-li Luo, Gang Zhao

Villanova U. Ed Guinan, Ed Sion

U. Washington Nicole Silvestri National Science Foundation AST-0807919 , , masses

redshifts redshifts

radius relation radius relation - -

formation history star formation history recycling mass recycling mass mass gravitational gravitational thick/thin disk, halo thick/thin disk, halo dark matter content dark matter content age of Galaxy & Universe age of Galaxy & Universe supernovae & dark energy supernovae & dark energy

White Dwarf Stars White Dwarf Stars End product of End product of stellar evolution Test of general relativity Test of general relativity Galactic structure Galactic structure Cosmology Cosmology To find WDs look for faint, fast-moving objects Bright & Slow

Faint & Fast H  m + 5 log  + 5 faint,faint, nearbynearby objectsobjects

blue (hot) red (cool) ““FragileFragile”” Binaries:Binaries: DefinitionDefinition “… “…smallsmall galacticgalactic clustersclusters containingcontaining starsstars ofof thethe samesame ageage andand composition.composition. Giclas et al. 1971-8

”” ––GreensteinGreenstein 19861986

Luyten 1969 et seq. Most common type of binary? (6124 found by Luyten) Common , no detectible orbital motion Coeval, (barely) gravitationally-bound components MS+MSMS+MS PairsPairs

Oswalt 1997

Zinnecker 1984

Different formation mechanisms? Close: fragmentation vs. fission Wide: capture vs. disintegration

Main sequence pairs (>6000 known) Most common type of binaries in Disk? Halo? Sensitive to long-term Galactic perturbations See Allen, Chanamé, Gavras, Kiyaeva, Poveda 2006; New surveys: Chanamé & Gould 2004, Lépine & Shara 2005 MS+WDMS+WD PairsPairs

Oswalt & Sion 1988

WD

MS

LP208-32 A/B

Binaries with at least one evolved star (>1000 known)

MS “benchmark” for Vr , UVW, metallicity WD “benchmark” for age Test of post-MS mass loss & orbit evolution WD initial-final mass relation (IFMR) See Johnston, Catalan 2006 OrbitsOrbits -- comparisonscomparisons Johnston 2006 Disrupted pairs

BH+MS or NS+MS disrupted?

Oswalt 1994

Orbit evolution can only explain ~ 1/2 the increases seen Incompleteness? Lower SFR, especially recently?

Wider a(to) for high mass binaries? www.saraobservatory.org

SARA-N 1.0-m Kitt Peak, Arizona + + FIT Ortega 0.8-m Melbourne, FL

SARA-S 0.6-m Cerro Tololo - Chile + AsterosiesmologyAsterosiesmology

Otani 2011 l=1 m=+1 l=3 m=+2

l=3 m=+3 l=2 i=45º DetectingDetecting aa PlanetaryPlanetary ““SurvivorSurvivor””:: V391V391 PegasiPegasi bb

Silvotti et al. 2007 SARA-S El Pachón 2MASS Dorm Admin Blanco 4m

TheBlanco view 4 -frommeter the telescope top Cerro Tololo, Chile

“By means of Telescopes, there is nothing so far distant but may be represented to our view…” Robert Hooke 1665 FirstFirst SpectraSpectra ofof CoolCool OldOld WhiteWhite DwarfsDwarfs 11 GyrGyr == 1,000,000,0001,000,000,000 yryr

2.2 Gyr 3.0 Gyr

Hintzen et al. 1989

8.1 Gyr 7.6 Gyr HowHow CommonCommon areare WhiteWhite Dwarfs?Dwarfs? HowHow OldOld isis thethe Galaxy?Galaxy?

20 pc WD Sample 3.0

2.5 y = 3x - 1.5075 R2 = 1 2.0

1.5

1.0

log N(cumulative) y = 2.568x - 1.2474 0.5 R2 = 0.9971

0.0 (stars per cubic ) 0.4 0.6 0.8 1.0 1.2 log d (pc) 126 WDs within 20 pc Sample complete to 4pc Oswalt et al. 1996: 9.5 ±1.0 Gyr (N=50) 7.4 ± 0.7 x 10-3 pc-3 Smith 1997: 9.4 ±0.5 Gyr (N=166) →135 pc3 for 1 WD Holberg, Oswalt & Sion 2011 bright faint WDWD MASSES:MASSES: GravitationalGravitational RedshiftsRedshifts

Vorb < 1 km/s

Vrs ≈ Vrad(WD) – Vrad(MS)

Vrs ~ M / R Bergeron et al.

