A Review on Diversity, Bio-Ecology, Floral Resources and Behavior of Blue Banded Bees

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Diversity, Bio-Ecology, Floral Resources and Behavior of Blue Banded Bees Int.J.Curr.Microbiol.App.Sci (2019) 8(7): 580-587 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 07 (2019) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2019.807.072 A Review on Diversity, Bio-Ecology, Floral Resources and Behavior of Blue Banded Bees J. Sandeep Kumar1*, B, Rex2, S. Irulandi3 and S. Prabhu3 1Department of Entomology, Agriculture College and Research Institute, Madurai-625104, India 2Department of Plant Pathology, Agriculture College and Research Institute, Madurai-625104, India 3Department of Plant Protection, Horticulture College and Research Institute, Periyakulam-625604, India *Corresponding author ABSTRACT K e yw or ds Blue banded bees are solitary bees which are characterized by their Blue banded bees, glittering blue color bands on their abdomen. They construct their nests and Amegilla , Diversity, brood cells for their young ones in soils. The developmental biology of blue Behavior, India banded bees is maximum sixty days and varied according to climatic Article Info conditions. They are polylectic and wild pollinators playing major role in Accepted: crop pollination. Research on blue banded bees is very limited and less 07 June 2019 studies. In this review we will focus on diversity, bio-ecology and behavior Available Online: of blue banded bees. 10 July 2019 Diversity of blue banded bees (Brooks, 1988; Michener, 2000). The two important genera of the tribe Anthophorini are Blue banded bees are Anthophorine bees. An Anthophora and Amegilla which are easily Anthophorine bee was first described by distinguished based on the presence or Linneaus in 1758 as Apis retusa. Latreille absence of arolium. The male genetalia of described first Anthophorine genus in 1802 different Anthophorine bees vary distinctly and in 1803 he proposed the name (Brooks, 1988). They frequently bear metallic Anthophora. Fabricius named a genus as blue or green pubescent bands on metasomal Megilla in 1805. The name Megilla is now terga. They fly in summer. This genus regarded as a junior synonym of Anthophora includes 12 sub genera and 253 species by Michener, (1974). Anthophorine bees are (Brooks, 1988). The genus Amegilla is a now grouped under the family Apidae, sub diverse group of approximately 255 family Apinae and tribe Anthophorini Anthophorine bee species distributed in 580 Int.J.Curr.Microbiol.App.Sci (2019) 8(7): 580-587 southern Europe and Mediterranean basin Amegilla in his revision of Egyptian southward throughout Africa and Madagascar Anthophora species Engel (2007) described east into Arabia and in Asia as far as northeast new species of Amegilla from northeastern China, India, Sri Lanka, Indonesia, New Egypt viz., Amegilla argophenax and Guinea as well as Australia (Engel, 2007). In differentiated same from the commonly the oriental region there is a large diversity of occurring species. Blue banded bees shows blue banded bee species that are frequently sexual dimorphism, opposite sexes can be confused with each other, typically being differentiated based on their body size where identified as the relatively widespread male bees are smaller than female bees, head Amegilla zonata. Closer examination of these appendages (Clypeal markings are absent in bees reveals that there are multiple distinct male bees, mandibles are short in male bees, species among Southeast Asian “zonata”. antenna is short in female bees than males, Engel (2007) described a new species of number of flagellomeres are eleven in male Amegilla from zonata group and named it as and ten in female, compound eyes are small in Amegilla anekawarna Engel from Malaysia. male bees and sting is absent in male bees) The new species is similar to A. zonata but and blue color metallic bands on metasoma. can be distinguished by the presence of a Gonostylus is lessen to a blister in male bee distinct medioapical blue band on fifth (Sandeep and Muthuraman, 2018). metasomal tergum and by the yellow ventral surface of scape in the female and presence of Nesting biology two dark clypeal markings in male. Rayment (1951) revised 15 Australian species of blue Several workers studied the soil nesting banded bees and grouped them under the behavior of Anthophorine bees (Thorp, 1969; genus Asaropoda. A. dawsoni is Australia‟s Torchio 1974; Brooks, 1983; Norden, 1984; largest Anthophorine bee. In these species Houston, 1991; sandeep and Muthuraman, two types of males i.e. large and small males 2018). Blue banded bees are fossorial bees are present. Males exhibit a bimodal size and build their nests underground (Cane, frequency distribution. Amegilla is the only 1981). Their nests are burrows in soil, either genus occuring in Australia where it is in banks or in flat ground (Michener, 1960). represented by three subgenera Asaropoda, The female bee also pays