台灣福山地區三種埋葬蟲的分布與尼泊爾埋葬蟲(Coleoptera: Silphidae) 的族群動態

Total Page:16

File Type:pdf, Size:1020Kb

台灣福山地區三種埋葬蟲的分布與尼泊爾埋葬蟲(Coleoptera: Silphidae) 的族群動態 生物學報(2013)48:1-11 DOI:10.6248/BF.2013.48.01 台灣福山地區三種埋葬蟲的分布與尼泊爾埋葬蟲(Coleoptera: Silphidae) 的族群動態 1 2 黃文伯 葛兆年 * 1 國立台南大學生態科學與技術學系 2 行政院農業委員會林業試驗所森林保護組 (收稿日期:2013.2.1,接受日期:2013.4.15) 摘 要 本研究為探討福山地區三種埋葬蟲的棲地分布與季節性活躍,並標放尼泊爾埋葬蟲,來分析 該物種的族群動態。紅胸埋葬蟲與尼泊爾埋葬蟲有顯著的時空棲位區隔,紅胸埋葬蟲偏好在夏季的 草地活動,而尼泊爾埋葬蟲則偏好春秋季的林地。紅胸埋葬蟲、大黑埋葬蟲與尼泊爾埋葬蟲的活躍 期高峰,在海拔較高的阿玉山皆晚於海拔較低的福山。在阿玉山所捕獲的紅胸埋葬蟲與尼泊爾埋葬 蟲,其前胸背板寬皆顯著大於在福山的族群;不論在福山或阿玉山,紅胸埋葬蟲雄蟲個體大小皆較 大於雌蟲;尼泊爾埋葬蟲在阿玉山的族群,雌蟲大小顯著大於雄蟲,但於福山的族群則無差別。雖 然尼泊爾埋葬蟲的捕獲數量在2002年調查期間出現三個高峰值,但以Jolly-method估算,族群大小 穩定,僅在四月初出現高峰期。尼泊爾埋葬蟲在光週期L/D: 11/13、溫度20oC的條件下,世代所需 時間為44 ± 1.04日,四月中羽化的高峰期可對應到二月底成蟲活動的高峰期。尼泊爾埋葬蟲4日內 移動距離中位數為174.4 m,福山與阿玉山兩地族群未發現明顯交流的現象。 關鍵詞:埋葬蟲科、棲地分布、季節性活躍、尼泊爾埋葬蟲、標放再捕捉、Jolly 法、族群動態 緒 言 致昆蟲劇烈地競爭屍體資源(Wilson and Fudge, 1984; Wilson et al., 1984; Trumbo, 1990)。儘管埋 埋葬蟲科(Silphidae)甲蟲屬於動物屍體分解 葬蟲壽命可以長達四個月左右(Hwang and Shiao, 者,在物質轉換、能量循環中為重要角色之一。 2011),但埋葬蟲要發現可適合做為繁殖用的屍體, 埋葬蟲科包含了Nicrophorinae和Silphinae兩亞科, 一生可能只有一次(Scott and Gladstein, 1993)。在 除少數物種為植食性外(Anderson and Peck, 發現屍體後,同種或異種之間的個體亦經常為了 1984),本科大部份物種的成蟲與幼蟲皆以動物屍 爭奪屍體而打鬥(Pukowski, 1933; Bartlett and 體為營養來源。在Nicrophorinae的物種中,特別 Ashworth, 1988; Otronen, 1988; Müller et al., 是斑紋埋葬蟲屬(Nicrophorus spp.)因具有埋葬屍 1990)。在競爭排斥原理下,使用相似資源的物種, 體與撫育的行為,較為偏好利用小型(如鼠、鳥) 應在生態棲位上發生區隔的現象(Hutchinson, 屍體(Pukowski, 1933; Trumbo, 1992; Scott, 1998; 1958; MacArthur and Levins, 1964; Levins, 1968)。 Hwang and Shiao, 2008; Sikes, 2008);而Silphinae 共域的埋葬蟲即存在日、夜與黃昏活動習性的差 的物種在無撫育行為下,則傾向利用大型屍體(> 異、季節性活躍高峰的差異,以及棲地偏好的差 300 g)進行繁殖(Ratcliffe, 1996; Hoback et al., 異(Scott, 1998)。 2004)。 屍體分解速率與溫度、溼度、棲地類型和季 節肢動物是屍體微棲地中主要的生物類群, 節有關(Payne, 1965; Nabaglo, 1973; Swift et al., 雙翅目(Diptera)、鞘翅目(Coleoptera)、膜翅目 1979)。而屍體分解速率則影響屍體資源可利用的 (Hymenoptera)與蜘蛛目(Araneae)在屍體上即佔 時效,進而影響分解者的族群密度與群聚的物種 了78%~90%的個體組成(Payne, 1965; Johnson, 組成(Hanski and Cambefort, 1991 ; Martin-Piera 1975)。動物屍體對昆蟲來說,是較為稀少的資源 and Lobo, 1993)。在野外,蠅類幼蟲與螞蟻是優 (Wilson, 1971; Hanski and Cambefort, 1991),此導 勢的屍體分解者(Hwang, 2011),在溫度較高的環 *通信作者:葛兆年(Chao-Nien Koh);FAX:886-2-23078755;E-mail:[email protected] 黃文伯 葛兆年 境中,屍體先被蠅類與螞蟻發現並被迅速分解的 屍體誘餌。兩種棲地類型所有誘餌陷阱皆於兩小 機率較高(Putman, 1978; Easton, 1979)。