What Lies Beneath? Fungal Diversity at the Bottom of Lake Michigan and Lake Superior

Total Page:16

File Type:pdf, Size:1020Kb

What Lies Beneath? Fungal Diversity at the Bottom of Lake Michigan and Lake Superior Journal of Great Lakes Research 44 (2018) 263–270 Contents lists available at ScienceDirect Journal of Great Lakes Research journal homepage: www.elsevier.com/locate/jglr What lies beneath? Fungal diversity at the bottom of Lake Michigan and Lake Superior Hannah E. Wahl a,b, Daniel B. Raudabaugh a,b, Elizabeth M. Bach b,c, Tiffany S. Bone b, Mark R. Luttenton d, Robert H. Cichewicz e,AndrewN.Millerb,⁎ a Department of Plant Biology, University of Illinois, 265 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA b Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA c Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA d Biology Department and Annis Water Resources Institute, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA e Natural Products Discovery Group, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Room 1000, University of Oklahoma, Norman, OK 73019-5251, USA article info abstract Article history: Fungi are phylogenetically diverse organisms found in nearly every environment as key contributors to the pro- Received 2 August 2017 cesses of nutrient cycling and decomposition. To date, most fungal diversity has been documented from terrestrial Accepted 21 December 2017 habitats leaving aquatic habitats underexplored. In particular, comparatively little is known about fungi inhabiting Available online 10 January 2018 freshwater lakes, particularly the benthic zone, which may serve as an untapped resource for fungal biodiversity. Advances in technology allowing for direct sequencing of DNA from environmental samples provide a new oppor- Communicated by Wendylee Stott tunity to investigate freshwater benthic fungi. In this study, we employed both culture-dependent and culture- Keywords: independent methods to evaluate the diversity of fungi in one of the largest freshwater systems on Earth, the Ascomycota North American Laurentian Great Lakes. This study presents the first comprehensive survey of fungi from sediment Aquatic fungi from Lake Michigan and Lake Superior, resulting in 465 fungal taxa with only 7% of sequence overlap between these Basidiomycota two methods. Additionally, culture-independent analyses of the ITS1 and ITS2 regions revealed 49% and 72%, re- Freshwater spectively, of the OTUs did not match a described fungal taxonomic group below kingdom Fungi. The low level of Great Lakes sequence overlap between methods and high percentage of fungal taxa that can only be classified at the kingdom Next-gen sequencing level suggests an immense amount of fungal diversity remains to be studied in these aquatic fungal communities. Systematics © 2018 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved. Introduction as pathogens and decomposers of aquatic animals, insects, macro- phytes, and algae (Hyde et al., 1998; Wong et al., 1998). Fungi in aquatic Fungi are diverse organisms found in nearly every global environ- habitats can range from long-term residents that are adapted to com- ment as decomposers, pathogens, and symbionts. An estimated 1.5 mil- plete their lifecycle in water (e.g. Chytridiomycota, aquatic hyphomy- lion species of fungi inhabit the earth (Hawksworth, 1991), of which cetes, and some yeasts), to transient fungal species that reside as only 5% have been described to date (Mueller and Schmit, 2007). propagules in water transported from a terrestrial source. Much of the described fungal diversity has been documented from ter- Freshwater environments account for nearly 10% of all biological di- restrial environments leaving aquatic habitats seldom explored. Fungi versity (Strayer and Dudgeon, 2010), but in regards to fungal diversity, are essential to ecosystems as key drivers of nutrient recycling; so un- they remain grossly understudied. The dynamics of fungi in lotic sys- derstanding fungal diversity within aquatic ecosystems is paramount tems has been the focus of freshwater fungal research leaving freshwa- for understanding ecosystem processes (Shearer et al., 2007). ter lakes nearly unexplored (Wurzbacher et al., 2010). Freshwater lakes An estimated 3000–4150 species of fungi have been described from have unique habitats: littoral, pelagic, and benthic, each harboring aquatic habitats (Shearer et al., 2007; Jones et al., 2014), compared to unique communities of fungi (Wurzbacher et al., 2016). The littoral is 98,000 described from terrestrial environments (Kirk et al., 2008). subjected to high organic matter input leading to a diversity of fungi as- Fungi are found in diverse aquatic habitats including marine, brackish sociated with plants and decomposition, the pelagic zone is home to and freshwater environments, seas, wetlands, streams, and lakes. Simi- more specialized groups of fungi that can survive as saprobes or para- lar to their roles in terrestrial environments, fungi in aquatic systems act sites of plankton and algae, while the benthic zone is hypothesized to serve mainly as a reservoir for fungal spores (Wurzbacher et al., ⁎ Corresponding author. 