attention for the Notomegilla and Zonamegilla (Brooks, 1988). surface nature of nesting site and edaphic Lieftinck (1956) revised the oriental attributes of the soil (Cane, 1991). These bees Anthophorine bees of the genus Amegilla and build nests in a variety of soil types like black described sixteen species under these genus soil, clay soil and sandy soil but they always occuring both in Malaysia and Southeast prefer a site with some shelter (Rayment, Asia. Lieftinck (1975) redefined four species 1951). Anthophora edwardsii preferred of Amegilla complex viz., A.florea, A.confusa, crumbly clay-silt in the open areas to loose A. parhypate and A.calceifera in Korea. sandy silt in the vegetated areas (Thorp, Brooks (1988) proposed a subgeneric name 1969). Many soil-dwelling solitary bees make Glossamegilla for Amegilla sp. with long their nests in groups or aggregations where glossa collected from India to the Indo- females nest gregariously and a clumped nest Malayan regions and included 29 species in distribution is found (Batra, 1978).The female the group. Attasopa and Warrit (2012) bee prefers to build the nest at the nesting redescribed the subgeneric position and sites from where it emerged as an adult. This distribution of oriental burrowing bee, phenomenon is termed as philopatry. The Amegilla fimbriata. Michener (1956) included philopatry may be a probable reason for nest 581 Int.J.Curr.Microbiol.App.Sci (2019) 8(7): 580-587 aggregations (Norden, 1984). In initiating a cells. Brood cells are cylindrical and urn new nest, a female selects a site and begins to shaped. Waxy coatings were found in inner excavate a burrow by biting at the soil with cell wall of brood cells which would be used her mandibles. The soil is periodically for water proof and larval feed, larval faeces moistened and softened with liquid from the and cast skin was found inside the brood cell. mouth. Females interrupt their burrowing Nests are often built together in one place from time to time and depart on flights away forming nest congregation and the maximum from the nesting area presumably to recharge number of nests was 78 per m-2 (Sandeep and their crop with liquid (Houston, 1991). Muthuraman, 2018). Ground nesting bees sometimes conceal their nest entrances in loose sand under clods or in Developmental biology dense vegetation. However, most of them leave some kind of mound or other tell-tale Blue banded bees are fossorial bees. The life mark at the entrance. The nests are shallow stages of the bees develop inside sealed seated inside the soil and usually less than 10 earthen brood cells. More often invasive cm deep. Excavated soil on horizontal methods are used for studying the life stages surfaces is often heaped in a small cone or of these bees. Of late X-ray computerized delta of irregularly sized pellets, near the nest tomography (CT) scanning is used to study entrance (Cane, 2008). Chimney bee the developmental biology and natural A.abrupta digs a tunnel for its nest and uses enemies of bees (Greco et al., 2006). As in all the excavated soil to build a chimney or turret Hymenopteran insects the sex is determined near nest entrance. Each turret corresponds to by haplodiploidy mechanism. The male bees a single nest (Norden, 1984). Turrerts give develop from haploid eggs and female protection to nest from rain, nearby develop from diploid eggs. The bee larvae are excavations, windblown debris or parasites. reared through mass provisioning. The larval They also function as a land mark for nest food may be a thick liquid or semi-solid in recognition and thermoregulation of nest consistency. Immature life stages of Amegilla, (Brooks, 1983; Norden, 1984). The burrow Asaropoda and Anthophora are similar in descends down as a shaft which ends in urn- morphology (Cardale, 1967). In A.dawsoni shaped terminal cell or a cluster of cells or in the female is capable of producing two kinds a linear series. The inside of the cell is of male‟s viz., namely major males and minor extremely smooth and polished and then males by constructing larger and smaller covered with a heavy layer of white, water brood cells and provisioning the cells with proof material may be flaked off from the cell different amount of food (Tomkins et al., wall made of Dufour‟s gland lipids (Thorp, 2001). Females of Dawson‟s burrowing bees 1969; Cane, 1991). The various substrates have a well-defined brood cell cycle suitable for nesting were studied under pot involving cell construction, waxing, culture experiment. Red soil and potting provisioning, egg laying and cell capping mixture were recorded for best substrates for (Alcock, 1998). Eggs are singly laid by the nesting. Mostly nests were found close to female bee on the larval provision (Cane, edge of pot. The female bee digs out her own 1984). Eggs hatched in about five days and nest burrow of depth 4 - 30 cm using her the larvae developed through four instars by strong mandibles and excavated soil by her eating the larval provision.