這造成埋 時內同步置放誘餌,每個陷阱中每月各置放兩隻 葬蟲可用做繁殖的屍體資源過少,而影響埋葬蟲 4 ~ 5週齡ICR品系小鼠屍體(約20 g重),每次放置 的繁殖成功率(Scott et al., 1987)。研究指出埋葬 一隻,每隻小鼠屍體皆放置4日,並統計兩個4日 蟲族群密度在海拔較高處大於海拔較低處 中陷阱內的埋葬蟲個體。為確定埋葬蟲受屍體誘 (McKinnerney, 1978; Halffter et al., 1983),而同種 餌吸引,距離每個誘餌掉落式陷阱的5 m外,另 埋葬蟲的體型在較高海拔則大於較低海拔的個 設置一個僅含PVC水管擋土牆、漏斗與集蟲杯的 體(Smith et al., 2000)。較低的溫度可增加埋葬蟲 無誘餌掉落式陷阱,以統計確認屍體的吸引效 繁殖成功率(Trumbo, 1990),即可能基於環境溫度 果。 的差異,影響埋葬蟲在不同海拔高度的族群密度。 2002年2月至同年6月除了於福山樣區調查 此外,昆蟲幼蟲生長發育所需的時間,在不同海 外,並在與福山直線距離約4 km遠、海拔高度 拔高度的差異(Danks, 1994; Sparks et al., 1995; 1200 ~ 1300 m的阿玉山樣區(24o46’N, 121o36’E) Sota, 1996),亦可能是同種埋葬蟲的體型在不同 進行調查,該樣區棲地與福山溪谷林地相似,皆 海拔高度存在差異的原因。 為鬱閉闊葉林所覆蓋,穿越線為沿稜線的登山步 本研究即調查福山地區三種埋葬蟲的季節 道,陷阱設於步道兩側。此期間於福山與阿玉山 性活躍與棲地偏好,以及海拔高度對個體活躍與 兩樣區穿越線的林地內,分別設置15個與上述結 體型的影響。利用標放再捕捉尼泊爾埋葬蟲 構相同的誘餌掉落式陷阱,陷阱間距為100 m以 (Nicrophorus nepalensis Hope)個體的方法分析該 上,每月放置一隻4 ~ 5週齡Wistar品系大鼠屍體 物種的族群動態,並了解尼泊爾埋葬蟲的生活史 (約130 g重),並計算兩樣區每個月於4日內所捕獲 週期,比對野外新羽化個體之親代的繁殖時間點, 的埋葬蟲個體數量。同時以游標尺測量兩樣區紅 和探討該物種個體移動能力與族群間交流的可 胸埋葬蟲與尼泊爾埋葬蟲個體的前胸背板寬度, 能性。 以比較兩樣區族群或性別的個體大小差異。 材料與方法 尼泊爾埋葬蟲的族群動態 2002 年 2 月 24 日至 4 月 22 日於福山樣區, 埋葬蟲的採集與形態測量 將每 4 天所捕捉的尼泊爾埋葬蟲個體於翅鞘上以 2001年2月至2002年1月的研究樣區位於台 1 號蟲針戳孔編碼標放。翅鞘戳孔後,在無外力 灣福山的哈盆自然保留區(24o45’N, 121o34’E,以 損傷下,該孔洞皆能長久保留,且在橙色斑塊處 下簡稱福山),海拔高度為600 ~ 800 m之間,沿哈 戳孔,孔緣發黑明顯,可清楚以肉眼辨識。編碼 盆溪河岸規劃穿越線,於開闊的草地與鬱閉的林 方式為採用 Müller (1977)所設計,將翅鞘畫分為 地兩種類型棲地相隔內,每200 m設置一個誘餌 四個區塊,每一個區塊最多戳兩孔,並以孔洞位 掉落式陷阱,兩種棲地類型各設置8個取樣點。 置的排列對應出 1 ~ 9 的數字編碼,四個區塊分 誘餌掉落式陷阱結構為將一個20 cm高、內 別對應個位數、十位數、百位數和千位數,起始 徑15 cm的PVC空水管埋入地面下做為擋土牆,水 數字 1 皆接近翅鞘中線,翅鞘左右兩面編碼為鏡 管上方切面邊緣與地面齊平;管內置放一個出口 像對稱,以此編碼方式,每隻甲蟲最多僅戳 8 孔, 為內徑2 cm寬的漏斗,漏斗上緣為直徑15 cm以 且最多可編 9999 隻甲蟲(圖一)。 契合水管內徑,漏斗插入500 ml附有杯蓋的塑膠 集蟲杯中,杯底用圖釘鑿孔以排放積水;為避免 將埋葬蟲以個體識別的程度編碼標放後,透 腐食性脊椎動物取食誘餌,在埋管的地表鋪設60 過再捕捉的機率,以 Jolly-method 估算族群的大 x 60 cm2的鐵絲網,以營釘固定,並剪除鐵絲網 小(Mühlenberg 1993),族群大小的計算方式為: 中間16 x 16 cm2的面積以開放漏斗上方;鐵絲網 P =((a x Z / R ) + r ) n / r 與漏斗上方置有一個16 x 16 x 8 cm3下方開放的 t t t t t t t 2 鐵籠,鐵籠網目為2 x 2 cm ,用8條尼龍束帶將鐵 其中 絲網與鐵籠束緊,以防止脊椎動物挖掘侵入,鐵 Pt:為時間 t 的族群大小 2 籠上方覆蓋一塊20 x 20 cm 的壓克力板擋雨;鐵 nt:為時間 t 的總捕獲數 籠內、漏斗正上方懸掛塑膠培養皿,以承載小鼠 at:為時間 t 所標放的個體數 2 埋葬蟲分布與族群動態 a rt:為時間 t 再捕獲有標記的個體數 b Rt:為時間 t 所標放且時間 t 之後再捕獲的 總數 Zt:為時間 t 前標放且時間 t 之後再捕獲的 總數 在無外力影響且食物充分的情況下,尼泊爾 埋葬蟲壽命約為121天(Hwang and Shiao, 2011), 圖一、翅鞘戳孔編碼示意圖:(a)將翅鞘畫分為四個區 羽化後個體翅鞘約在 5 日內完全硬化,以 1 號蟲 塊,分別對應個位數、十位數、百位數和千位數;(b) 針戳孔時會產生阻力。因此在翅鞘戳孔時,同時 單一區塊內,孔洞排列的位置所對應1 ~ 9的數字編 檢測翅鞘硬度,若翅鞘較軟,戳孔時無阻力,則 碼。 