Hot Subluminous Stars

Total Page:16

File Type:pdf, Size:1020Kb

Hot Subluminous Stars Hot Subluminous Stars U. Heber1 Dr. Remeis-Sternwarte & ECAP, Astronomical Institute, University of Erlangen-N¨urnberg, Germany ABSTRACT Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a labora- tory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He- rich vs. He-poor hot subdwarf stars of the globular clusters ! Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter ele- ments as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet purely understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir sys- arXiv:1604.07749v1 [astro-ph.SR] 26 Apr 2016 tems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW Vir systems from eclipse timings. The high incidence of circumbinary substellar ob- jects suggests that most of the planets are formed from the remaining common- envelope material (second generation planets). { 2 { Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster ! Cen that is unmatched by any field star. Asteroseismology has advanced enormously thanks to the high-precision Kepler photometry and allowed stellar rotation rates to be determined, the interior structure of gravity-mode pulsators to be probed and stellar ages to be estimated. Rotation rates turned out to be unexpectedly slow calling for very efficient angular momentum loss on the red giant branch or during the helium core flash. The convective cores were found to be larger than predicted by standard stellar evolution models requiring very efficient angular momentum transport on the red giant branch. The masses of hot subdwarf stars, both single or in binaries, are the key to understand the stars' evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow both techniques to be applied for mass determination. The results, though few, are in good agreement with predictions from binary population synthesis calculations. New classes of binaries, hosting so-called extremely low mass (ELM) white dwarfs (M<0.3 M ), have recently been discovered, filling a gap in the mosaic of binary stellar evolution. Like most sdB stars the ELM white dwarfs are the stripped cores of red giants, the known companions are either white dwarfs, neutron stars (pulsars) or F- or A-type main sequence stars ("EL CVn" stars). In the near future, the Gaia mission will provide high-precision astrometry for a large sample of subdwarf stars to disentangle the different stellar populations in the field and to compare the field subdwarf population with the globular clusters' hot subdwarfs. New fast-moving subdwarfs will allow the mass of the Galactic dark matter halo to be constrained and additional unbound hyper-velocity stars may be discovered. Subject headings: stars: low mass; stars: subdwarfs; stars: horizontal branch; stars: chemically peculiar; stars: white dwarfs; stars: white dwarfs: helium; stars: white dwarfs: extremely low mass; stars: UV-bright; stars: brown dwarfs; stars: planetary systems; stars: atmospheres; stars: abundances; stars: rotation; stars: magnetic field, stars: oscillations, stars: population II; stars: evolution; stars: kinematics and dynamics; stars: variable: HW Vir, XY Sex, EL CVn, V1093 Her, V499 Ser, V361 Hya, V0366 Aqr; binaries: close; binaries: spectroscopic; binaries: eclipsing; globular clusters: individual (! Cen, NGC 2808, NGC 6752, NGC 5986, M80), open clusters: individual (NGC 188, NGC 6791) { 3 { 1. Introduction The hot subluminous stars of B and O-type (sdB, sdO) represent several late stages in the evolution of low-mass stars. In the Hertzsprung-Russell diagram they can be found between the main sequence and the white-dwarf sequence (see Fig. 1). The discovery of subluminous blue stars at high Galactic latitudes dates back to the 1950s after exploitation of the Humason & Zwicky (1947) photometric survey of the North Galactic Pole and Hyades regions (e.g. Luyten 1953; Greenstein 1956; M¨unch 1958). The number of known objects remained small until the 1980s when the Palomar-Green survey (PG, Green et al. 1986) of the northern Galactic hemisphere was published (see Greenstein 1987; Lynas-Gray 2004, for overviews of early developments). Several other photometric surveys followed, e.g. the Kitt Peak-Downes survey of the Galactic plane (KPD, Downes 1986) and the Edinburgh-Cape Survey (EC, Stobie et al. 1997b) for the southern sky, as well as objective prism surveys, e.g. Byurakan surveys (FBS, SBS, Mickaelian et al. 2007), the Hamburg Quasar Survey (HS, Hagen et al. 1995) for the northern and the Hamburg ESO survey (HE, Wisotzki et al. 1996) for the southern sky. The Sloan Digital Sky survey has doubled the number of known hot subdwarfs within a few years and the Galaxy Evolution Explorer (GALEX) all-sky survey extended the list further. Most of the B-type subdwarfs were identified as helium burning stars of about half a solar mass at the blue end of the horizontal branch, the so-called Extreme Horizontal Branch (EHB, Heber 1986). In contrast to the normal horizontal branch (HB) stars, the hydrogen envelope is too thin (Menv < 0:01 M ) to sustain hydrogen shell burning. Hence, subluminous B stars are the stripped cores of red giants, which managed to ignite helium while retaining just a little bit of hydrogen as their envelope. Maxted et al. (2001) found two-thirds of all sdBs to be in detached binary systems with short periods from hours to days and their companion stars to be mostly white dwarfs. More recent investigations indicate that half of the sdBs reside in such close binaries (Napiwotzki et al. 2004; Copperwheat et al. 2011), still a very high fraction. Their orbital separations are only a few solar radii. Since the sdB stars have evolved from red giants, much larger in size than the present binary orbit, the progenitor system must have undergone a common- envelope phase, during which the orbit shrank when the companion was engulfed in the red giant's envelope. Finally, the common envelope is ejected and a tight, detached binary system remains. The evolution through common-envelope ejection is crucial to an understanding of various types of binaries, including X-ray binaries, double neutron stars, double white dwarfs and sdB binaries. However, common-envelope formation and evolution is poorly understood because of the complexity of the physics involved (for a review see Ivanova et al. 2013). Amongst the various types of post-common-envelope systems, the sdB binaries provide an { 4 { COOL SUBDWARFS WHITE DWARFS Fig. 1.| Hertzsprung-Russell diagram highlighting the position of the extreme horizon- tal branch (EHB) populated by subluminous B stars and located between he upper main sequence and the white dwarf sequence. The EHB is separated from the blue horizontal branch (BHB). The location of subluminous O stars as well as stars having evolved from the asymptotic giant branch is shown for comparison. From Heber (2009); copyright Annual Review of Astronomy & Astrophysics; reproduced with permission. { 5 { important laboratory for studying common-envelope evolution. Because the systems are non-interacting, the properties of the components can be derived in more detail, with higher precision, and selection effects are less severe than for interacting systems such as cataclysmic variables (Pretorius et al. 2007). Hence, sdB stars form an important piece in the puzzle of common-envelope evolution. Many sdB binaries host unseen white dwarf companions and sdBs with neutron star or black hole partners are predicted to exist. Such systems join the zoo of compact binary systems and play a role as progenitors of the cosmologically-important type Ia supernovae and other transient phenomena via mergers driven by gravitational wave radiation. Because of their short periods the orbital gravitational wave emission may be strong enough to be detectable by future space-based missions. An extensive review of the formation and evolu- tion of compact binary star systems has been published recently by Postnov & Yungelson (2014). However, besides degenerate companions, main-sequence stars and brown dwarfs have been discovered to orbit sdB stars. Binary population synthesis has identified several possible channels for the formation of hot subdwarfs, both in binaries as well as single stars that in- volve Roche lobe overflow, common-envelope ejection and gravitational wave-driven mergers of helium white dwarfs.
Recommended publications
  • Mid-Band Gravitational Wave Detection with Precision Atomic Sensors
    Mid-band gravitational wave detection with precision atomic sensors Peter W. Graham Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 Jason M. Hogan Department of Physics, Stanford University, Stanford, CA 94305 E-mail: [email protected] Mark A. Kasevich Department of Physics, Stanford University, Stanford, CA 94305 Surjeet Rajendran Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 Roger W. Romani Kavli Institute for Particle Astrophysics and Cosmology Department of Physics, Stanford University, Stanford, CA 94305. For the MAGIS collaboration Abstract. We assess the science reach and technical feasibility of a satellite mission based on precision atomic sensors configured to detect gravitational radiation. Conceptual advances in the past three years indicate that a two-satellite constellation with science payloads consisting of atomic sensors based on laser cooled atomic Sr can achieve scientifically interesting gravitational wave strain sensitivities in a frequency band between the LISA and LIGO detectors, roughly 30 mHz to 10 Hz. The discovery arXiv:1711.02225v1 [astro-ph.IM] 6 Nov 2017 potential of the proposed instrument ranges from from observation of new astrophysical sources (e.g. black hole and neutron star binaries) to searches for cosmological sources of stochastic gravitational radiation and searches for dark matter. Mid-band gravitational wave detection with precision atomic sensors 2 1. Overview The recent first direct detections of gravitational waves by LIGO represent the beginning of a new era in astronomy [1, 2, 3]. Gravitational wave astronomy can provide information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods.