2010). However, research in marine systems suggests fungal communi- E-mail address: [email protected] (A.N. Miller). ties exist and are active in the benthic region (Edgcomb et al., 2011; Orsi https://doi.org/10.1016/j.jglr.2018.01.001 0380-1330/© 2018 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved. 264 H.E. Wahl et al. / Journal of Great Lakes Research 44 (2018) 263–270 et al., 2013). Although little overlap has been reported between fresh- DNA extraction and sequencing water and marine fungal species (Shearer et al., 2007), these results sug- DNA was extracted by adding 200 μl of a 0.5 M NaOH solution to fro- gest that the benthic zone of freshwater lakes is likely to contain active zen mycelium tissue, which was ground for approximately 1 min, incu- fungal communities and serve as a new resource for discovering unique bated between 0 and 4 °C for approximately 20 min, and centrifuged at fungi. 16,800 rcf for 2 min. Five microliters of supernatant was added to 495 μL One such region that holds great promise for describing fungal biodi- 100 mM Tris-HCL buffered with NaOH to pH 8.5–8.9 (Osmundson et al., versity is the North American Laurentian Great Lakes system, which 2013). PCR was performed using a Bio-Rad PTC 200 thermal cycler. A 25 holds approximately 18% of global surface freshwater (Fuller and μl reaction volume was used consisting of 12.5 μLGoTaq®GreenMaster Shear, 1995). To date, only 18 fungal species have been reported from Mix (Promega), 1 μl of each 10 μM primer ITS1F and ITS4 (Electronic Lake Michigan (Paterson, 1967; Kiziewicz and Nalepa, 2008). Paterson Supplementary material (ESM) Table S1), 3 μL Tris-HCL-DNA extraction (1967) used bait “traps” placed at 26–31 m depths to capture solution and 7.5 μL nuclease free water. The following thermal cycle pa- Chytridiomycota while Kiziewicz and Nalepa (2008) collected water rameters were used: 94 °C for 2 min for initial denaturing, followed by samples between 10 and 80 m to isolate Ascomycota, Chytridiomycota 30 cycles of 94 °C for 30 s, 55 °C for 45 s, 72 °C for 1 min with a final ex- and Zygomycota. The goal of this research was to survey the benthic tension step at 72 °C for 10 min. Gel electrophoresis was carried out fungal community in Lake Michigan and Lake Superior by using using a 1% TBE agarose gel with ethidium bromide to verify the presence culture-dependent and culture-independent techniques. Employing of PCR product prior to purification. The resulting PCR product was pu- these methods in tandem can provide a more detailed snapshot of fun- rified using the Wizard® SV Gel and PCR Clean-up System (Promega). A gal communities. This study offers the first systematic inventory of fungi BigDye® Terminator 3.1 cycle sequencing kit (Applied Biosystems Inc.) from sediments of two Great Lakes based on the use of both traditional was used to sequence the entire ITS (internal transcribed spacer) region culture-dependent techniques and current culture-independent envi- of nrDNA in one direction using the ITS5 (ESM Table S1) primer on an ronmental sequencing. Applied Biosystems 3730XL high-throughput capillary sequencer. Culture-independent Methods Sample selection Sample collection A total of 48 sediment samples collected from Lake Michigan (Fig. 1) and Lake Superior (Fig. 2) in 2015 were selected for culture- Sediment samples were collected during the summer months of independent environmental sequencing. Two negative controls were 2014, 2015, and 2016 from Lake Michigan (Fig. 1) and from Lake Supe- included for DNA extraction and sequencing. rior (Fig. 2) in 2015 and 2016. One hundred and forty-five samples were taken from depths between 30 and 272 m from Lake Michigan, while 20 DNA extraction and sequencing samples were taken from depths between 68 and 263 m from Lake Environmental DNA was extracted from approximately 0.5 g of sed- Superior using a Wildco Ponar® dredge. The depth of the sediment sam- iment using MoBio PowerSoil DNA isolation kits following the Earth ples ranged between 7 and 15 cm, but only the top 1 cm of the sediment Microbiome protocol (Gilbert et al., 2010). The ITS1 and ITS2 regions surface layer was collected for analysis. The dredge was thoroughly of the nuclear ribosomal DNA were used to identify fungal taxa washed and sanitized for at least 3 min in a 5% bleach solution between (Schoch et al., 2012). The high throughput Fluidigm Access Array each sample collection. All equipment was swabbed with sterile (Brown et al., 2016) was used to amplify the ITS1 and ITS2 regions of Copan™ swabs before sample collection. Samples and swabs were the environmental samples using fungal specificprimers(ESM stored on ice for up to four days before being sent overnight to the Illi- Table S1). Fluidigm Access Array amplicons were sequenced using the nois Natural History Survey.