視為剛羽化的個體。編碼標放的個體亦紀錄釋放 Figure 1. Schematic diagram of puncture coding on 時的 GPS 座標,以及再捕獲的時間與地點座標, elytra: (a) Elytra are divided into four blocks, which 基於捕捉標放的時間間隔幾乎都是 4 日,因此在 correspond to a 1-digit, 10-digit, 100-digit and 1000-digit block; (b) the arranged hole positions correspond to 1 to 評估埋葬蟲的移動能力時,皆換算為 4 日內的直 9 in the digital code in a single block. 線移動距離。 為確認新羽化個體在先前季節被親代產下 離的影響。統計顯著性的 alpha level 皆設定在 的時間點,將野外個體攜回實驗室,使其繁殖在 0.05。 較為接近野外日長與溫度的條件中,以估計世代 時間。野外成蟲以二氧化碳麻醉,在解剖顯微鏡 結 果 下以鑷子挑掉蟎類後,成對埋葬蟲置於直徑 11 cm 高 8.5 cm 內置 4 cm 厚培養土的透明塑膠容器 埋葬蟲的時空分布 中,並給予一隻約 20 g 的 ICR 品系小鼠屍體。將 由2001年2月至2002年1月於福山共捕獲紅 容器置於日長 11 hr 與溫度 20°C 的生長箱中,伺 胸埋葬蟲(Calosilpha cyaneocephala Portevin)、大 幼蟲離巢欲化蛹時,使用同樣規格的容器裝盛 4 黑埋葬蟲(Nicrophorus concolor Kraatz)與尼泊爾 cm 厚培養土,最多置入 8 隻幼蟲使其化蛹,並 埋葬蟲(Nicrophorus nepalensis Hope)個體共175 計算各對埋葬蟲從給予屍體至該巢後代羽化所 隻次,分析十二個月份具誘餌陷阱與不具誘餌陷 需的時間。 阱中所捕獲的三種埋葬蟲數,三種埋葬蟲皆受到 屍體誘引(Wilcoxon Signed Ranks Test: p < 0.05, n 統計分析 = 12)。其中大黑埋葬蟲較為零星出現,在九月時 本研究比較不同種埋葬蟲受屍體的吸引程 捕獲最多,但僅有5隻個體。另外兩種埋葬蟲在 度,以及在林地棲地與草地棲地的偏好,採用 時間上則有較明顯的區隔,尼泊爾埋葬蟲於福山 Wilcoxon Signed Ranks Test 分析 12 個月份個體 出現的時間為春秋兩季,而在夏季則完全消失; 數量的相依性數據。不同種埋葬蟲五個月份的活 紅胸埋葬蟲出現的時間為春末至秋季,五月時為 躍期比較,各於福山與阿玉山兩地檢定多組條件 活躍期最高峰,七至九月亦相當頻繁地出現(圖 下卡方分布(chi-square distribution)的同質性,在 二)。 計算出所試驗的卡方值後,對應該試驗所屬的自 以十二個月份分析埋葬蟲物種對林地或草 2 由度,當獲得之同質性機率低於 5%時 (χ -test: p 地的偏好,除大黑埋葬蟲因個體數目過少,無法 < 0.05),即表示該試驗各組間存在顯著差異。埋 區分其棲地偏好外(Wilcoxon Signed Ranks Test: 葬蟲的個體大小分析,採用獨立樣本 t 檢定 p = 0.24, n = 12),紅胸埋葬蟲顯著偏好在草地出 (Independent Sample t-Test)比較在福山與阿玉山 現(Wilcoxon Signed Ranks Test: p < 0.05, n = 12), 兩地族群的差異,以及單一族群中兩性別個體大 而尼泊爾埋葬蟲則偏好以林地做為主要的活動 小的差異。分析影響尼泊爾埋葬蟲移動能力的因 空間(Wilcoxon Signed Ranks Test: p < 0.05, n = 子,使用簡單線性迴歸(Simple Linear Regression) 12),後兩者的棲位出現時間性與空間性的區隔。 探討移動距離與個體大小(前胸背板寬度)的關係, 2002 年 2 月至同年6 月在海拔高度600 至 以及以 Mann-Whitney U-test 比較性別對移動距 800m福山樣線與在海拔高度1200至1300m的阿 3 黃文伯 葛兆年 350 30 C. cyaneocephala a 300 N. concolor 25 250 N. nepalensis 200 20 150 15 100 number 50 10 0 23456 5 0 14 b 234567891011121 12 month 10 8 圖二、2001年2月至2002年1月各月份於福山哈盆自然 number 6 保留區所捕獲的紅胸埋葬蟲(Calosilpha 4 cyaneocephala)、大黑埋葬蟲(Nicrophorus concolor)與 2 0 尼泊爾埋葬蟲(Nicrophorus nepalensis)之個體數量。 23456 Figure 2. Number of C. cyaneocephala, N. concolor, and N. nepalensis captured per month in Hahpen Nature 400 350 c Preserve in Fushan from February 2001 to January 2002. 