Impact of Amegilla Calens and Apis Mellifera Pollination on Gossypium Hirsutum Var
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Food Load Manipulation Ability Shapes Flight Morphology in Females Of
Polidori et al. Frontiers in Zoology 2013, 10:36 http://www.frontiersinzoology.com/content/10/1/36 RESEARCH Open Access Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera Carlo Polidori1*, Angelica Crottini2, Lidia Della Venezia3,5, Jesús Selfa4, Nicola Saino5 and Diego Rubolini5 Abstract Background: Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results: Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions: Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera. -
A New Species of Amegilla from Northeastern Egypt (Hymenoptera: Apidae)
©Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 39/2 821-828 18.12.2007 A new species of Amegilla from northeastern Egypt (Hymenoptera: Apidae) M.S. ENGEL A b s t r a c t : A new bee species of the genus Amegilla (Apinae: Anthophorini) is described and figured from northeastern Egypt. Amegilla argophenax nov.sp., belongs to the A. fasciata group and is most similar to A. deceptrix (PRIESNER) nov.comb. which occurs in the same region. Characters are provided to distinguish the species from its congeners. Podalirius pyramidalis KIRBY, from Socotra (Republic of Yemen), is resurrected from synonymy under Amegilla albigena (LEPELETIER DE SAINT FARGEAU) (as A. pyramidalis nov.comb.) where it is, like A. argophenax and A. deceptrix, a member of the A. fasciata group. K e y w o r d s : Anthophila, Apoidea, Africa, Anthophorini, Arabia, Socotra, taxonomy. 1. Introduction The genus Amegilla is a diverse group of approximately 255 anthophorine bee species distributed in southern Europe and the Mediterranean basin, southward throughout Africa and Madagascar, east into Arabia and in Asia as far as northeast China, Korea, and Japan, and south into Sri Lanka, Indonesia, New Guinea, as well as Australia, Tas- mania, and the Solomon Islands (MICHENER 2000). While the genus has received the attention of various authors (e.g., RAYMENT 1942, 1947, 1951; LIEFTINCK 1956, 1975; PRIESNER 1957; EARDLEY 1994), exceedingly similar or even cryptic coloration nonetheless continues to plague the taxonomy and identification of species, a situation further exacerbated by low sample sizes in most collections. The purpose of the present contribution is to provide the description of a new species of Amegilla from northeastern Egypt (Figs 1-2) and correct the status of two from the gene- ral region of northeastern Africa and Arabia, particularly one that is closely allied to the species described herein. -
Wasps and Bees in Southern Africa
SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI. -
A Review on Diversity, Bio-Ecology, Floral Resources and Behavior of Blue Banded Bees
Int.J.Curr.Microbiol.App.Sci (2019) 8(7): 580-587 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 07 (2019) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2019.807.072 A Review on Diversity, Bio-Ecology, Floral Resources and Behavior of Blue Banded Bees J. Sandeep Kumar1*, B, Rex2, S. Irulandi3 and S. Prabhu3 1Department of Entomology, Agriculture College and Research Institute, Madurai-625104, India 2Department of Plant Pathology, Agriculture College and Research Institute, Madurai-625104, India 3Department of Plant Protection, Horticulture College and Research Institute, Periyakulam-625604, India *Corresponding author ABSTRACT K e yw or ds Blue banded bees are solitary bees which are characterized by their Blue banded bees, glittering blue color bands on their abdomen. They construct their nests and Amegilla , Diversity, brood cells for their young ones in soils. The developmental biology of blue Behavior, India banded bees is maximum sixty days and varied according to climatic Article Info conditions. They are polylectic and wild pollinators playing major role in Accepted: crop pollination. Research on blue banded bees is very limited and less 07 June 2019 studies. In this review we will focus on diversity, bio-ecology and behavior Available Online: of blue banded bees. 10 July 2019 Diversity of blue banded bees (Brooks, 1988; Michener, 2000). The two important genera of the tribe Anthophorini are Blue banded bees are Anthophorine bees. An Anthophora and Amegilla which are easily Anthophorine bee was first described by distinguished based on the presence or Linneaus in 1758 as Apis retusa. -