    [Show full text]
  • White Dwarfs
    Chandra X-Ray Observatory X-Ray Astronomy Field Guide White Dwarfs White dwarfs are among the dimmest stars in the universe. Even so, they have commanded the attention of astronomers ever since the first white dwarf was observed by optical telescopes in the middle of the 19th century. One reason for this interest is that white dwarfs represent an intriguing state of matter; another reason is that most stars, including our sun, will become white dwarfs when they reach their final, burnt-out collapsed state. A star experiences an energy crisis and its core collapses when the star's basic, non-renewable energy source - hydrogen - is used up. A shell of hydrogen on the edge of the collapsed core will be compressed and heated. The nuclear fusion of the hydrogen in the shell will produce a new surge of power that will cause the outer layers of the star to expand until it has a diameter a hundred times its present value. This is called the "red giant" phase of a star's existence. A hundred million years after the red giant phase all of the star's available energy resources will be used up. The exhausted red giant will puff off its outer layer leaving behind a hot core. This hot core is called a Wolf-Rayet type star after the astronomers who first identified these objects. This star has a surface temperature of about 50,000 degrees Celsius and is A composite furiously boiling off its outer layers in a "fast" wind traveling 6 million image of the kilometers per hour.
    [Show full text]
  • Meet the Family
    Open Astronomy 2014; 1 Research Article Open Access Stephan Geier*, Roy H. Østensen, Peter Nemeth, Ulrich Heber, Nicola P. Gentile Fusillo, Boris T. Gänsicke, John H. Telting, Elizabeth M. Green, and Johannes Schaffenroth Meet the family − the catalog of known hot subdwarf stars DOI: DOI Received ..; revised ..; accepted .. Abstract: In preparation for the upcoming all-sky data releases of the Gaia mission, we compiled a catalog of known hot subdwarf stars and candidates drawn from the literature and yet unpublished databases. The catalog contains 5613 unique sources and provides multi-band photometry from the ultraviolet to the far infrared, ground based proper motions, classifications based on spectroscopy and colors, published atmospheric parameters, radial velocities and light curve variability information. Using several different techniques, we removed outliers and misclassified objects. By matching this catalog with astrometric and photometric data from the Gaia mission, we will develop selection criteria to construct a homogeneous, magnitude-limited all-sky catalog of hot subdwarf stars based on Gaia data. As first application of the catalog data, we present the quantitative spectral analysis of 280 sdB and sdOB stars from the Sloan Digital Sky Survey Data Release 7. Combining our derived parameters with state-of-the-art proper motions, we performed a full kinematic analysis of our sample. This allowed us to separate the first significantly large sample of 78 sdBs and sdOBs belonging to the Galactic halo. Comparing the properties of hot subdwarfs from the disk and the halo with hot subdwarf samples from the globular clusters ω Cen and NGC2808, we found the fraction of intermediate He-sdOBs in the field halo population to be significantly smaller than in the globular clusters.
    [Show full text]
  • A Search for Radio Pulsations from Neutron Star Companions of Four
    Astronomy & Astrophysics manuscript no. 16098˙arxiv c ESO 2018 November 15, 2018 A search for radio pulsations from neutron star companions of four subdwarf B stars Thijs Coenen1, Joeri van Leeuwen2,1, and Ingrid H. Stairs3 1 Astronomical Institute ”Anton Pannekoek,” University of Amsterdam, P.O. Box 94249, 1090 GE, Amsterdam, The Netherlands 2 Stichting ASTRON, PO Box 2, 7990 AA Dwingeloo, The Netherlands 3 Dept. of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Z1 Canada ABSTRACT We searched for radio pulsations from the potential neutron star binary companions to subdwarf B stars HE 0532-4503, HE 0929- 0424, TON S 183 and PG 1232-136. Optical spectroscopy of these subdwarfs has indicated they orbit a companion in the neutron star mass range. These companions are thought to play an important role in the poorly understood formation of subdwarf B stars. Using the Green Bank Telescope we searched down to mean flux densities as low as 0.2 mJy, but no pulsed emission was found. We discuss the implications for each system. 1. Introduction Several such binary formation channels have been hypoth- esized. For an sdB to form, a light star must lose most of its The study of millisecond pulsars (MSPs) enables several types hydrogen envelope and ignite helium in its core. In these binary of research in astrophysics, ranging from binary evolution (e.g. systems, sdB stars can be formed through phases of Common Edwards & Bailes, 2001), to the potential detection of back- Envelope evolution where the envelope is ejected, or through ground gravitational radiation using a large set of pulsars with stable Roche Lobe overflow stripping the donor star of its hydro- stable timing properties (Jaffe & Backer, 2003).