Recommended publications
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Lecanicillium Fungicola 150-1, the Causal Agent of Dry Bubble Disease Downloaded From
    GENOME SEQUENCES crossm Genome Sequence of Lecanicillium fungicola 150-1, the Causal Agent of Dry Bubble Disease Downloaded from Alice M. Banks,a* Farhana Aminuddin,a Katherine Williams,a Thomas Batstone,a Gary L. A. Barker,a Gary D. Foster,a Andy M. Baileya aSchool of Biological Sciences, University of Bristol, Bristol, United Kingdom ABSTRACT The fungus Lecanicillium fungicola causes dry bubble disease in the http://mra.asm.org/ white button mushroom Agaricus bisporus. Control strategies are limited, as both the host and pathogen are fungi, and there is limited understanding of the interac- tions in this pathosystem. Here, we present the genome sequence of Lecanicillium fungicola strain 150-1. ecanicillium fungicola (Preuss) Zare & Gams [synonym: Verticillium fungicola (Preuss) LHassebrauk] (1), an ascomycete fungus of the order Hypocreales, is the causal agent of dry bubble disease of the white button mushroom Agaricus bisporus, as well as of on September 18, 2020 at Imperial College London other commercially cultivated basidiomycetes (2). Dry bubble disease presents symp- toms that include necrotic lesions on mushroom caps, stipe blowout, and undifferen- tiated tissue masses (2). Some factors involved in this interaction have been proposed based on suppression subtractive hybridization (SSH) and expressed sequence tag (EST) data (3). This disease is of economic importance, causing significant yield/quality losses in the mushroom industry (4). Control methods rely on rigorous hygiene procedures and targeted fungicide treatments; however, increased resistance against these fungi- cides has been reported (5, 6). Recent taxonomic revisions place L. fungicola close to several arthropod- and nematode-pathogenic fungi rather than to plant-pathogenic Verticillium spp.
    [Show full text]
  • Culture Inventory
    For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1
    [Show full text]
  • APP202247 APP202247 Decision Document Final.Pdf
    DECISION 14 January 2016 1. Summary Substance MYCOTAL WG Application code APP202247 Application type To import or manufacture for release any hazardous substance under Section 28 of the Hazardous Substances and New Organisms Act 1996 (“the Act”) Applicant New Zealand Gourmet Limited Purpose of the application To seek approval to import MYCOTAL WG, a microbial pest control agent containing the spores of the entomopathogenic fungus Lecanicillium muscarium 19-79 strain, for the control of whitefly in greenhouse crops Date application received 13 April 2015 Consideration date 15 December 2015 Further information was requested from the applicant during the evaluation and review of the application in accordance with sections 52 and 58 of the Act and consequently the consideration was postponed in accordance with section 59 of the Act Considered by The Chief Executive1 of the Environmental Protection Authority (“the EPA”) Decision Approved with controls Approval code HSR101089 Hazard classifications 6.5A, 6.5B, 9.1D 1 The Chief Executive of the EPA has made the decision on this application under delegated authority in accordance with section 19 of the Act. www.epa.govt.nz Page 2 of 121 Decision on application for approval to import or manufacture Mycotal WG for release (APP202247) 2. Background 2.1. MYCOTAL WG is intended for use as a microbial pest control agent (MPCA) to control whitefly in greenhouse crops. It is a water dispersible granule (WDG) formulation containing spores of the fungus Lecanicillium muscarium 19-79 strain. 2.2. The applicant intends to import MYCOTAL WG into New Zealand fully formulated, packed and labelled in 500 g and 1 kg polyethylene bags in fibreboard containers.
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • What If Esca Disease of Grapevine Were Not a Fungal Disease?
    Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot.