Recommended publications
  • 61 BAB V KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan Hasil
    BAB V KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan hasil penelitian, maka dapat disimpulkan bahwa: 1. Keanekaragaman serangga pengunjung bunga matahari berupa 28 spesies serangga pengunjung yang secara keseluruhan tergolong ke dalam 21 genus, 12 familia dan 5 ordo; dengan perbandingan jenis spesies yang paling dominan berasal dari ordo Hymenoptera yaitu 12 spesies, kemudian disusul oleh ordo Lepidoptera sebanyak 11 spesies, ordo Diptera sebanyak 3 spesies serta ordo Orthoptera dan Blattodea masing–masing 1 spesies. 2. Aktivitas serangga pengunjung bunga matahari. a. Aktivitas serangga pengunjung yang kehadirannya mengambil nektar dan serbuk sari, sebagian besar di ketahui berasal dari genus Amegilla , Xylocopa , Ceratina , Apis , Trigona , Megachile dan kelompok ordo Diptera. b. Aktivitas serangga pengunjung yang kehadirannya mengambil nektar saja, diketahui berasal genus Thyreus , Allorhynchium serta kelompok ordo Lepidoptera yang terdiri dari familia Hesperidae, Pieridae, Nymphalidae, Erebidae dan Hyblaeidea. c. Aktivitas serangga pengunjung yang kehadirannya mengambil serbuk sari saja, diketahui berasal genus Tettigona dan Blatella . 61 62 B. SARAN 1. Di Indonesia, penelitian yang mengkaji tentang tingkat keanekaragaman serangga pengunjung bunga matahari masih sangatlah minim, sehingga perlu dikaji (disempurnakan) lebih dalam lagi terhadap berbagai jenis varietas dalam waktu yang lebih lama. Baik varietas penghasil minyak, varietas bahan makanan (kuaci), varietas pakan ternak dan bunga potong guna mengetahui tingkat perbedaan data
    [Show full text]
  • Barrett, M., S. Schneider, P. Sachdeva, A. Gomez, S. Buchmann
    Journal of Comparative Physiology A https://doi.org/10.1007/s00359-021-01492-4 ORIGINAL PAPER Neuroanatomical diferentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni Meghan Barrett1 · Sophi Schneider2 · Purnima Sachdeva1 · Angelina Gomez1 · Stephen Buchmann3,4 · Sean O’Donnell1,5 Received: 1 February 2021 / Revised: 19 May 2021 / Accepted: 22 May 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Alternative reproductive tactics (ARTs) occur when there is categorical variation in the reproductive strategies of a sex within a population. These diferent behavioral phenotypes can expose animals to distinct cognitive challenges, which may be addressed through neuroanatomical diferentiation. The dramatic phenotypic plasticity underlying ARTs provides a powerful opportunity to study how intraspecifc nervous system variation can support distinct cognitive abilities. We hypothesized that conspecifc animals pursuing ARTs would exhibit dissimilar brain architecture. Dimorphic males of the bee species Centris pallida and Amegilla dawsoni use alternative mate location strategies that rely primarily on either olfaction (large-morph) or vision (small-morph) to fnd females. This variation in behavior led us to predict increased volumes of the brain regions supporting their primarily chemosensory or visual mate location strategies. Large-morph males relying mainly on olfaction had relatively larger antennal lobes and relatively smaller optic lobes than small-morph males relying primarily on visual cues. In both species, as relative volumes of the optic lobe increased, the relative volume of the antennal lobe decreased. In addition, A. dawsoni large males had relatively larger mushroom body lips, which process olfactory inputs.