    [Show full text]
  • A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
    A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star.
    [Show full text]
  • The X-Ray Universe 2017 List of Posters
    The X-ray Universe 2017 List of Posters A - Solar System, Exoplanets and Star-Planet-Interaction A01 Frederic Marin Transmitted and polarized scattered fluxes by the exoplanet HD 189733b in X-rays B - Star formation, Young Stellar Objects, Cool and Hot Stars B01 Yael Naze A legacy survey of early B-type stars using the RGS B02 Stefan Czesla The coronae of Kepler superflare stars B03 Mauricio Elías Chávez ESTIMATION OF THE STAR FORMATION RATE (SFR) THROUGH DATA ANALYSIS OF SWIFT'S LONG- GRBs FROM 2008 TO 2017 B04 Federico Fraschetti Local protoplanetary disk ionisation by T Tauri star energetic particles B05 Martin A. Guerrero The XMM-Newton View of Wolf-Rayet Bubbles B06 Sandro Mereghetti X-rays as a new tool to study the winds of hot subdwarf stars B07 Yael Naze Zeta Pup variability revisited B08 John Pye A survey of long-term X-ray variability in cool stars B09 Gregor Rauw The flaring activity of pre-main sequence stars in NGC6530 B10 Beate Stelzer Activity and rotation of the X-ray emitting Kepler stars B11 Beate Stelzer Calibrating the time-evolution of the X-ray emission of M dwarfs C - White Dwarfs, Cataclysmic Variables and Novae C01 Andrej Dobrotka XMM-Newton observation of nova like system MV Lyr and search for source of the fast variability detected in Kepler data C02 Cigdem Gamsizkan Reanalysis of high-resolution XMM-Newton data of V2491 Cygni using models of collisionally ionized hot absorbers C03 Isabel J. Lima Simultaneous modelling of X-ray emission and optical polarization of intermediate polars: the case of V405 Aur C04 Arti Joshi XMM-Newton observations of an asynchronously rotating polar CD Ind C05 Sandro Mereghetti The mysterious companion of the hot subdwarf HD 49798 C06 Nasrin Talebpour X-ray Spectra of the Cataclysmic Variable LS Peg using XMM-Newton and SWIFT data Sheshvan D - Isolated Neutron Stars & Magnetars D01 Jaziel G.
    [Show full text]
  • The Sun, Yellow Dwarf Star at the Heart of the Solar System NASA.Gov, Adapted by Newsela Staff
    Name: ______________________________ Period: ______ Date: _____________ Article of the Week Directions: Read the following article carefully and annotate. You need to include at least 1 annotation per paragraph. Be sure to include all of the following in your total annotations. Annotation = Marking the Text + A Note of Explanation 1. Great Idea or Point – Write why you think it is a good idea or point – ! 2. Confusing Point or Idea – Write a question to ask that might help you understand – ? 3. Unknown Word or Phrase – Circle the unknown word or phrase, then write what you think it might mean based on context clues or your word knowledge – 4. A Question You Have – Write a question you have about something in the text – ?? 5. Summary – In a few sentences, write a summary of the paragraph, section, or passage – # The sun, yellow dwarf star at the heart of the solar system NASA.gov, adapted by Newsela staff Picture and Caption ___________________________ ___________________________ ___________________________ Paragraph #1 ___________________________ ___________________________ This image shows an enormous eruption of solar material, called a coronal mass ejection, spreading out into space, captured by NASA's Solar Dynamics ___________________________ Observatory on January 8, 2002. Paragraph #2 Para #1 The sun is a hot ball made of glowing gases and is a type ___________________________ of star known as a yellow dwarf. It is at the heart of our solar system. ___________________________ Para #2 The solar system consists of everything that orbits the ___________________________ sun. The sun's gravity holds the solar system together, by keeping everything from planets to bits of dust in its orbit.