Foraging Behaviour of a Blue Banded Bee, Amegilla Chlorocyanea In
Foraging behaviour of a blue banded bee, Amegilla chlorocyanea in greenhouses: implications for use as tomato pollinators Katja Hogendoorn, Steven Coventry, Michael Anthony Keller To cite this version: Katja Hogendoorn, Steven Coventry, Michael Anthony Keller. Foraging behaviour of a blue banded bee, Amegilla chlorocyanea in greenhouses: implications for use as tomato pollinators. Apidologie, Springer Verlag, 2007, 38 (1), pp.86-92. hal-00892241 HAL Id: hal-00892241 https://hal.archives-ouvertes.fr/hal-00892241 Submitted on 1 Jan 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 38 (2007) 86–92 86 c INRA/DIB-AGIB/ EDP Sciences, 2007 DOI: 10.1051/apido:2006060 Original article Foraging behaviour of a blue banded bee, Amegilla chlorocyanea in greenhouses: implications for use as tomato pollinators* Katja H,StevenC, Michael Anthony K University of Adelaide, School of Agriculture, Food and Wine, Adelaide SA 5005, Australia Received 13 March 2006 – Revised 9 June 2006 – Accepted 16 June 2006 Abstract – Blue-banded bees (Amegilla spp.) are Australian native buzz pollinators that are a promising alternative to the introduction of the bumblebee (Bombus terrestris) for use as pollinators of tomatoes in Australian greenhouses. -
Classification of the Bees Or the Superfamily Apoidea
Utah State University DigitalCommons@USU An Bee Lab 5-1-1899 Classification of the Bees or the Superfamily Apoidea William H. Ashmead Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_an Part of the Entomology Commons Recommended Citation Ashmead, William H., "Classification of the Bees or the Superfamily Apoidea" (1899). An. Paper 68. https://digitalcommons.usu.edu/bee_lab_an/68 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in An by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SG • V CLASSIFICATION OF THE BEES OR THE Superfamily APOIDEA By WILLIAM H. ASHMEAD. [Transactions American Entomological Society, XXVI, 1899.] .,, ~roperty of ~- E. BoHARi l l -J CLASSIFICATION OF THE BEES. -HJ CLASSI F I CATION O F T H E B EES, Olt T HE SUP ERFAlUILY A POIDEA. BY WILLIAM II. ASHMEAD. In the Journal of the New York Entomological Society, for March, 1 99, I separate<l the Hymenoptera into ten superfamilie, . The firct of these or the Apoi<lea comprise the bees, among which, especially among the social bees, are to be found probably the h ighe t or most specialized type in the orcler; hence my rea on for beginning the cla ification of the Hymenoptera with these in ects. Our own bee , an<l in leecl the bees of most countries, except tho,e of the European fauna, are but little tudied and very imperfectly known. Thomas Say, Frederick Smith, Ezra T. -
Sphecos: a Forum for Aculeate Wasp Researchers
i7 FEBRUARY 1993 A FORUM FOR ACULEATE WASP RESEARCHERS RESEARCH NEWS NOTES FROM THE ARNOLD S.MENKE, Editor MUD D'AUB Tony P.Nuhn, Assistant E<fitor Systematic Entomology Laboratory Byron Alexander (Dept, of Entomol- Agricultural Research Service, USDA ogy, University of Kansas, Lawrence, History This issue includes an obituary and do National Museum ot Natural KS 66045) has developed an interest In Smithsonian Institution Washington.DC 20560 several reminiscences of Jack van der . of bembicme wasps. He FAX: <202) 786-9422 Phone:(202) 382-1803 the phytogeny Vecht, one of thelast of hisgeneration of is now waiting to learn the fate of a wasp workers. He was truly one of the pending grant proposal. In the mean- greats in hymenopterology, and Jack CLOUDY FUTURE FOR time, he has begun to borrow speci- will be missed. He was a real gentle- SPHECOS?? mens, some of which he is dissecting man, and I feel fortunate to have met and examining as time permits (which it and worked with him on several occa- USDA budgets have been shrinking rarely does). He is also rumored to be sions. steadily, and the costs of producing the collaborating with Kevin O'Neill on a In Sphecos 23 I wrote a tongue-in- newsletter come out of Menke’s yearly book about solitary wasps. His major cheek piece on left-handed labellers. I allotment. For FY 1993 I have about excuse for not writing anything so far is expected more flack from the reader- $1500 for all my expenses (travel, SEM that he is waiting for Brothers and Car- ship but so far only two people have costs,computerneeds, Sphecos, equip- penter to complete their phylogenetic responded (see p. -