300 250 玉山樣線進行調查,三種埋葬蟲在較高海拔阿玉 200 150 山樣線的活躍期皆顯著晚於較低海拔的福山樣 100 線(χ2-test: 紅胸埋葬蟲: p < 0.001, 大黑埋葬蟲: p 50 0 < 0.01, 尼泊爾埋葬蟲: p < 0.001)。紅胸埋葬蟲在 23456 month 福山樣線出現時間較早,2月即有捕獲紀錄,但 月捕獲數量皆在100隻以下,但3月在阿玉山樣線 圖三、2002年2月至6月在福山樣線(—)與阿玉山樣線 出現後,於4月的捕獲數量即超過100隻,於5、6 (---) 所捕獲三種埋葬蟲的數量,(a) 紅胸埋葬蟲 月仍持續增加;大黑埋葬蟲在福山樣線出現的時 (Calosilpha cyaneocephala) 、 (b) 大黑埋葬蟲 間亦早於阿玉山樣線一個月,在福山活躍的高峰 (Nicrophorus concolor)、(c)尼泊爾埋葬蟲(Nicrophorus 期為5月,而捕獲的數量在阿玉山樣線則是在5月 nepalensis);三種埋葬蟲的數量高峰月份皆有顯著不 2 過後陡增;尼泊爾埋葬蟲在福山樣線於2月突然 同(χ -test, p皆 < 0.01)。 大量出現,但其捕獲量隨即逐漸降低,並於5月 Figure 3. Number of carrion beetles (per species) captured per month in Fushan (—) and Ayushan (---) 時無捕獲紀錄,在阿玉山樣線捕獲數量則是於4 from February 2002 to June 2002. (a) C. cyaneocephala 月達到高峰,雖然在兩樣線2月份皆有個體出現, (χ2-test: p < 0.001), (b) N. concolor (χ2-test: p < 0.01), 但活躍期高峰在阿玉山樣線延後了兩個月(圖 and (c) N. nepalensis (χ2-test: p < 0.001). The peaks of 三)。 the beetle numbers in Fushan and Ayushan were significantly different for three carrion beetle species 除了此三種埋葬蟲在實驗期間被捕獲外,亦 (χ2-test, all p < 0.01) 捕獲另外兩種埋葬蟲,粗腿埋葬蟲(Necrodes nigricornis Harold)於2001年1月進行前測時於草 在福山與阿玉山兩地族群體型上的差異,兩物種 地捕獲11隻,而雙斑埋葬蟲(Diamesus bimaculatus 位於較高海拔阿玉山的甲蟲族群,前胸背板寬度 Portevin)則是在2003年12月於林地陷阱中捕獲1 皆大於較低海拔福山的族群(t-Test: p < 0.001;紅 隻,並於2001年夏天在山羌(Muntiacus reevesi 胸埋葬蟲:福山 平均值 = 8.91 ± 0.65 mm,n = micrurus Sclater)屍體上觀察到,粗腿埋葬蟲與雙 195、阿玉山 平均值 = 9.34 ± 0.57 mm,n = 334; 斑埋葬蟲於實驗期間皆未受小鼠或大鼠屍體吸 尼泊爾埋葬蟲:福山 平均值 = 4.71 ± 0.62 mm, 引而捕獲。 n = 469、阿玉山 平均值 = 5.25 ± 0.67 mm,n = 281). 埋葬蟲在不同海拔高度下的個體大小差異 紅胸埋葬蟲不論是在福山或是阿玉山,兩地 在不同海拔高度的埋葬蟲,呈現個體大小的 族群的雄蟲前胸背板寬度皆顯著大於雌蟲(t-Test: 差異分布。分別比較紅胸埋葬蟲與尼泊爾埋葬蟲 p < 0.001;福山:雄蟲平均值 = 9.34 ± 0.50 mm, 4 埋葬蟲分布與族群動態 圖五、2002 年 2 月 24 日至4 月 22 日尼泊爾埋葬蟲 (Nicrophorus nepalensis)在福山的捕獲數(---),以及使 用Jolly-method所估算的族群大小(—)。 Figure 5. Number of captured N. nepalensis (---) and population size estimated using the Jolly method (—) in Fushan from 24 February to 22 April, 2002. 蟲,並於翅鞘上戳洞編碼標放。尼泊爾埋葬蟲捕 獲的數量於此期間出現三個高峰值,分別在2月 28日、3月24日與4月18日。但以Jolly-method統計 圖四、2002年2月至6月兩種埋葬蟲雌雄個體前胸背板 寬度,各別在福山或阿玉山的比較。(a)紅胸埋葬蟲 族群數量密度,於可估算的日期中發現3月24日 (Calosilpha cyaneocephala)(福 山:雄 蟲 n = 89、雌 蟲 n 前族群密度呈現穩定的狀態,而族群於之後8日 = 106; 阿玉山:雄蟲 n = 196、雌 蟲 n = 138; t-Test: 內增加了約5倍的大小,至4月14日再恢復為先前 兩地皆為 p < 0.001);(b)尼泊爾埋葬蟲(Nicrophorus 的族群密度(圖五)。 