    [Show full text]
  • Red Giant Sun May Not Destroy Earth
    Site Index Subscriptions Shop Newsletters HOME ANIMALS ENVIRONMENT HISTORY NEWS HOME ANIMAL NEWS ANCIENT WORLD ENVIRONMENT NEWS CULTURES NEWS SCIENCE & SPACE NEWS KIDS WEIRD NEWS MAPS NEWS Red Giant Sun May Not Destroy Earth PEOPLE & PLACES PHOTOGRAPHY Anne Minard for National Geographic News 15 Most Popular News Pages VIDEO September 14, 2007 WORLD MUSIC The first glimpse of a planet that survived its star's red giant phase is Photos in the News offering a glimmer of hope that Earth might make it past our sun's News Videos NATIONAL eventual expansion. GEOGRAPHIC MAGAZINE The newfound planet, dubbed V391 Pegasi b, is much larger than Earth but likely ADVERTISEMENT MAGAZINES orbited its star as closely as our planet orbits the sun (explore a virtual solar system). SHOP LATEST PHOTOS IN THE NEWS SUBSCRIPTIONS When the aging star mushroomed into a red Photo Gallery: Frozen Inca Mummy TV & FILM giant about a hundred times its previous size, Goes On Display V391 Pegasi b was pushed out to an orbit TRAVEL WITH US nearly twice as far away. OUR MISSION Solar Plane Sets Record, Makers Say "After this finding, we now know that planets with an orbital distance similar to the Earth can survive the red giant expansion of their parent Hubble Fans Dispute "Sharpest" Title Enlarge Photo stars," said lead author Roberto Silvotti of the National Institute of Astrophysics in Napoli, Italy. Printer Friendly • Catalog Quick "But this does not automatically mean that even More Photos in the News Shop Email to a Friend the Earth, much smaller and much more vulnerable [than V391 Pegasi b], will survive" our • Books & Atlases RELATED sun's expansion billions of years from now, he NATIONAL GEOGRAPHIC'S PHOTO OF THE DAY • Clothing & Future Universe Will "Stop said.
    [Show full text]
  • A Stripped Helium Star in the Potential Black Hole Binary LB-1 A
    A&A 633, L5 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937343 & c ESO 2020 Astrophysics LETTER TO THE EDITOR A stripped helium star in the potential black hole binary LB-1 A. Irrgang1, S. Geier2, S. Kreuzer1, I. Pelisoli2, and U. Heber1 1 Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany e-mail: [email protected] 2 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Received 18 December 2019 / Accepted 1 January 2020 ABSTRACT +11 Context. The recently claimed discovery of a massive (MBH = 68−13 M ) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution. Aims. A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LS V+22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass. Methods. To this end, we study the spectral energy distribution of LS V+22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe. Results. Our analysis clearly shows that LS V+22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O.
    [Show full text]
  • The X-Ray Universe 2017
    The X-ray Universe 2017 6−9 June 2017 Centro Congressi Frentani Rome, Italy A conference organised by the European Space Agency XMM-Newton Science Operations Centre National Institute for Astrophysics, Italian Space Agency University Roma Tre, La Sapienza University ABSTRACT BOOK Oral Communications and Posters Edited by Simone Migliari, Jan-Uwe Ness Organising Committees Scientific Organising Committee M. Arnaud Commissariat ´al’´energie atomique Saclay, Gif sur Yvette, France D. Barret (chair) Institut de Recherche en Astrophysique et Plan´etologie, France G. Branduardi-Raymont Mullard Space Science Laboratory, Dorking, Surrey, United Kingdom L. Brenneman Smithsonian Astrophysical Observatory, Cambridge, USA M. Brusa Universit`adi Bologna, Italy M. Cappi Istituto Nazionale di Astrofisica, Bologna, Italy E. Churazov Max-Planck-Institut f¨urAstrophysik, Garching, Germany A. Decourchelle Commissariat ´al’´energie atomique Saclay, Gif sur Yvette, France N. Degenaar University of Amsterdam, the Netherlands A. Fabian University of Cambridge, United Kingdom F. Fiore Osservatorio Astronomico di Roma, Monteporzio Catone, Italy F. Harrison California Institute of Technology, Pasadena, USA M. Hernanz Institute of Space Sciences (CSIC-IEEC), Barcelona, Spain A. Hornschemeier Goddard Space Flight Center, Greenbelt, USA V. Karas Academy of Sciences, Prague, Czech Republic C. Kouveliotou George Washington University, Washington DC, USA G. Matt Universit`adegli Studi Roma Tre, Roma, Italy Y. Naz´e Universit´ede Li`ege, Belgium T. Ohashi Tokyo Metropolitan University, Japan I. Papadakis University of Crete, Heraklion, Greece J. Hjorth University of Copenhagen, Denmark K. Poppenhaeger Queen’s University Belfast, United Kingdom N. Rea Instituto de Ciencias del Espacio (CSIC-IEEC), Spain T. Reiprich Bonn University, Germany M. Salvato Max-Planck-Institut f¨urextraterrestrische Physik, Garching, Germany N.