Arthropod Protocol
OUTLINE OF PROTOCOLS FOR BASELINE SURVEYS – CTFS ARTHROPOD INITIATIVE - BCI This is a general outline intended for the Barro Colorado Island (BCI) permanent plot. These protocols will be used for baseline survey and as pilot studies to develop the proper monitoring program. Each protocol will be specifically detailed later on. Protocols for mosquitoes are developed by EPA. 1. Overall protocol …………………………………………………………………………. 1 2. Processing of material and barcoding ..………………………………………………… 3 3. Light traps ……………………………………………………………………………...… 4 4. Butterfly walking transects …………………………………………………………..…. 5 5. Mc Phail traps ……………………………………………………………………………. 6 6. Trap nests …………………………………………………………………………..….…. 7 7. Euglossine baits ………………………………………………….………………………..8 8. Winkler samples ……………………………………………………………………...….. 9 9. Termite transects …………………………………………………………………………11 1. OVERALL PROTOCOL 1.1. Overview: • Light traps: 5 traps, 3 replications within one survey (one night), 4 surveys per year, total 60 samples • Butterfly transects: 10 transects of 500m, 3 replications within one survey, 4 surveys per year, total 120 samples • McPhail traps: 10 traps, 4 replications within one survey (one week), 4 surveys per year, total 160 samples • Trap nests: 50 traps, one replication (two months and half), two surveys per year, total 100 samples • Euglossine baits: 10 McPhail traps, one replication (one week), 4 surveys, total 40 samples (only in the Neotropics) • Winkler: 10 transects of 25m, each with 5 samples, one replication, one survey per year, total 50 samples -
The Biodiversity of Terrestrial Arthropods in Madeira and Selvagens Manual Versión Española
Revista IDE@ - SEA, nº 6B (30-06-2015): 1–20. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Introduction The biodiversity of terrestrial arthropods in Madeira and Selvagens Manual Versión española The biodiversity of terrestrial arthropods in Madeira and Selvagens archipelagos Mário Boieiro1,2, António Franquinho Aguiar3, Carla Rego1,2, Paulo A.V. Borges1,2 & Artur R.M. Serrano4 1 cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores - Departamento de Ciências Agrárias, 9700-042 Angra do Heroísmo, Açores, Portugal. 2 CITA-A and Portuguese Platform for Enhancing Ecological Research & Sustainability (PEERS). 3 Núcleo de Entomologia, Laboratório Agrícola da Madeira, 9135-372 Camacha, Madeira, Portugal. 4 cE3c – Centre for Ecology, Evolution and Environmental Changes / Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. 1. The archipelagos of Madeira and Selvagens The oceanic archipelagos of Madeira and Selvagens are located in the eastern Atlantic, between 30-33ºN and 15-17ºW, being part of the Macaronesia biogeographical region. The archipelago of Madeira is composed of Madeira Island, Porto Santo Island and its surrounding islets, and the Desertas islands, which include Deserta Grande, Bugio and Ilhéu Chão (Fig. 1). This archi- pelago is distanced from the Iberian Peninsula by 1000 km, but its distance to the nearest mainland (coast of Morocco) is just 600 km. All the islands of Madeira archipelago are volcanic in origin and have originat- ed from a single volcanic building – the Madeira-Porto Santo complex. The rugged orography and the altitudinal span of Madeira Island led to the occurrence of some natu- ral habitat-types which are distributed along the altitudinal gradient (see Plate I). -
Blue-Banded Bees) and North American Bombus Impatiens (Bumblebees
Arthropod-Plant Interactions DOI 10.1007/s11829-015-9407-7 ORIGINAL PAPER Shakers and head bangers: differences in sonication behavior between Australian Amegilla murrayensis (blue-banded bees) and North American Bombus impatiens (bumblebees) 1 2 3 4 Callin M. Switzer • Katja Hogendoorn • Sridhar Ravi • Stacey A. Combes Received: 2 November 2015 / Accepted: 20 November 2015 Ó Springer Science+Business Media Dordrecht 2015 Abstract Many bees collect pollen by grasping the during buzz-pollination revealed that its physical interac- anthers of a flower and vibrating their flight muscles at high tion with the flower differs markedly from the mechanism frequencies—a behavior termed sonication, or buzz-polli- described for Bombus and other bees previously examined. nation. Here we compare buzz-pollination on Solanum Rather than grasping the anther cone with its mandibles lycopersicum (cherry tomatoes) by two bees that fill similar and shaking, A. murrayensis taps the