    [Show full text]
  • Wild Bee Species Increase Tomato Production and Respond Differently to Surrounding Land Use in Northern California
    BIOLOGICAL CONSERVATION 133 (2006) 81– 87 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon Wild bee species increase tomato production and respond differently to surrounding land use in Northern California Sarah S. Greenleaf*, Claire Kremen1 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States ARTICLE INFO ABSTRACT Article history: Pollination provided by bees enhances the production of many crops. However, the contri- Received 11 December 2005 bution of wild bees remains unmeasured for many crops, and the effects of anthropogenic Received in revised form change on many bee species are unstudied. We experimentally investigated how pollina- 5 May 2006 tion by wild bees affects tomato production in northern California. We found that wild bees Accepted 16 May 2006 substantially increase the production of field-grown tomato, a crop generally considered Available online 24 July 2006 self-pollinating. Surveys of the bee community on 14 organic fields that varied in proximity to natural habitat showed that the primary bee visitors, Anthophora urbana Cresson and Keywords: Bombus vosnesenskii Radoszkowski, were affected differently by land management prac- Agro-ecosystem tices. B. vosnesenskii was found primarily on farms proximate to natural habitats, but nei- Crop pollination ther proximity to natural habitat nor tomato floral abundance, temperature, or year Ecosystem services explained variation in the visitation rates of A. urbana. Natural habitat appears to increase Bombus vosnesenskii B. vosnesenskii populations and should be preserved near farms. Additional research is Anthophora urbana needed to determine how to maintain A. urbana. Species-specific differences in depen- Habitat conservation dency on natural habitats underscore the importance of considering the natural histories of individual bee species when projecting population trends of pollinators and designing management plans for pollination services.
    [Show full text]
  • Hymenoptera, Apidae)
    A peer-reviewed open-access journal ZooKeys 428: 29–40A new (2014) species of the cleptoparasitic bee genus Thyreus from northern Yemen... 29 doi: 10.3897/zookeys.428.7821 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new species of the cleptoparasitic bee genus Thyreus from northern Yemen and southwestern Saudi Arabia (Hymenoptera, Apidae) Abdulaziz S. Alqarni1, Mohammed A. Hannan1,2, Michael S. Engel3 1 Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia 2 Current address: 60-125 Cole Road, Guelph, Ontario N1G 4S8, Canada 3 Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas 66045, USA Corresponding author: Abdulaziz S. Alqarni ([email protected]) Academic editor: Michael Ohl | Received 30 April 2014 | Accepted 3 July 2014 | Published 23 July 2014 http://zoobank.org/151D6C5F-F54A-45EF-95C5-D89C301EDE10 Citation: Alqarni AS, Hannan MA, Engel MS (2014) A new species of the cleptoparasitic bee genus Thyreus from northern Yemen and southwestern Saudi Arabia (Hymenoptera, Apidae). ZooKeys 428: 29–40. doi: 10.3897/zookeys.428.7821 Abstract A new species of cleptoparasitic bee of the genus Thyreus Panzer (Apinae: Melectini) is described and figured from northern Yemen and southwestern Saudi Arabia. Thyreus shebicus Engel, sp. n. is a relatively small species superficially similar to the widespread and polytypic species T. ramosus (Lepeletier de Saint Fargeau) and T. ramosellus (Cockerell) but more closely allied to various African forms on the basis of the male genitalia.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Food Load Manipulation Ability Shapes Flight Morphology in Females Of
    Polidori et al. Frontiers in Zoology 2013, 10:36 http://www.frontiersinzoology.com/content/10/1/36 RESEARCH Open Access Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera Carlo Polidori1*, Angelica Crottini2, Lidia Della Venezia3,5, Jesús Selfa4, Nicola Saino5 and Diego Rubolini5 Abstract Background: Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results: Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions: Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera.
    [Show full text]
  • Phylogenetic Analysis of the Corbiculate Bee Tribes Based on 12 Nuclear Protein-Coding Genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S
    Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae) Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik To cite this version: Atsushi Kawakita, John S. Ascher, Teiji Sota, Makoto Kato, David W. Roubik. Phylogenetic anal- ysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie, Springer Verlag, 2008, 39 (1), pp.163-175. hal-00891935 HAL Id: hal-00891935 https://hal.archives-ouvertes.fr/hal-00891935 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 39 (2008) 163–175 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007046 Original article Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae)* Atsushi Kawakita1, John S. Ascher2, Teiji Sota3,MakotoKato 1, David W. Roubik4 1 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan 2 Division of Invertebrate Zoology, American Museum of Natural History, New York, USA 3 Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan 4 Smithsonian Tropical Research Institute, Balboa, Ancon, Panama Received 2 July 2007 – Revised 3 October 2007 – Accepted 3 October 2007 Abstract – The corbiculate bees comprise four tribes, the advanced eusocial Apini and Meliponini, the primitively eusocial Bombini, and the solitary or communal Euglossini.