nepalensis)(福山:雄蟲 n = 273、雌蟲 n = 196,t-Test: 為了解族群密度動態變化的原因,對2002年 p = 0.927;阿 玉 山:雄 蟲 n = 119、雌 蟲 n = 162,t-Test: 2月24日至4月22日同時期所捕獲的尼泊爾埋葬 p < 0.001)(mean ± SE)。 蟲,在翅鞘戳洞編碼時,同時檢測翅鞘硬度,並 Figure 4. Pronotum width of male and female carrion 統計剛羽化出來的個體佔該日捕獲數量的比例。 beetles captured in Fushan or Ayushan from February 2002 to June 2002. (a) C. cyaneocephala: male: n = 89, 在捕獲個體數量高峰值的三個日期(2月28日、3 female: n = 106 in Fushan; male: n = 196, female: n = 月24日與4月18日)前,剛羽化個體所佔的比例, 138 in Ayushan (t-Test: p < 0.001 for both sites); (b) N. 即在2月24日、3月16日與4月14日達到高峰值(圖 nepalensis: male: n = 237, female: n = 196 in Fushan 六)。在光週期L/D: 11/13、溫度20oC的條件下, (t-Test: p = 0.927) ; male: n = 119, female: n = 162 in Ayushan (t-Test: p < 0.001; mean ± SE). 尼泊爾埋葬蟲發現屍體後,至下一個世代羽化出
Recommended publications
  • 106Th Annual Meeting of the German Zoological Society Abstracts
    September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416
    [Show full text]
  • 2009 Vermilion, Alberta
    September 2010 ISSN 0071‐0709 PROCEEDINGS OF THE 57th ANNUAL MEETING OF THE Entomological Society of Alberta November 5‐7, 2009 Vermilion, Alberta Content Entomological Society of Alberta Board of Directors for 2009 .............................................................. 3 Annual Meeting Committees for 2009 ................................................................................................. 3 President’s Address ............................................................................................................................. 4 Program of the 57th Annual Meeting.................................................................................................... 6 Oral Presentation Abstracts ................................................................................................................10 Poster Presentation Abstracts.............................................................................................................21 Index to Authors.................................................................................................................................24 Minutes of the Entomology Society of Alberta Executive/Board of Directors Meeting ........................26 Minutes of the Entomological Society of Alberta 57th Annual General Meeting...................................29 2009 Regional Director to the Entomological Society of Canada Report ..............................................32 2009 Northern Director’s Reports .......................................................................................................33
