Stellar Activity in Exoplanet Hosts

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Activity in Exoplanet Hosts Stellar activity in exoplanet hosts Enrique Herrero Casas Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – CompartirIgual 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0. Spain License. Stellar activity in exoplanet hosts Mem`oria presentada per Enrique Herrero Casas per optar al grau de Doctor per la Universitat de Barcelona Barcelona, juliol de 2014 2 . 3 Programa de doctorat en F´ısica Stellar activity in exoplanet hosts Mem`oria presentada per Enrique Herrero Casas per optar al grau de Doctor per la Universitat de Barcelona Directors: Dr. Ignasi Ribas Dra. Carme Jordi Tutora: Dra. Carme Jordi June 22, 2014 4 res Agra¨ıments Abans d’entrar en mat`eria, voldria expressar el meu m´es sincer agra¨ıment a totes les persones que han contribu¨ıt, de manera directa o indirecta, al treball que aqu´ıes presenta. Primer de tot vull destacar els meus directors de tesi, l’Ignasi i la Carme. He tingut la sort de poder treballar acompanyat per la seva motivaci´o i els seus coneixements i experi`encia en el camp dels exoplanetes i la f´ısica estel·lar. Sense tot aix`o aquest treball no hagu´es estat possible. Tamb´e vull agrair el bon ambient i hospitalitat que m’han acompanyat durant els anys de doctorat per part dels companys, tant durant les temporades al Departament d’Astronomia i Meteorologia (UB) com a l’Institut de Ci`encies de l’Espai (CSIC- IEEC). He gaudit sempre de bona companyia i de suport en els meus projectes. Guardo especial bon record de la meva estada a l’Osservatorio Astrofisico di Catania (INAF) pels consells i el bon fer de Nuccio Lanza, amb qui vaig poder aprofundir en les t`ecniques de modelitzaci´o d’estrelles i obtenir alguns dels resultats importants d’aquest treball. Un agra¨ıment molt especial ha de ser per a la meva fam´ılia, per al meu germ`a, per a l’Elena i per a tots els meus amics propers, ja que sense saber-ne gaire o gens de f´ısica estel·lar, han escrit bona part d’aquest treball quan han suportat els meus bons i mals moments, la meva pres`encia o abs`encia. Estic molt content pels resultats assolits i perqu`e tots ells n’hagin estat coautors. Perultim, ´ no em vull oblidar d’enviar un agra¨ıment tamb´e als meus enemics. N’hi ha pocs, potser es compten amb els dits d’una m`a, per`o sovint s’han esfor¸cat per posar-me els pals a la rodes que despr´es han estat el meu incentiu per fer les coses ben fetes. Aquest treball ha comptat amb el suport econ`omic d’una beca JAE Pre-Doc (CSIC). Tamb´e ha estat parcialment finan¸cat pels Plan Nacional de Astronom´ıa yAstrof´ısica (AYA2009-06934, AYA2012-39612-C03-01, AYA2012-39551-C02-01 i AYA2013-48318-C2-1-R) del Ministerio de Econom´ıa y Competitividad. 5 6 Resum Actualment, la major part dels esfor¸cos en la cerca i caracteritzaci´o d’exoplanetes de tipus terrestre es centren en aquells que orbiten estrelles de baixa massa. Aquestes constitueixen la gran majoria de la poblaci´o de la nostra gal`axia (aproximadament un 75% de les estrelles s´on de massa inferior a la solar) i a m´es el seu inter`esrauenel fet que el senyal fotom`etric i espectrosc`opic dels planetes de tipus terra que hi orbiten ´es major degut a la menor difer`encia amb la mida i la massa de l’estrella. D’altra banda, algunes caracter´ıstiques importants de l’estructura i processos d’aquest tipus d’estrelles s´on encara poc coneguts, i per tant ´es essencial una bona caracteritzaci´o pr`evia d’aquestes, en especial de les estrelles de tipus M, com un dels propers passos en el camp de l’exoplanetologia. En concret, els fen`omens d’activitat estel·lar, degut alapres`encia de taques i f`acules on el perfil espectral i el comportament convectiu ´es