Evolutionary and Pulsational Properties of White Dwarf Stars
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Most Massive Pulsating White Dwarf Stars Barbara G
Precision Asteroseismology Proceedings IAU Symposium No. 301, 2013 c International Astronomical Union 2014 J. A. Guzik, W. J. Chaplin, G. Handler & A. Pigulski, eds. doi:10.1017/S1743921313014452 The most massive pulsating white dwarf stars Barbara G. Castanheira1 and S. O. Kepler2 1 Department of Astronomy and McDonald Observatory, University of Texas Austin, TX 78712, USA email: [email protected] 2 Instituto de F´ısica, Universidade Federal do Rio Grande do Sul 91501-970 Porto Alegre, RS, Brazil email: [email protected] Abstract. Massive pulsating white dwarf stars are extremely rare, because of their small size and because they are the final product of high-mass stars, which are less common. Because of their intrinsic smaller size, they are fainter than the normal size white dwarf stars. The motivation to look for this type of stars is to be able to study in detail their internal structure and also derive generic properties for the sub-class of variables, the massive ZZ Ceti stars. Our goal is to investigate whether the internal structures of these stars differ from the lower-mass ones, which in turn could have been resultant from the previous evolutionary stages. In this paper, we present the ensemble seismological analysis of the known massive pulsating white dwarf stars. Some of these pulsating stars might have substantial crystallized cores, which would allow us to probe solid physics in extreme conditions. Keywords. stars: oscillations (including pulsations), stars: white dwarfs 1. Introduction According to the best current evolutionary models, all single stars with masses below 9–10M will end up their lives as white dwarf stars. -
White Dwarfs
Chandra X-Ray Observatory X-Ray Astronomy Field Guide White Dwarfs White dwarfs are among the dimmest stars in the universe. Even so, they have commanded the attention of astronomers ever since the first white dwarf was observed by optical telescopes in the middle of the 19th century. One reason for this interest is that white dwarfs represent an intriguing state of matter; another reason is that most stars, including our sun, will become white dwarfs when they reach their final, burnt-out collapsed state. A star experiences an energy crisis and its core collapses when the star's basic, non-renewable energy source - hydrogen - is used up. A shell of hydrogen on the edge of the collapsed core will be compressed and heated. The nuclear fusion of the hydrogen in the shell will produce a new surge of power that will cause the outer layers of the star to expand until it has a diameter a hundred times its present value. This is called the "red giant" phase of a star's existence. A hundred million years after the red giant phase all of the star's available energy resources will be used up. The exhausted red giant will puff off its outer layer leaving behind a hot core. This hot core is called a Wolf-Rayet type star after the astronomers who first identified these objects. This star has a surface temperature of about 50,000 degrees Celsius and is A composite furiously boiling off its outer layers in a "fast" wind traveling 6 million image of the kilometers per hour. -
Spectral Analysis of the Hybrid PG 1159-Type Central Stars of the Planetary Nebulae Abell 43 and NGC 7094
MNRAS 489, 1054–1071 (2019) doi:10.1093/mnras/stz1994 Advance Access publication 2019 July 25 Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC 7094 L. Lobling¨ ,1‹ T. Rauch ,1 M. M. Miller Bertolami,2,3 H. Todt,4 F. Friederich,1 M. Ziegler,1 K. Werner 1 andJ.W.Kruk5 Downloaded from https://academic.oup.com/mnras/article-abstract/489/1/1054/5538811 by Macquarie University user on 29 August 2019 1Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tubingen,¨ Germany 2Instituto de Astrof´ısica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (B1900FWA) La Plata, Argentina 3Facultad de Ciencias Astronomicas´ y Geof´ısicas, UNLP, Paseo del Bosque s/n, (B1900FWA) La Plata, Argentina 4Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany 5NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Accepted 2019 July 16. Received 2019 June 18; in original form 2019 April 30 ABSTRACT Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the He- rich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of H ≈ 20 per cent by mass (AFTP), ≈ 1 per cent (LTP), or (almost) no H (VLTP). -