anther cone with its niches on different continents—in Australia, Amegilla head at the high buzzing frequencies generated by its flight murrayensis (blue-banded bee), and in North America, muscles. This unique behavior, combined with its higher Bombus impatiens (bumblebee). We collected audio buzzing frequency and reduced flower visit duration, sug- recordings of buzz-pollination and quantified the frequency gests that A. murrayensis may be able to extract pollen and length of buzzes, as well as the total time spent per more quickly than B. impatiens, and points to the need for flower. We found that A. murrayensis buzzes at signifi- further studies directly comparing the pollination effec- cantly higher frequencies (*350 Hz) than B. -
Ecology and Behaviour of the Bee Amegilla (Asaropoda) Dawsoni (Rayment) with Notes on a Related Species (Hymenoptera: Anthophoridae)
Roe. West. AllSt. Mu,. 1991, 15(3) 591-609 Ecology and behaviour of the bee Amegilla (Asaropoda) dawsoni (Rayment) with notes on a related species (Hymenoptera: Anthophoridae) Terry F. Houston* Abstract A megilla daH'soni. Australia's largest anthophorine bee, annually produces a single generation from July to September. Females nest solitarily or more often gregariously in flat, hard, bare clay, apparently using nectar to soften the soil during excavation, Each burrow is furnished with a mud turret which is demolished when the nest is complete, Nest structure is described in detail. Larval provisions are liquid. After consuming their provisions, larvae eat the wax lining of their cells, defaecate and enter a diapause which may last for one or more years. They do not spin cocoons, Mating occurs at nesting areas and at the forage plants. Males vary conspicuously in size and exhibit a bimodal size frequency distribution. Large size appears to be an advantage to males eompeting for access to newly emerging virgin females at the nesting sites. Small males predominate amongst the 'patrollers' at forage plants. A miltogrammine fly and a mutillid wasp were observed to develop at the expense of the bees in their brood cells, The bees swarm about intruders (humans and corvids) at nesting aggregations but do not attack them. Brief observations on the nests and behaviour of a second, undescribed species of Asaropoda are also recorded, The biology of A megilla (Asaropoda) is briefly discussed and compared with that of other Anthophorini, Introduction The world-wide tribe Anthophorini (sensu Brooks 1988) consists of the genera A nthophora and A megilla and only the latter genus occurs in Australia where it is represented by three subgenera Asaropoda, Notomegilla and Zonamegilla. -
Foraging Behaviour of Amegilla Zonata (L.) on Ocimum Kilimandscharicum Guerke
Bangladesh J. Bot. 44(1): 129-132, 2015 (March) - Short communication FORAGING BEHAVIOUR OF AMEGILLA ZONATA (L.) ON OCIMUM KILIMANDSCHARICUM GUERKE DEVINDER SHARMA* AND DP ABROL Division of Entomology, 6th Block, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Chatha, Jammu-180 009 (J&K) India Key words: Pollinator diversity, Amegilla zonata, Ocimum kilimandscharicum, Foraging, Abiotic factors Abstract Ocimum kilimandscharicum Guerke an important medicinal plant of Jammu and Kashmir, India was found to be pollinated by insects belonging to 4 orders, 8 families and 14 species. The flowers of O. kilimandscharicum were visited abundantly by Amegilla zonata (L.) followed by Apis dorsata and A. cerana. The number of bees foraging during different times on the day ranged from 4.7 - 11.30/ 5 plants/5 min; visited 12 - 25 flowers/5 plant and spent 2.3 - 7.9 s/flower. Foraging populations of A.zonata responded significantly to environmental factors. Ocimum kilimandscharicum Guerke (fam.: Lamiaceae, common name Camphor Basil) is an economically important medicinal perennial herb (Dolly et al. 2012) of Jammu and Kashmir. In India, it is being cultivated both in plains and in hilly areas of U.P, West Bengal, Dehradun, Maharashtra, Mysore, Kerala, Jammu and Kashmir and Darjeeling (Singh et al. 1955). It is a good nectar producing plant. The flowers plenty of insect pollinators. The Blue-banded bee, Amegilla zonata (L.) (Hymenoptera: Apidae: Anthophoridae), are medium-large, pubescent, long-tongued, solitary, fossorial bees that nest gregariously in vertical burrows in the ground or horizontally in soil embankments and occasionally in sandstone or artificial substrates (Michener 1960).