    [Show full text]
  • Entomopathogenic Fungal Identification
    Entomopathogenic Fungal Identification updated November 2005 RICHARD A. HUMBER USDA-ARS Plant Protection Research Unit US Plant, Soil & Nutrition Laboratory Tower Road Ithaca, NY 14853-2901 Phone: 607-255-1276 / Fax: 607-255-1132 Email: Richard [email protected] or [email protected] http://arsef.fpsnl.cornell.edu Originally prepared for a workshop jointly sponsored by the American Phytopathological Society and Entomological Society of America Las Vegas, Nevada – 7 November 1998 - 2 - CONTENTS Foreword ......................................................................................................... 4 Important Techniques for Working with Entomopathogenic Fungi Compound micrscopes and Köhler illumination ................................... 5 Slide mounts ........................................................................................ 5 Key to Major Genera of Fungal Entomopathogens ........................................... 7 Brief Glossary of Mycological Terms ................................................................. 12 Fungal Genera Zygomycota: Entomophthorales Batkoa (Entomophthoraceae) ............................................................... 13 Conidiobolus (Ancylistaceae) .............................................................. 14 Entomophaga (Entomophthoraceae) .................................................. 15 Entomophthora (Entomophthoraceae) ............................................... 16 Neozygites (Neozygitaceae) ................................................................. 17 Pandora
    [Show full text]
  • Savoryellales (Hypocreomycetidae, Sordariomycetes): a Novel Lineage
    Mycologia, 103(6), 2011, pp. 1351–1371. DOI: 10.3852/11-102 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella Nattawut Boonyuen1 Canalisporium) formed a new lineage that has Mycology Laboratory (BMYC), Bioresources Technology invaded both marine and freshwater habitats, indi- Unit (BTU), National Center for Genetic Engineering cating that these genera share a common ancestor and Biotechnology (BIOTEC), 113 Thailand Science and are closely related. Because they show no clear Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand, and Department of relationship with any named order we erect a new Plant Pathology, Faculty of Agriculture, Kasetsart order Savoryellales in the subclass Hypocreomyceti- University, 50 Phaholyothin Road, Chatuchak, dae, Sordariomycetes. The genera Savoryella and Bangkok 10900, Thailand Ascothailandia are monophyletic, while the position Charuwan Chuaseeharonnachai of Ascotaiwania is unresolved. All three genera are Satinee Suetrong phylogenetically related and form a distinct clade Veera Sri-indrasutdhi similar to the unclassified group of marine ascomy- Somsak Sivichai cetes comprising the genera Swampomyces, Torpedos- E.B. Gareth Jones pora and Juncigera (TBM clade: Torpedospora/Bertia/ Mycology Laboratory (BMYC), Bioresources Technology Melanospora) in the Hypocreomycetidae incertae
    [Show full text]
  • A Comparative Pilot Study of Bacterial and Fungal Dysbiosis In
    microorganisms Article A Comparative Pilot Study of Bacterial and Fungal Dysbiosis in Neurodevelopmental Disorders and Gastrointestinal Disorders: Commonalities, Specificities and Correlations with Lifestyle Ibrahim Laswi 1 , Ameena Shafiq 1, Dana Al-Ali 1, Zain Burney 1, Krishnadev Pillai 1, Mohammad Salameh 1, Nada Mhaimeed 1, Dalia Zakaria 1, Ali Chaari 1 , Noha A. Yousri 2,3,† and Ghizlane Bendriss 1,*,† 1 Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; [email protected] (I.L.); [email protected] (A.S.); [email protected] (D.A.-A.); [email protected] (Z.B.); [email protected] (K.P.); [email protected] (M.S.); [email protected] (N.M.); [email protected] (D.Z.); [email protected] (A.C.) 2 Research Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; [email protected] 3 Computers and System Engineering, Alexandria University, Alexandria 21526, Egypt * Correspondence: [email protected] † Noha A. Yousri and Ghizlane Bendriss are equally contributing authors. Abstract: Gastrointestinal disorders (GIDs) are a common comorbidity in patients with neurode- Citation: Laswi, I.; Shafiq, A.; Al-Ali, velopmental disorders (NDDs), while anxiety-like behaviors are common among patients with D.; Burney, Z.; Pillai, K.; Salameh, M.; gastrointestinal diseases. It is still unclear as to which microbes differentiate these two groups. This Mhaimeed, N.; Zakaria, D.; Chaari, pilot study aims at proposing an answer by exploring both the bacteriome and the mycobiome in a A.; Yousri, N.A.; et al. A Comparative cohort of 55 volunteers with NDD, GID or controls, while accounting for additional variables that Pilot Study of Bacterial and Fungal are not commonly included such as probiotic intake and diet.