diferent al de la fotosfera, introdueixen variacions en les mesures fotom`etriques i espectrosc`opiques amb una periodicitat modulada per la rotaci´o de l’estrella. La seva caracteritzaci´o´es essencial per a l’estudi d’exoplanetes. L’abast dels grans aven¸cos en les t`ecniques observacionals est`a facilitant que l’astronomia amateur faci una important aportaci´oal’observaci´o fotom`etrica de tr`ansits d’exoplanetes. En aquest treball, la col·laboraci´o amb l’astr`onom amateur Ramon Naves (Observatori Montcabrer) ha conduit al descobriment i l’an`alisi de variabilitat fotom`etrica a l’estrella WASP-33 (Herrero et al. 2011), hostatgera de tipus A5 d’un planeta gegant amb tr`ansits amb un per´ıode d’1,21986 dies, esdevenint la primera estrella coneguda de tipus δ Scuti amb un planeta. L’an`alisi realitzada a partir de periodogrames Lomb-Scargle i diversos m`etodes de pesat de les dades va desvetllar la possible commensurabilitat de les oscil·lacions fotom`etriques amb el per´ıode orbital del planeta, suggerint algun tipus d’interacci´o d’aquest amb l’estrella hostatgera. Es tracta d’oscil·lacions d’una escala d’amplitud i periodicitat similars a aquelles relacionades amb l’activitat estel·lar, per`o vinculades a un fenomen de pulsacions, en aquest cas, en una estrella massiva. L’estudi dels fen`omens d’activitat a la fotosfera d’estrelles de baixa massa s’ha realitzat a trav´es de diverses t`ecniques que ens han perm`es modelitzar o b´esimular relacions entre les propietats estel·lars i les dades observables. L’activitat estel·lar alafotosferaest`a relacionada amb la intensitat del camp magn`etic, i aquest amb la velocitat de rotaci´o de l’estrella en termes de l’efecte dinamo. Diverses relacions emp´ıriques per a estrelles de tipus G, K i M, on existeix un embolcall convectiu, per- meten establir correlacions entre determinats indicadors d’activitat, com log(RHK), ielper´ıode de rotaci´o. Aquestes correlacions ens han perm`es generar mostres es- tad´ıstiques d’estrelles amb distribucions estoc`astiques pel que fa a les seves propietats i a la seva disposici´ogeom`etrica, poblant aix´ı el diagrama activitat - v sin i iperme- 7 8 tent realitzar estimacions de l’angle de l’eix de rotaci´o de l’estrella, i, quan existeixen mesures de log(RHK) i de la velocitat de rotaci´o projectada, v sin i. Assumint sempre una alineaci´o entre els eixos de l’`orbita i de la rotaci´o, les estrelles amb inclinacions properes a 90◦ representarien les millors candidates per a una cerca de planetes per tr`ansit. Aquest estudi estad´ıstic s’ha aplicat a una mostra real de 1200 estrelles de baixa massa provinents de diversos cat`alegsambmesuresdelog(RHK)iv sin i, obtenint-ne un subconjunt d’un 10% per al qual l’efici`encia d’una cerca de planetes per tr`ansits es podria veure incrementada entre un factor 2 i 3 respecte a una cerca sobre el conjunt total (Herrero et al. 2012). La fotometria de gran precisi´o de les recents missions espacials Kepler i CoRoT ha perm`es, a banda del descobriment d’alguns centenars de sistemes planetaris, l’estudi de la variabilitat estel·lar a gaireb´e totes les escales de temps on els fen`omens d’activitat hi tenen alguna influ`encia. Les t`ecniques de modelitzaci´o de taques, tant per m`etodes anal´ıtics com per m`etodes d’integraci´odesuperf´ıcie, permeten obtenir informaci´of´ısica de la superf´ıcie de l’estrella a partir de s`eries temporals fotom`etriques i espectrosc`opiques. Durant aquest treball hi ha hagut una estreta col·laboraci´o amb el Grup d’Estrelles Actives i Sistemes de l’OACT (INAF), en con- cret amb A. F. Lanza, per a l’an`alisi de fotometria d’estrelles actives de tipus M observades per Kepler a trav´es de t`ecniques d’integraci´odesuperf´ıcie i un model de m`axima entropia per al