    [Show full text]
  • Adult Diapause in Coleoptera
    Hindawi Publishing Corporation Psyche Volume 2012, Article ID 249081, 10 pages doi:10.1155/2012/249081 Review Article Adult Diapause in Coleoptera Ivo Hodek Institute of Entomology, Biological Centre, Academy of Sciences, 37005 Ceske Budejovice, Czech Republic Correspondence should be addressed to Ivo Hodek, [email protected] Received 15 September 2011; Accepted 11 October 2011 Academic Editor: Ai-Ping Liang Copyright © 2012 Ivo Hodek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Recent studies dealing with adult (reproductive) diapause in the Coleoptera are reviewed, as a kind of supplement to the classic compendia. In the first two sections, the general characteristics of adult diapause are described and principal terms explained. Original articles dealing with 19 species from nine coleopteran families (Coccinellidae, Chrysomelidae, Bruchidae, Curculionidae, Carabidae, Silphidae, Scolytidae, Scarabaeidae, and Endomychidae) are reviewed. Finally attempts are made at generalisations from the papers reviewed, and hypotheses on diapause evolution are inferred. A polyphenic character of diapause is a prominent feature in C. septempunctata and L. decemlineata, but has been found also in other Coleoptera and in insects generally and often generates voltinism heterogeneity within populations. 1. Introduction by accumulating reserves (lipids, glycogen, proteins) and substances needed for resistance to future hazardous changes Adult diapause is the most common form of diapause of environmental conditions. To begin early enough before in Coleoptera. It occurs in about 90% of beetle species the start of the dangerous period, diapause is induced by [1], belonging mostly to the families of Coccinellidae, signals heralding the arrival of the unfavourable season; usu- Chrysomelidae, and Curculionidae, and partly also Cara- ally the cue is photoperiodic.