    [Show full text]
  • Molecular Ecology and Social Evolution of the Eastern Carpenter Bee
    Molecular ecology and social evolution of the eastern carpenter bee, Xylocopa virginica Jessica L. Vickruck, B.Sc., M.Sc. Department of Biological Sciences Submitted in partial fulfillment of the requirements for the degree of PhD Faculty of Mathematics and Science, Brock University St. Catharines, Ontario © 2017 Abstract Bees are extremely valuable models in both ecology and evolutionary biology. Their link to agriculture and sensitivity to climate change make them an excellent group to examine how anthropogenic disturbance can affect how genes flow through populations. In addition, many bees demonstrate behavioural flexibility, making certain species excellent models with which to study the evolution of social groups. This thesis studies the molecular ecology and social evolution of one such bee, the eastern carpenter bee, Xylocopa virginica. As a generalist native pollinator that nests almost exclusively in milled lumber, anthropogenic disturbance and climate change have the power to drastically alter how genes flow through eastern carpenter bee populations. In addition, X. virginica is facultatively social and is an excellent organism to examine how species evolve from solitary to group living. Across their range of eastern North America, X. virginica appears to be structured into three main subpopulations: a northern group, a western group and a core group. Population genetic analyses suggest that the northern and potentially the western group represent recent range expansions. Climate data also suggest that summer and winter temperatures describe a significant amount of the genetic differentiation seen across their range. Taken together, this suggests that climate warming may have allowed eastern carpenter bees to expand their range northward. Despite nesting predominantly in disturbed areas, eastern carpenter bees have adapted to newly available habitat and appear to be thriving.
    [Show full text]
  • Hymenoptera: Apidae), with Distributional Modeling of Adventive Euglossines
    Comparative Genital Morphology, Phylogeny, and Classification of the Orchid Bee Genus Euglossa Latreille (Hymenoptera: Apidae), with Distributional Modeling of Adventive Euglossines BY ©2010 Ismael Alejandro Hinojosa Díaz Submitted to the graduate degree program in Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chairperson Michael S. Engel Charles D. Michener Edward O. Wiley Kirsten Jensen J. Christopher Brown Date Defended: November 10, 2010 The Dissertation Committee for Ismael Alejandro Hinojosa Díaz certifies that this is the approved version of the following dissertation: Comparative Genital Morphology, Phylogeny, and Classification of the Orchid Bee Genus Euglossa Latreille (Hymenoptera: Apidae), with Distributional Modeling of Adventive Euglossines Chairperson Michael S. Engel Date approved: November 22, 2010 ii ABSTRACT Orchid bees (tribe Euglossini) are conspicuous members of the corbiculate bees owing to their metallic coloration, long labiomaxillary complex, and the fragrance-collecting behavior of the males, more prominently (but not restricted) from orchid flowers (hence the name of the group). They are the only corbiculate tribe that is exclusively Neotropical and without eusocial members. Of the five genera in the tribe, Euglossa Latreille is the most diverse with around 120 species. Taxonomic work on this genus has been linked historically to the noteworthy secondary sexual characters of the males, which combined with the other notable external features, served as a basis for the subgeneric classification commonly employed. The six subgenera Dasystilbe Dressler, Euglossa sensu stricto, Euglossella Moure, Glossura Cockerell, Glossurella Dressler and Glossuropoda Moure, although functional for the most part, showed some intergradations (especially the last three), and no phylogenetic evaluation of their validity has been produced.
    [Show full text]
  • Identification of 37 Microsatellite Loci for Anthophora Plumipes (Hymenoptera: Apidae) Using Next Generation Sequencing and Their Utility in Related Species
    Eur. J. Entomol. 109: 155–160, 2012 http://www.eje.cz/scripts/viewabstract.php?abstract=1692 ISSN 1210-5759 (print), 1802-8829 (online) Identification of 37 microsatellite loci for Anthophora plumipes (Hymenoptera: Apidae) using next generation sequencing and their utility in related species KATEěINA ýERNÁ and JAKUB STRAKA Department of Zoology, Faculty of Science, Charles University in Prague, Viniþná 7, 128 43 Praha 2, Czech Republic; e-mails: [email protected]; [email protected] Key words. Hymenoptera, Apidae, microsatellite development, Anthophora plumipes, 454 sequencing, Anthophorini Abstract. Novel microsatellite markers for the solitary bee, Anthophora plumipes, were identified and characterised using 454 GS-FLX Titanium pyrosequencing technology. Thirty seven loci were tested using fluorescently labelled primers on a sample of 20 females from Prague. The number of alleles ranged from 1 to 10 (with a mean of 4 alleles per locus), resulting in an observed hetero- zygosity ranging from 0.05 to 0.9 and an expected heterozygosity from 0.097 to 0.887. None of the loci showed a significant devia- tion from the Hardy-Weinberg equilibrium and only two loci showed the significant presence of null alleles. No linkage between loci was detected. We further provide information on a single multiplex PCR consisting of 11 of the most polymorphic loci. This multi- plex approach provides an effective analytical tool for analysing genetic structure and carrying out parental analyses on Anthophora populations. Most of the 37 loci tested also showed robust amplification in five other Anthophora species (A. aestivalis, A. crinipes, A. plagiata, A. pubescens and A. quadrimaculata).