R-Process Elements from Magnetorotational Hypernovae
r-Process elements from magnetorotational hypernovae D. Yong1,2*, C. Kobayashi3,2, G. S. Da Costa1,2, M. S. Bessell1, A. Chiti4, A. Frebel4, K. Lind5, A. D. Mackey1,2, T. Nordlander1,2, M. Asplund6, A. R. Casey7,2, A. F. Marino8, S. J. Murphy9,1 & B. P. Schmidt1 1Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 6Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany 7School of Physics and Astronomy, Monash University, VIC 3800, Australia 8Istituto NaZionale di Astrofisica - Osservatorio Astronomico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze, Italy 9School of Science, The University of New South Wales, Canberra, ACT 2600, Australia Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1–3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4–6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7–13. -
UNSTABLE NONRADIAL OSCILLATIONS on HELIUM-BURNING NEUTRON STARS Anthony L
The Astrophysical Journal, 603:252–264, 2004 March 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. UNSTABLE NONRADIAL OSCILLATIONS ON HELIUM-BURNING NEUTRON STARS Anthony L. Piro Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106; [email protected] and Lars Bildsten Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106; [email protected] Received 2003 September 18; accepted 2003 November 17 ABSTRACT Material accreted onto a neutron star can stably burn in steady state only when the accretion rate is high (typically super-Eddington) or if a large flux from the neutron star crust permeates the outer atmosphere. For such situations we have analyzed the stability of nonradial oscillations, finding one unstable mode for pure helium accretion. This is a shallow surface wave that resides in the helium atmosphere above the heavier ashes of the ocean. It is excited by the increase in the nuclear reaction rate during the oscillations, and it grows on the timescale of a second. For a slowly rotating star, this mode has a frequency !=ð2Þð20 30 HzÞ½lðl þ 1Þ=21=2, and we calculate the full spectrum that a rapidly rotating (330 Hz) neutron star would support. The short-period X-raybinary4U1820À30 is accreting helium-rich material and is the system most likely to show this unstable mode, especially when it is not exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally stable atmosphere shows that nonradial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts. -
Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole
Stellar Dynamics and Stellar Phenomena Near A Massive Black Hole Tal Alexander Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel 76100; email: [email protected] | Author's original version. To appear in Annual Review of Astronomy and Astrophysics. See final published version in ARA&A website: www.annualreviews.org/doi/10.1146/annurev-astro-091916-055306 Annu. Rev. Astron. Astrophys. 2017. Keywords 55:1{41 massive black holes, stellar kinematics, stellar dynamics, Galactic This article's doi: Center 10.1146/((please add article doi)) Copyright c 2017 by Annual Reviews. Abstract All rights reserved Most galactic nuclei harbor a massive black hole (MBH), whose birth and evolution are closely linked to those of its host galaxy. The unique conditions near the MBH: high velocity and density in the steep po- tential of a massive singular relativistic object, lead to unusual modes of stellar birth, evolution, dynamics and death. A complex network of dynamical mechanisms, operating on multiple timescales, deflect stars arXiv:1701.04762v1 [astro-ph.GA] 17 Jan 2017 to orbits that intercept the MBH. Such close encounters lead to ener- getic interactions with observable signatures and consequences for the evolution of the MBH and its stellar environment. Galactic nuclei are astrophysical laboratories that test and challenge our understanding of MBH formation, strong gravity, stellar dynamics, and stellar physics. I review from a theoretical perspective the wide range of stellar phe- nomena that occur near MBHs, focusing on the role of stellar dynamics near an isolated MBH in a relaxed stellar cusp. -