mapejat de la distribuci´o de regions actives. Ens hem centrat en l’objecte LHS 6343 A, un dels components d’una parellaoptica ` de dues estrelles M que mostra eclipsis produ¨ıts per una companya nana marr´o cada 12,718 dies. A m´es, tamb´e hi apareix una oscil·laci´o fotom`etrica d’aquest mateix periode desfassada ∼ 100◦ en relaci´o als eclipsis i persistent al llarg dels m´es de 500 dies d’observaci´o. La modelitzaci´o acurada de les dades ha perm`es explicar aquestes oscil·lacions amb la pres`encia de regions actives que apareixen preferentment a una longitud fixa en relaci´o a la posici´odelacompanyananamarr´o, assenyalant una possible con- nexi´o magn`etica entre els dos components (Herrero et al. 2013). Les regions actives mostrarien una deriva sistem`atica, indicant un periode de rotaci´odelaprim`aria de 13, 14 ± 0, 02 dies. D’altra banda, s’ha estudiat tamb´e una explicaci´oalternativa per les oscil·lacions fotom`etriques a LHS 6343 A en termes de l’efecte ”Doppler- beaming”. Hem utilitzat una aproximaci´oBayesianaatrav´es de m`etodes de Monte Carlo per tal d’ajustar l’efecte de modulaci´oel·lipsoidal i de ”Doppler-beaming”, mostrant que aquest darrer ´es el major causant de les oscil·lacions persistents obser- vades a la fotometria.
Recommended publications
  • Exploring Exoplanet Populations with NASA's Kepler Mission
    SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Exploring exoplanet populations with NASA’s Kepler Mission Natalie M. Batalha1 National Aeronautics and Space Administration Ames Research Center, Moffett Field, 94035 CA Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board June 3, 2014 (received for review January 15, 2014) The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux.The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Admin- istration’s long-term goal of finding habitable environments beyond the solar system. planet detection | transit photometry Searching for evidence of life beyond Earth is the Sun would produce an 84-ppm signal Translating Kepler’s discovery catalog into one of the primary goals of science agencies lasting ∼13 h.
    [Show full text]
  • Get Outside What to Look for in the Summer Sky Your Hosts of the Summer Sky Are Three Bright Stars — Vega, Altair and Deneb
    Get Outside What to Look for in the Summer Sky Your hosts of the summer sky are three bright stars — Vega, Altair and Deneb. Together they make up the Summer Triangle. Look for the triangle in the east on a June evening, moving NORTH to overhead as the season progresses. Polaris The Big Dipper Deneb Cygnus Vega Lyra Hercules Arcturus EaST West Summer Triangle Altair Aquila Sagittarius Antares Turn the map so Scorpius the direction you are facing is at the Teapot the bottom. south facebook.com/KidsCanBooks @KidsCanPress GET OUTSIDE Text © 2013 Jane Drake & Ann Love Illustrations © 2013 Heather Collins www.kidscanpress.com Get Outside Vega The Keystone The brightest star in the Between Vega and Arcturus, Summer Triangle, Vega is look for four stars in a wedge or The summer bluish white. It is in the keystone shape. This is the body solstice constellation Lyra, the Harp. of Hercules, the Strongman. His feet are to the north and Every day from late Altair his arms to the south, making December to June, the The second-brightest star in his figure kneel Sun rises and sets a little the triangle, Altair is white. upside down farther north along the Altair is in the constellation in the sky. horizon. But about June Aquila, the Eagle. 21, the Sun seems to stop Keystone moving north. It rises in Deneb the northeast and sets in The dimmest star of the the northwest, seemingly Summer Triangle, Deneb would in the same spots for be the brightest if it were not so Hercules several days.