Vrs ~ M/R

Silvestri et al.

< Mergers?

Silvestri et al. 2001 DarkDark MatterMatter Optical (blue) + X-ray (pink) Markevitch et al. 2006, Clowe et al., 2006

1E0657-56 “Bullet Cluster”

Fritz Zwicky Vera Rubin 1898 - 1974 1928 - ““CoolCool BlueBlue WDsWDs”” Sauman & Jabobsen 1999 (brightness)

Hodgkin et al. 2000 WD0346+246 Age ~ 12 Gyr

wavelength WhiteWhite DwarfsDwarfs && DarkDark MatterMatter -- NOTNOT Silvestri, Oswalt, Hawley 2002 halo

Scatter in Velocity anticenter velocity anticenter

halo disk

U

V

forward velocity StellarStellar ActivityActivity www.mtwilson.edu/hk/overview

CaII K H  K S   HK R V R

V StellarStellar ActivityActivity vs.vs. AgeAge

Zhao et al. 2011a Skumanich 1972  H  K S   HK R V Activity

Like people, stars get less active as they get older! Mass ChromosphericChromospheric ActivityActivity inin MSMS BinariesBinaries Testing the assumption of coevality using SDSS pairs

Zhao et al. 2011c, in prep

2 Gyr

4 Gyr 8 Gyr MotherMother NatureNature recyclesrecycles……wewe’’rere proof!proof! The WD Initial-to-Final Mass Relation

NGC 2440

Zhao et al. 2011b, in prep

WD progenitor life → original mass Mi TTeff && loglog gg ofof WhiteWhite DwarfDwarf inin aa BinaryBinary  tt cool == ttms –– ttprog ((ttprog  MMi forfor WD)WD)

CD-38 10983

Koester 2010 models InitialInitial--FinalFinal MassMass RelationRelation (IMFR)(IMFR) ofof WhiteWhite DwarfsDwarfs inin FragileFragile BinariesBinaries

Zhao et al. 2011b, in prep MetallicityMetallicity ofof MainMain SequenceSequence StarsStars inin FragileFragile BinariesBinaries σ[Fe/H]=0.15 dex compared with the values from high resolution spectra

Zhao et al. 2011a 40 EriA

Maximum Correlation with theoretical spectra library of Castelli & Kurucz 2003 PostPost MainMain SequenceSequence PulsationsPulsations && MassMass LossLoss

D. Porter, S. Anderson, P. Woodward U. Minnesota

” e in l h t a e d “

Willson & Wang 2011

V. Wilkat, FIT/SARA MetallicityMetallicity andand PostPost--MSMS MassMass LossLoss

Solar metallicity stars (blue) lose more mass than lower metallicity stars (red) because:

(1) dM/dt reaches a critical value at lower , hence smaller core and more envelope to lose

(2) More dust, higher Willson & Wang 2011 opacity, stronger wind MetallicityMetallicity andand thethe IFMRIFMR

Zhao et al. 2011b, in prep GyrochronologyGyrochronology (Bird, Watson summer 2011 REU; Guinan et al. 2011)

Barnes 2008 Pizzolato et al. 2003 OngoingOngoing WorkWork…… CACA vs.vs. ageage relationrelation inin WD+MSWD+MS binariesbinaries DeterminationDetermination ofof RotationRotation AgesAges OrbitOrbit evolutionevolution andand massmass lossloss ImprovingImproving thethe WDLFWDLF && IFMR,IFMR, e.g.e.g. [Fe/H][Fe/H] SearchSearch forfor fragilefragile binariesbinaries inin halohalo VariabilityVariability inin coolestcoolest WDsWDs  & m rr  mm11 & m22 HighHigh precisionprecision Support from U.S. National Science Foundation grant AST- 0807919 and NSF (China) grants 11078019 and 10821061 is gratefully acknowledged  VV ThankThank--you!you!

“I don’t pretend to understand the Universe—it’s a great deal bigger than I am.” Thomas Carlyle 1868