The Everchanging Pulsating White Dwarf GD358
Astronomy & Astrophysics manuscript no. gd358 January 23, 2003 (DOI: will be inserted by hand later) The Everchanging Pulsating White Dwarf GD358 S.O. Kepler1, R. Edward Nather2, Don E. Winget2, Atsuko Nitta3, S. J. Kleinman3, Travis Metcalfe2;4, Kazuhiro Sekiguchi5, Jiang Xiaojun6, Denis Sullivan7, Tiri Sullivan7, Rimvydas Janulis8, Edmund Meistas8, Romualdas Kalytis8, Jurek Krzesinski9, Waldemar OgÃloza9, Staszek Zola10, Darragh O’Donoghue11, Encarni Romero-Colmenero11, Peter Martinez11, Stefan Dreizler12, Jochen Deetjen12, Thorsten Nagel12, Sonja L. Schuh12, Gerard Vauclair13, Fu Jian Ning13, Michel Chevreton14, Jan-Erik Solheim15, Jose M. Gonzalez Perez15, Frank Johannessen15, Antonio Kanaan16, Jos´eEduardo Costa1, Alex Fabiano Murillo Costa1, Matt A. Wood17, Nicole Silvestri17, T.J. Ahrens17, Aaron Kyle Jones18;¤, Ansley E. Collins19;¤, Martha Boyer20;¤, J. S. Shaw21, Anjum Mukadam2, Eric W. Klumpe22, Jesse Larrison22, Steve Kawaler23, Reed Riddle23, Ana Ulla24, and Paul Bradley25 1 Instituto de F´ısicada UFRGS, Porto Alegre, RS - Brazil e-mail: [email protected] 2 Department of Astronomy & McDonald Observatory, University of Texas, Austin, TX 78712, USA 3 Sloan Digital Sky Survey, Apache Pt. Observatory, P.O. Box 59, Sunspot, NM 88349, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA e-mail: [email protected] 5 Subaru National Astronomical Observatory of Japan e-mail: [email protected] 6 Beijing Astronomical Observatory, Academy of Sciences, Beijing 100080, China e-mail: [email protected] 7 University of Victoria, Wellington, New Zealand 8 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 9 Mt. Suhora Observatory, Cracow Pedagogical University, Ul. Podchorazych 2, 30-084 Cracow, Poland 10 Jagiellonian University, Krakow, Poland e-mail: [email protected] 11 South African Astronomical Observatory 12 Universitat T¨ubingen,Germany 13 Universit´ePaul Sabatier, Observatoire Midi-Pyr´en´ees,CNRS/UMR5572, 14 av. -
Supernovae Sparked by Dark Matter in White Dwarfs
Supernovae Sparked By Dark Matter in White Dwarfs Javier F. Acevedog and Joseph Bramanteg;y gThe Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario, K7L 2S8, Canada yPerimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada November 27, 2019 Abstract It was recently demonstrated that asymmetric dark matter can ignite supernovae by collecting and collapsing inside lone sub-Chandrasekhar mass white dwarfs, and that this may be the cause of Type Ia supernovae. A ball of asymmetric dark matter accumulated inside a white dwarf and collapsing under its own weight, sheds enough gravitational potential energy through scattering with nuclei, to spark the fusion reactions that precede a Type Ia supernova explosion. In this article we elaborate on this mechanism and use it to place new bounds on interactions between nucleons 6 16 and asymmetric dark matter for masses mX = 10 − 10 GeV. Interestingly, we find that for dark matter more massive than 1011 GeV, Type Ia supernova ignition can proceed through the Hawking evaporation of a small black hole formed by the collapsed dark matter. We also identify how a cold white dwarf's Coulomb crystal structure substantially suppresses dark matter-nuclear scattering at low momentum transfers, which is crucial for calculating the time it takes dark matter to form a black hole. Higgs and vector portal dark matter models that ignite Type Ia supernovae are explored. arXiv:1904.11993v3 [hep-ph] 26 Nov 2019 Contents 1 Introduction 2 2 Dark matter capture, thermalization and collapse in white dwarfs 4 2.1 Dark matter capture . -
PSR J1740-3052: a Pulsar with a Massive Companion