    [Show full text]
  • Photospheric Activity, Rotation and Magnetic Interaction in LHS 6343 A
    Astronomy & Astrophysics manuscript no. lhs6343_v9 c ESO 2018 May 4, 2018 Photospheric activity, rotation and magnetic interaction in LHS 6343 A E. Herrero1, A. F. Lanza2, I. Ribas1, C. Jordi3, and J. C. Morales1, 3 1 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, Torre C5 parell, 2a pl, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected], [email protected] 2 INAF - Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy, e-mail: [email protected] 3 Dept. d’Astronomia i Meteorologia, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí Franquès 1, E08028 Barcelona, Spain, e-mail: [email protected] Received <date> / Accepted <date> ABSTRACT Context. The Kepler mission has recently discovered a brown dwarf companion transiting one member of the M4V+M5V visual binary system LHS 6343 AB with an orbital period of 12.71 days. Aims. The particular interest of this transiting system lies in the synchronicity between the transits of the brown dwarf C component and the main modulation observed in the light curve, which is assumed to be caused by rotating starspots on the A component. We model the activity of this star by deriving maps of the active regions that allow us to study stellar rotation and the possible interaction with the brown dwarf companion. Methods. An average transit profile was derived, and the photometric perturbations due to spots occulted during transits are removed to derive more precise transit parameters. We applied a maximum entropy spot model to fit the out-of-transit optical modulation as observed by Kepler during an uninterrupted interval of 500 days.
    [Show full text]
  • Summer Constellations
    Night Sky 101: Summer Constellations The Summer Triangle Photo Credit: Smoky Mountain Astronomical Society The Summer Triangle is made up of three bright stars—Altair, in the constellation Aquila (the eagle), Deneb in Cygnus (the swan), and Vega Lyra (the lyre, or harp). Also called “The Northern Cross” or “The Backbone of the Milky Way,” Cygnus is a horizontal cross of five bright stars. In very dark skies, Cygnus helps viewers find the Milky Way. Albireo, the last star in Cygnus’s tail, is actually made up of two stars (a binary star). The separate stars can be seen with a 30 power telescope. The Ring Nebula, part of the constellation Lyra, can also be seen with this magnification. In Japanese mythology, Vega, the celestial princess and goddess, fell in love Altair. Her father did not approve of Altair, since he was a mortal. They were forbidden from seeing each other. The two lovers were placed in the sky, where they were separated by the Celestial River, repre- sented by the Milky Way. According to the legend, once a year, a bridge of magpies form, rep- resented by Cygnus, to reunite the lovers. Photo credit: Unknown Scorpius Also called Scorpio, Scorpius is one of the 12 Zodiac constellations, which are used in reading horoscopes. Scorpius represents those born during October 23 to November 21. Scorpio is easy to spot in the summer sky. It is made up of a long string bright stars, which are visible in most lights, especially Antares, because of its distinctly red color. Antares is about 850 times bigger than our sun and is a red giant.
    [Show full text]
  • Lhs 6343 C: a Transiting Field Brown Dwarf Discovered by the Kepler Mission∗
    The Astrophysical Journal, 730:79 (11pp), 2011 April 1 doi:10.1088/0004-637X/730/2/79 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. LHS 6343 C: A TRANSITING FIELD BROWN DWARF DISCOVERED BY THE KEPLER MISSION∗ John Asher Johnson1,2, Kevin Apps3, J. Zachary Gazak4, Justin R. Crepp1, Ian J. Crossfield5, Andrew W. Howard6, Geoff W. Marcy6, Timothy D. Morton1, Carly Chubak6, and Howard Isaacson6 1 Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125, USA; [email protected] 2 NASA Exoplanet Science Institute (NExScI), CIT Mail Code 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA 3 Cheyne Walk Observatory, 75B Cheyne Walk, Horley, Surrey, RH6 7LR, UK 4 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 5 Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 6 Department of Astronomy, University of California, Mail Code 3411, Berkeley, CA 94720, USA Received 2010 September 8; accepted 2011 January 18; published 2011 March 8 ABSTRACT We report the discovery of a brown dwarf that transits one member of the M+M binary system LHS 6343 AB every 12.71 days. The transits were discovered using photometric data from the Kepler public data release. The LHS 6343 stellar system was previously identified as a single high proper motion M dwarf. We use adaptive optics imaging to resolve the system into two low-mass stars with masses 0.370 ± 0.009 M and 0.30 ± 0.01 M, respectively, and a projected separation of 0.55.