    [Show full text]
  • A Systematic Literature Review
    Tropical Ecology 58(1): 211–215, 2017 ISSN 0564-3295 © International Society for Tropical Ecology www.tropecol.com Diversity of native bees on Parkinsonia aculeata L. in Jammu region of North-West Himalaya UMA SHANKAR, D. P. ABROL*, DEBJYOTI CHATTERJEE & S. E. H. RIZVI Division of Entomology, Sher-e- Kashmir University of Agricultural Sciences & Technology, Faculty of Agriculture, Chatha Jammu – 180009, J&K, India Abstract: A study was conducted in Jammu region of Jammu and Kashmir State to determine the species composition and relative abundance of pollinators on Parkinsonia aculeata L., (Family Fabaceae) is a perennial flowering plant, growing as an avenue tree on roadsides. Parkinsonia flowers attracted 27 species of insects belonging to orders Hymenoptera, Diptera and Lepidoptera. They included Megachile bicolor (Fabricius), Megachile hera (Bingham), Megachile lanata (Fabricius), Megachile disjuncta (Fab.), Megachile cephalotes (Smith), Megachile badia (Fab.), Megachile semivestita (Smith), Megachile vigilans (Smith), Megachile relata (Fab.), Megachile femorata, Andrena sp., Amegilla zonata (Linnaeus), Amegilla confusa (Smith), Apis dorsata (Fab.), Apis cerana (Fab.), Apis florea (Fab.), Ceratina smaragdula (Fab.)., Xylocopa latipes (Drury), Nomia iridescens (Smith), Nomia curvipes (Fab.), and seven species of unidentified insects. Megachile bees were most abundant and constituted more than 95% of the insects visiting Parkinsonia aculeata flowers. Species diversity measured by Shannon Wiener index showed a high value of H' = 2.03, reflecting a diverse pollinator community in the area. The foragers of all the species were found to be most active between 11.00 and 15.00 hrs and the population of flower visitors declined thereafter. Information on diversity of native pollinators from disturbed habitats and their specific dependence on P.
    [Show full text]
  • The Foraging Preferences of the Hairy-Footed Flower Bee (Anthophora Plumipes (Pallas 1772) in a Surburban Garden
    THE FORAGING PREFERENCES OF THE HAIRY-FOOTED FLOWER BEE (ANTHOPHORA PLUMIPES (PALLAS 1772) IN A SURBURBAN GARDEN Maggie Frankum, 3 Chapel Lane, Knighton, Leicester LE2 3WF PREAMBLE This paper is based on a project carried out as a requirement of a three-year Diploma in Applied Ecology at the University of Leicester (1997). The original report is extensively illustrated and stretches to 85 pages. This paper attempts to distill the main findings of the research. It is hoped that it will stimulate other entomologists in the county to carry out basic research literally on their own doorstep. INTRODUCTION In springtime, with the onset of warmer weather, the foraging activities of social bumblebees such as Bombus pratorum, B pascuorum, B hortorum, B terrestris and B lapidarius, are fairly commonplace in suburban gardens. The first big queens emerge from hibernation to establish their nests and produce new worker bees. However, there are other species of bees that are less noticeable until some particular behaviour pattern draws attention to them. One such early species is the hairy-footed flower bee, Anthophora plumipes (Pallas, 1772; Figure 1), striking in its sexual dimorphism. The golden-brown male has a distinct yellow face and fans of long bristles on the middle legs (hence its common name). The jet black female has orange pollen brushes on the hind legs. male female Figure 1: Anthophora plumipes They are hairy and look like small bumble bees with a body length of about 14mm (Proctor et al , 1996). However, they do differ as the eyes extend to the jaw without the usual cheek patches found in bumblebees (Chinery, 1972).
    [Show full text]