Haverford College Haverford Scholarship Faculty Publications Physics 2001 PSR J1740-3052: a Pulsar with a Massive Companion I. H. Stairs R. N. Manchester A. G. Lyne V. M. Kaspi Fronefield Crawford Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/physics_facpubs Repository Citation "PSR J1740-3052: a Pulsar with a Massive Companion" I. H. Stairs, R. N. Manchester, A. G. Lyne, V. M. Kaspi, F. Camilo, J. F. Bell, N. D'Amico, M. Kramer, F. Crawford, D. J. Morris, A. Possenti, N. P. F. McKay, S. L. Lumsden, L. E. Tacconi-Garman, R. D. Cannon, N. C. Hambly, & P. R. Wood, Monthly Notices of the Royal Astronomical Society, 325, 979 (2001). This Journal Article is brought to you for free and open access by the Physics at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. Mon. Not. R. Astron. Soc. 325, 979–988 (2001) PSR J174023052: a pulsar with a massive companion I. H. Stairs,1,2P R. N. Manchester,3 A. G. Lyne,1 V. M. Kaspi,4† F. Camilo,5 J. F. Bell,3 N. D’Amico,6,7 M. Kramer,1 F. Crawford,8‡ D. J. Morris,1 A. Possenti,6 N. P. F. McKay,1 S. L. Lumsden,9 L. E. Tacconi-Garman,10 R. D. Cannon,11 N. C. Hambly12 and P. R. Wood13 1University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL 2National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA 3Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 4Physics Department, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada 5Columbia Astrophysics Laboratory, Columbia University, 550 W. -
Single Star – Sylvie D
ASTRONOMY AND ASTROPHYSICS – Single Star – Sylvie D. Vauclair and Gerard P. Vauclair SINGLE STARS Sylvie D. Vauclair Institut de Recherches en Astronomie et Planétologie, Université de Toulouse, Institut Universitaire de France, 14 avenue Edouard Belin, 31400 Toulouse, France Gérard P. Vauclair Institut de Recherches en Astronomie et Planétologie, Université de Toulouse, Centre National de la Recherche Scientifique, 14 avenue Edouard Belin, 31400 Toulouse, France Keywords: stars, stellar structure, stellar evolution, magnitudes, HR diagrams, asteroseismology, planetary nebulae, White Dwarfs, supernovae Contents 1. Introduction 2. Stellar observational data 2.1. Distances 2.1.1. Direct Methods 2.1.2. Indirect Methods 2.2. Stellar Luminosities 2.2.1. Apparent Magnitude 2.2.2. Absolute Magnitude 2.3. Surface Temperatures 2.3.1. Brightness Temperatures 2.3.2 Color Temperatures, Color Indices 2.3.3 Effective Temperatures 2.4 Stellar Spectroscopy 2.4.1. Spectral Types 2.4.2. Chemical Composition 2.4.3. Stellar Rotation and Magnetic Fields 2.6. Masses and Radii 3. Stellar structure and evolution 3.1. Color-Magnitude Diagrams 3.2. Stellar Structure 3.2.1. CharacteristicUNESCO Stellar Time Scales – EOLSS 3.2.2. The Basic Equations of the Stellar Structure 3.2.3. ApproximateSAMPLE Solutions CHAPTERS 3.3. Stellar Evolution 3.3.1. Stellar Evolutionary Codes 3.3.2. Stellar Evolution before the Main Sequence 3.3.3 The Main Sequence 3.3.4 Post Main Sequence Tracks 3.3.5 HR Diagrams of Stellar Clusters 3.4. Stars and Stellar Environment: Recent Developments 3.4.1 Atomic Diffusion 3.4.2 Rotation and Rotational Braking ©Encyclopedia of Life Support Systems (EOLSS) ASTRONOMY AND ASTROPHYSICS – Single Star – Sylvie D. -
Spectral Analyses of DO White Dwarfs and PG 1159 Stars from the Sloan Digital Sky Survey
A&A 442, 309–314 (2005) Astronomy DOI: 10.1051/0004-6361:20053280 & c ESO 2005 Astrophysics Spectral analyses of DO white dwarfs and PG 1159 stars from the Sloan Digital Sky Survey S. D. Hügelmeyer1, S. Dreizler1,K.Werner2, J. Krzesinski´ 3,4, A. Nitta3, and S. J. Kleinman3 1 Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: [email protected] 2 Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany 3 New Mexico State University, Apache Point Observatory, 2001 Apache Point Road, PO Box 59, Sunspot, NM 88349, USA 4 Mt. Suhora Observatory, Cracow Pedagogical University, ul. Podchorazych 2, 30-084 Cracow, Poland Received 21 April 2005 / Accepted 4 July 2005 ABSTRACT We present a model atmosphere analysis of ten new DO white dwarfs and five new PG 1159 stars discovered in the Sloan Digital Sky Survey DR1, DR2 and DR3. This is a significant increase in the number of known DOs and PG 1159 stars. DO white dwarfs are situated on the white dwarf cooling sequence from the upper hot end (Teff ≈ 120 000 K) down to the DB gap (Teff ≈ 45 000 K). PG 1159 stars on the other hand feature effective temperatures which exceed Teff = 65 000 K with an upper limit of Teff = 200 000 K and are the proposed precursors of DO white dwarfs. Improved statistics are necessary to investigate the evolutionary link between these two types of stars. From optical SDSS spectra effective temperatures, surface gravities and element abundances are determined by means of non-LTE model atmospheres. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).