    [Show full text]
  • The Ubvri and Infrared Colour Indices of the Sun and Sun-Like Stars
    The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Edited by G. A. Feiden THE UBVRI AND INFRARED COLOUR INDICES OF THE SUN AND SUN-LIKE STARS Mehmet TANRIVER1, Ferhat Fikri ÖZEREN1 1 Erciyes University, Astronomy and Space Sciences Department, 38039, Kayseri, Turkey Abstract The Sun is not a point source, the photometric observational techniques that are utilised for observing other stars cannot be utilised for the Sun, meaning that it is dicult to derive its colours accurately for astronomical work from direct measurements in dierent passbands. The solar twins are the best choices because they are the stars that are ideally the same as the Sun in all parameters, and also, their colours are highly similar to those of the Sun. From the 60 articles on the Sun and Sun-like stars in the literature from 1964 until today, the solar colour indices in the optic and infrared regions have been estimated. 1 INTRODUCTION Table 1: The obtained average colour indices values of the The Sun is an average-low-mass star in the main sequence Sun with standart deviation (±σ)( Tanrıver (2012), Tanrıver of the Hertzsprung-Russell diagram. Moreover, the Sun is (2014a), Tanrıver (2014b) ). not a point source, the photometric observational techniques that are utilised for observing other stars cannot be utilised B-V 0.6457 ± 0.0421 V-J 1.1413 ± 0.1063 for the Sun. Therefore, the colours and colour indices of the H-K 0.0572 ± 0.0351 U-B 0.1463 ± 0.0596 sun-like stars are used in order to determine the sun’s colour V-H 1.4613 ± 0.1183 J-K 0.3777 ± 0.0494 indices.
    [Show full text]
  • Red Giant Sun May Not Destroy Earth
    Site Index Subscriptions Shop Newsletters HOME ANIMALS ENVIRONMENT HISTORY NEWS HOME ANIMAL NEWS ANCIENT WORLD ENVIRONMENT NEWS CULTURES NEWS SCIENCE & SPACE NEWS KIDS WEIRD NEWS MAPS NEWS Red Giant Sun May Not Destroy Earth PEOPLE & PLACES PHOTOGRAPHY Anne Minard for National Geographic News 15 Most Popular News Pages VIDEO September 14, 2007 WORLD MUSIC The first glimpse of a planet that survived its star's red giant phase is Photos in the News offering a glimmer of hope that Earth might make it past our sun's News Videos NATIONAL eventual expansion. GEOGRAPHIC MAGAZINE The newfound planet, dubbed V391 Pegasi b, is much larger than Earth but likely ADVERTISEMENT MAGAZINES orbited its star as closely as our planet orbits the sun (explore a virtual solar system). SHOP LATEST PHOTOS IN THE NEWS SUBSCRIPTIONS When the aging star mushroomed into a red Photo Gallery: Frozen Inca Mummy TV & FILM giant about a hundred times its previous size, Goes On Display V391 Pegasi b was pushed out to an orbit TRAVEL WITH US nearly twice as far away. OUR MISSION Solar Plane Sets Record, Makers Say "After this finding, we now know that planets with an orbital distance similar to the Earth can survive the red giant expansion of their parent Hubble Fans Dispute "Sharpest" Title Enlarge Photo stars," said lead author Roberto Silvotti of the National Institute of Astrophysics in Napoli, Italy. Printer Friendly • Catalog Quick "But this does not automatically mean that even More Photos in the News Shop Email to a Friend the Earth, much smaller and much more vulnerable [than V391 Pegasi b], will survive" our • Books & Atlases RELATED sun's expansion billions of years from now, he NATIONAL GEOGRAPHIC'S PHOTO OF THE DAY • Clothing & Future Universe Will "Stop said.
    [Show full text]
  • Magnetism, Dynamo Action and the Solar-Stellar Connection
    Living Rev. Sol. Phys. (2017) 14:4 DOI 10.1007/s41116-017-0007-8 REVIEW ARTICLE Magnetism, dynamo action and the solar-stellar connection Allan Sacha Brun1 · Matthew K. Browning2 Received: 23 August 2016 / Accepted: 28 July 2017 © The Author(s) 2017. This article is an open access publication Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observa- tions of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connec- tion”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, includ- ing a very brief discussion of mean-field theory and related concepts.