    [Show full text]
  • XMM-Newton Observations of the Galactic Globular Clusters NGC 2808 and NGC 4372
    A&A 480, 397–407 (2008) Astronomy DOI: 10.1051/0004-6361:20078327 & c ESO 2008 Astrophysics XMM-Newton observations of the Galactic globular clusters NGC 2808 and NGC 4372 M. Servillat, N. A. Webb, and D. Barret CESR, Université Paul Sabatier, CNRS, 9 avenue du Colonel Roche, 31400 Toulouse, France e-mail: [email protected] Received 20 July 2007 / Accepted 28 November 2007 ABSTRACT Aims. Galactic globular clusters harbour binary systems that are detected as faint X-ray sources. These close binaries are thought to play an important role in the stability of the clusters by liberating energy and delaying the inevitable core collapse of globular clusters. The inventory of close binaries and their identification is therefore essential. Methods. We present XMM-Newton observations of two Galactic globular clusters: NGC 2808 and NGC 4372. We use X-ray spectral and variability analysis combined with ultra-violet observations made with the XMM-Newton optical monitor and published data from the Hubble Space Telescope to identify sources associated with the clusters. We compare the results of our observations with estimates from population synthesis models. Results. Five sources out of 96 are likely to be related to NGC 2808. Nine sources are found in the field of view of NGC 4372, none being located inside its half-mass radius. We find one quiescent neutron star low mass X-ray binary candidate in the core of NGC 2808, and propose that the majority of the central sources in NGC 2808 are cataclysmic variables. An estimation leads to 20±10 cataclysmic variables with luminosity above 4.25 × 1031 erg s−1.
    [Show full text]
  • Does GD356 Have a Terrestrial Planetary Companion
    Mon. Not. R. Astron. Soc. 404, 1984–1991 (2010) doi:10.1111/j.1365-2966.2010.16417.x Does GD 356 have a terrestrial planetary companion? Dayal T. Wickramasinghe,1 Jay Farihi,2 Christopher A. Tout,1,3,4 Lilia Ferrario1 and Richard J. Stancliffe4 1Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia 2Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH 3Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA 4Centre for Stellar and Planetary Astrophysics, Monash University, PO Box 28M, VIC 3800, Australia Accepted 2010 January 25. Received 2010 January 20; in original form 2009 November 2 Downloaded from ABSTRACT GD 356 is unique among magnetic white dwarfs because it shows Zeeman-split Balmer lines in pure emission. The lines originate from a region of nearly uniform field strength (δB/B ≈ 0.1) that covers 10 per cent of the stellar surface in which there is a temperature inversion. The energy source that heats the photosphere remains a mystery but it is likely to be associated with http://mnras.oxfordjournals.org/ the presence of a companion. Based on current models, we use archival Spitzer Infrared Array Camera (IRAC) observations to place a new and stringent upper limit of 12 MJ for the mass of such a companion. In the light of this result and the recent discovery of a 115-min photometric period for GD 356, we exclude previous models that invoke accretion and revisit the unipolar inductor model that has been proposed for this system. In this model, a highly conducting planet with a metallic core orbits the magnetic white dwarf and, as it cuts through field lines, a current is set flowing between the two bodies.
    [Show full text]