    [Show full text]
  • Cutaneous and Pulmonary Mucormycosis in Rag1- and Il2rg-Deficient Rats
    Comparative Medicine Vol 70, No 4 Copyright 2020 August 2020 by the American Association for Laboratory Animal Science Pages 390–395 Case Series Cutaneous and Pulmonary Mucormycosis in Rag1- and Il2rg-deficient Rats Anna E Sarfaty,* Susan R Compton, Peter C Smith, and Caroline J Zeiss Immunodeficient rats are valuable in transplantation studies, but are vulnerable to infection from opportunistic organisms such as fungi. Immunodeficient Rag1- and Il2rg-deficient (RRG) rats housed at our institution presented with dark, prolif- erative, keratinized dermal growths. Histologic and PCR results indicated that the predominant organism associated with these lesions was fungus from the family Mucoraceae, mostly of the genus Rhizopus. The Mucoraceae family of fungi are environmental saprophytes and are often found in rodent bedding. These fungi can cause invasive opportunistic infections in immunosuppressed humans and animals. We discuss husbandry practices for immunosuppressed rodents with a focus on controlling fungal contaminants. DOI: 10.30802/AALAS-CM-20-000015 Immunodeficient rodent models are valuable to transplanta- with by pulmonary and cutaneous sequelae.3,7,24 Cutaneous mu- tion studies and may accept immunogenic donor cells or tissues cormycosis typically presents with a necrotic eschar.6,24 Biopsy without rejection.18 Immunodeficient rats are often preferred to and culture are recommended, followed by surgical debride- mice, as their larger size supports more precise surgical proce- ment, antifungal therapy such as amphotericin B and azole dures and larger blood and tissue harvests.18 However, the same drugs, and resolution of any predisposing comorbidities.2,3,6,7,15,24 immunodeficiency which makes them useful transplantation Mucormycosis has rarely been reported in veterinary spe- recipients also makes them susceptible to infection from oppor- cies.
    [Show full text]
  • Two New Sordariomycetes Records from Forest Soils in Thailand
    Asian Journal of Mycology 3(1): 456–471 (2020) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/3/1/16 Two new Sordariomycetes records from forest soils in Thailand Yasanthika WAE1,2,6, Wanasinghe DN3,4,5, Karunarathna SC3,4,5, Bhat DJ7, Samarakoon SMBC1,2, Ren GC1,3, Monkai J1, Mortimer PE3,5 and Hyde KD1,2,6* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People's Republic of China 4World Agroforestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, People's Republic of China 5Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, Yunnan, People's Republic of China 6Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guang Dong Province, People's Republic of China 7Formerly, Department of Botany, Goa University, Goa, India; House No. 128/1-J, Azad Co-Op Housing Society, Curca, P.O. Goa Velha-403108, India Yasanthika WAE, Wanasinghe DN, Karunarathna SC, Bhat DJ, Samarakoon SMBC, Ren GC, Monkai J, Mortimer PE, Hyde KD 2020 – Two new Sordariomycetes records from forest soils in Thailand. Asian Journal of Mycology 3(1), 456–471, Doi 10.5943/ajom/3/1/16 Abstract Forest soils contain relatively high levels of fungal diversity compared to other soil types and are primarily comprised of pathogens, saprobes or mutualists.
    [Show full text]
  • Analysis of the Complete Mitochondrial Genome of Pochonia
    Lin et al. BMC Microbiology (2015) 15:5 DOI 10.1186/s12866-015-0341-8 RESEARCH ARTICLE Open Access Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales Runmao Lin1†, Chichuan Liu1†, Baoming Shen1,2, Miao Bai3, Jian Ling1, Guohua Chen1, Zhenchuan Mao1, Xinyue Cheng4* and Bingyan Xie1* Abstract Background: The fungus Pochonia chlamydosporia parasitizes nematode eggs and has become one of the most promising biological control agents (BCAs) for plant-parasitic nematodes, which are major agricultural pests that cause tremendous economic losses worldwide. The complete mitochondrial (mt) genome is expected to open new avenues for understanding the phylogenetic relationships and evolution of the invertebrate-pathogenic fungi in Hypocreales. Results: The complete mitogenome sequence of P. chlamydosporia is 25,615 bp in size, containing the 14 typical protein-coding genes, two ribosomal RNA genes, an intronic ORF coding for a putative ribosomal protein (rps3) and a set of 23 transfer RNA genes (trn) which recognize codons for all amino acids. Sequence similarity studies and syntenic gene analyses show that 87.02% and 58.72% of P. chlamydosporia mitogenome sequences match 90.50% of Metarhizium anisopliae sequences and 61.33% of Lecanicillium muscarium sequences with 92.38% and 86.04% identities, respectively. A phylogenetic tree inferred from 14 mt proteins in Pezizomycotina fungi supports that P. chlamydosporia is most closely related to the entomopathogenic fungus M. anisopliae. The invertebrate-pathogenic fungi in Hypocreales cluster together and clearly separate from a cluster comprising plant-pathogenic fungi (Fusarium spp.) and Hypocrea jecorina.
    [Show full text]