    [Show full text]
  • American Burying Beetle (Nicrophorus Americanus )
    American Burying Beetle (Nicrophorus americanus ) A Species Conservation Assessment for The Nebraska Natural Legacy Project Prepared by Melissa J. Panella Nebraska Game and Parks Commission Wildlife Division March 2013 The mission of the Nebraska Natural Legacy Project is to implement a blueprint for conserving Nebraska’s flora, fauna, and natural habitats through the proactive, voluntary conservation actions of partners, communities and individuals. Purpose The primary goal in development of at-risk species conservation assessments is to compile biological and ecological information that may assist conservation practitioners in making decisions regarding the conservation of species of interest. The Nebraska Natural Legacy Project recognizes the American Burying Beetle (Nicrophorus americanus ) as a Tier I at-risk species of high conservation priority. Indeed, the American Burying Beetle (ABB) is a species of conservation need throughout its range. Here, I provide some general management recommendations regarding ABB; however, conservation practitioners will need to use professional judgment for specific management decisions based on objectives, location, and site-specific conditions. This resource provides available knowledge of ABB that may aid in the decision-making process or in identifying research needs for the benefit of the species. Species conservation assessments will be updated as new scientific information becomes available. The Nebraska Natural Legacy Project focuses efforts in the state’s Biologically Unique Landscapes (BULs),
    [Show full text]
  • Antagonistic Effects of Intraspecific Cooperation and Interspecific
    RESEARCH ARTICLE Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance Hsiang-Yu Tsai1,2, Dustin R Rubenstein3,4, Bo-Fei Chen1, Mark Liu1, Shih-Fan Chan1, De-Pei Chen1,2, Syuan-Jyun Sun1, Tzu-Neng Yuan1, Sheng-Feng Shen1,2* 1Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; 2Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan; 3Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, United States; 4Center for Integrative Animal Behavior, Columbia University, New York, United States Abstract Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species’ optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change. *For correspondence: [email protected] Introduction Competing interests: The Recent anthropogenic climate warming makes understanding species vulnerability to changing tem- authors declare that no peratures one of the most pressing issues in modern biology.
    [Show full text]
  • Implications for the Persisitence of Nicrophorine Burying Beetles
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2019 Spatio-temporal niche patterns and thermal environmental cues: Implications for the persisitence of Nicrophorine burying beetles Maranda Lillian Keller University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Keller, Maranda Lillian, "Spatio-temporal niche patterns and thermal environmental cues: Implications for the persisitence of Nicrophorine burying beetles" (2019). Master's Theses and Capstones. 1275. https://scholars.unh.edu/thesis/1275 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. SPATIO-TEMPORAL NICHE PATTERNS AND THERMAL ENVIRONMENTAL CUES: IMPLICATIONS FOR THE PERSISTENCE OF NICROPHORINE BURYING BEETLES BY MARANDA L. KELLER Bachelor of Science, Oklahoma State University, 2016 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2019 This thesis/dissertation has been examined and approved in partial fulfillment of the requirements for the degree of MS in Integrative and Organismal Biology by: Thesis Director, Dr. Carrie L. Hall, Assistant Professor of Ecology and Biology Education (Integrative Organismal Biology) Dr. Daniel Howard, Assistant Professor (Integrative Organismal Biology) Dr. Thomas Lee, Associate Professor (Natural Resources and the Environment) On 05/02/2019 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Programme Connexe - Local Arrangements, Photographs & Side Program
    ESC-SEQ 2006 diversité Société d’entomologie du Québec Société d’entomologie du Canada Entomological Society of Canada 18-22 novembre 2006 Holiday Inn Midtown Montréal, Québec Commanditaires - Sponsors Lyman Entomological Museum Musée d’entomologie Lyman Département des sciences des ressources naturelles Department of Natural Resource Sciences Société d’entomologie du Québec – Société d’entomologie du Canada Réunion conjointe - 18-22 novembre 2006 Société d’Entomologie du Québec – Entomological Society of Canada Joint Annual Meeting - 18-22 November 2006 Bienvenue – Welcome Au nom de la Société d’entomologie du Canada, je vous souhaite la bienvenue à la réunion annuelle conjointe avec la Société d’entomologie du Québec. Les organisateurs ont travaillé d’arrache pied pour faire en sorte que les participants puissent jouirent d’une grande variété de présentations scientifiques et de discussions en plus de nous fournir des occasions de socialiser et de visiter plusieurs endroits à Montréal. Je vous souhaite une très bonne réunion. On behalf of the Entomological Society of Canada, welcome to our joint annual meeting with the Entomological Society of Quebec. The conference organizers have worked hard to ensure that all conference participants can enjoy a variety of scientific presentations and discussions as well as have substantial opportunity to socialize and visit some of the many sites in Montreal. Have a great meeting. Dan Quiring, Président, ESC-SEC Comité Organisateur – Organizing Committee Charles Vincent Responsable principal et relations