    [Show full text]
  • Constellation at Your Fingertips: Cygnus
    The National Optical Astronomy Observatory’s Dark Skies and Energy Education Program Constellation at Your Fingertips: Cygnus (Cygnus version adapted from Constellation at Your Fingertips: Orion at www.globeatnight.org) Grades: 3rd - 8th grade Overview: Constellation at Your Fingertips introduces the novice constellation hunter to a method for spotting the main stars in the constellation, Cygnus, the swan. Students will make an outline of the constellation used to locate the stars in Cygnus and visualize its shape. This lesson will engage children and first-time night sky viewers in observations of the night sky. The lesson links history, Greek mythology, literature, and astronomy. Once the constellation is identified, it may be easy to find the summer triangle. The simplicity of Cygnus makes locating and observing it exciting for young learners. More on Cygnus is at the Great World Wide Star Count at http://www.starcount.org. Materials for another citizen-science star hunt, Globe at Night, are available at http://www.globeatnight.org. Purpose: Students will use the this activity to visualize the constellation of Cygnus. This will help them more easily participate in the Great World Wide Star Count citizen-science campaign. The campaign asks participants to match one of 7 different charts of Cygnus with what the participant sees toward Cygnus. Chart 1 has only a few stars. Chart 7 has many. What they will be recording for the campaign is the chart with the faintest star they see. In many cases, observations over years will build knowledge of how light pollution changes over time. Why is this important to astronomers? What causes the variation year to year? The focus is on light pollution and the options we have as consumers when purchasing outdoor lighting and shields.
    [Show full text]
  • Habitability on Local, Galactic and Cosmological Scales
    Habitability on local, Galactic and cosmological scales Luigi Secco1 • Marco Fecchio1 • Francesco Marzari1 Abstract The aim of this paper is to underline con- detectable studying our site. The Climatic Astronom- ditions necessary for the emergence and development ical Theory is introduced in sect.5 in order to define of life. They are placed at local planetary scale, at the circumsolar habitable zone (HZ) (sect.6) while the Galactic scale and within the cosmological evolution, translation from Solar to extra-Solar systems leads to a as pointed out by the Anthropic Cosmological Princi- generalized circumstellar habitable zone (CHZ) defined ple. We will consider the circumstellar habitable zone in sect.7 with some exemplifications to the Gliese-667C (CHZ) for planetary systems and a Galactic Habitable and the TRAPPIST-1 systems; some general remarks Zone (GHZ) including also a set of strong cosmologi- follow (sect.8). A first conclusion related to CHZ is cal constraints to allow life (cosmological habitability done moving toward GHZ and COSH (sect.9). The (COSH)). Some requirements are specific of a single conditions for the development of life are indeed only scale and its related physical phenomena, while others partially connected to the local scale in which a planet are due to the conspired effects occurring at more than is located. A strong interplay between different scales one scale. The scenario emerging from this analysis is exists and each single contribution to life from individ- that all the habitability conditions here detailed must ual scales is difficult to be isolated. However we will at least be met.
    [Show full text]
  • Does GD356 Have a Terrestrial Planetary Companion
    Mon. Not. R. Astron. Soc. 404, 1984–1991 (2010) doi:10.1111/j.1365-2966.2010.16417.x Does GD 356 have a terrestrial planetary companion? Dayal T. Wickramasinghe,1 Jay Farihi,2 Christopher A. Tout,1,3,4 Lilia Ferrario1 and Richard J. Stancliffe4 1Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia 2Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH 3Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA 4Centre for Stellar and Planetary Astrophysics, Monash University, PO Box 28M, VIC 3800, Australia Accepted 2010 January 25. Received 2010 January 20; in original form 2009 November 2 Downloaded from ABSTRACT GD 356 is unique among magnetic white dwarfs because it shows Zeeman-split Balmer lines in pure emission. The lines originate from a region of nearly uniform field strength (δB/B ≈ 0.1) that covers 10 per cent of the stellar surface in which there is a temperature inversion. The energy source that heats the photosphere remains a mystery but it is likely to be associated with http://mnras.oxfordjournals.org/ the presence of a companion. Based on current models, we use archival Spitzer Infrared Array Camera (IRAC) observations to place a new and stringent upper limit of 12 MJ for the mass of such a companion. In the light of this result and the recent discovery of a 115-min photometric period for GD 356, we exclude previous models that invoke accretion and revisit the unipolar inductor model that has been proposed for this system. In this model, a highly conducting planet with a metallic core orbits the magnetic white dwarf and, as it cuts through field lines, a current is set flowing between the two bodies.
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]