    [Show full text]
  • Abstracts of the Immature Beetles Meeting 2013 October 3–4, Prague, Czech Republic
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 15.xi.2013 Volume 53(2), pp. 891–910 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:494F1381-1257-40EB-A419-6F40ED938D84 Abstracts of the Immature Beetles Meeting 2013 October 3–4, Prague, Czech Republic Martin FIKÁČEK1,2), Jiří SKUHROVEC3) & Petr ŠÍPEK2) (editors) 1) Department of Entomology, National Museum, Kunratice 1, Czech Republic; e-mail: mfi [email protected] 2) Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-12843, Prague, Czech Republic; e-mail: [email protected] 3) Department of Plant Ecology and Weed Science, Crop Research Institute, Prague 6 – Ruzyně, Czech Republic; e-mail: [email protected] Following the biennial tradition, the fi fth Immature Beetles Meeting was held in Prague in October 3–4, 2013. As usual, the meeting took place at the Faculty of Science of Charles University in Prague and was organized in cooperation with the National Museum in Prague and the Crop Research Institute in Prague. In total, 59 participants from Europe, North and South America and Asia attended the meeting, including four students and researchers from Brazil (some of them met for the fi rst time in Prague), leading experts in beetle systematics and morphology (Michael Ivie, Vasily Grebennikov, Petr Švácha), the head of one of the largest collections of beetles (Max Barclay from the Natural History Museum, London) and several newbies, i.e. pregraduate or even pre-university students (Vitor Abrahão Cabral Bexiga, Jordan Rainey and Albert Damaška). Fifteen oral lectures and three posters were presented, concerning the morphology, taxonomy and biology of immature stages of beetle families Carabidae, Helophoridae, Hydrophilidae, Staphylinidae, Silphidae, Elmidae, Buprestidae, Scarabaeidae, Lycidae, Chrysomelidae, Cerambycidae and Curculionidae.
    [Show full text]
  • Derek Scott Sikes
    Derek Scott Sikes Curriculum Vitae Curator of Insects, Professor of Entomology University of Alaska Museum Institute of Arctic Biology Department of Biology and Wildlife Fairbanks, Alaska 99775-6960 Phone: (907) 474-6278 fax: (907) 474-5469 e-mail: [email protected] last update: 20 May 2019 Principal Research Interests Systematics: molecular and morphological based phylogenetics, taxonomy, and faunistics of nonmarine arthropods, principally Alaskan. Tertiary Education Ph.D., Systematic Entomology - University of Connecticut, Storrs, CT. May, 2003 (Major advisor, C. W. Schaefer). MS, Entomology- Montana State University, Bozeman, MT. December 1994. (Major advisor, M. A. Ivie). BA, Biology- University of California, Santa Cruz, CA. April 1992 (Major advisor, D. K. Letourneau). Positions 2018- Curator of Insects, Professor, University of Alaska Museum, Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 2011-2018 Curator of Insects, Associate Professor, University of Alaska Museum, Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 2006-2011 Curator of Insects, Assistant Professor, University of Alaska Museum, Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 2003-2006 Assistant Professor, Department of Biological Sciences, University of Calgary, Calgary, AB CV highlights - 66 Peer reviewed journal articles since 1993 - 48 Peer reviewed journal articles since starting at UAF in 2006 (3.7 /yr) - $1.734739M total in grants and contracts at UAF (3 NSF) - Google Scholar Metrics: Citations: 1706, h-index: 19 - 30 invited presentations - 6 graduate students graduated, 1 PhD, 5 MS Derek S. Sikes – vita 2 Refereed Publications (* indicate students I have mentored or co-mentored) 66. Klimaszewski J, Sikes DS, Brunke A, Bourdon C (2019) Species review of the genus Boreophilia Benick from North America (Coleoptera, Staphylinidae, Aleocharinae, Athetini): Systematics, habitat, and distribution.
    [Show full text]
  • Newsletter of the Biological Survey of Canada (Terrestrial Arthropods)
    Spring 2007 Vol. 26, No. 1 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes...................................... (inside front cover) News and Notes Bio-Blitz.2007............................................................................................................1 Activities.at.the.Entomological.Societies’.meeting....................................................3 Head.of.Biological.Survey.to.retire............................................................................6 Summary of the Scientific Committee meeting ........................................................7 Project Update: Pending publications.......................................................................10 Web Site Notes............................................................................................................12 Dubious awards: Sashes and such...........................................................................13 The Quiz Page..............................................................................................................14 Canadian Perspectives: Climate change impacts in northern Canada..................15 Arctic Corner From the canoe to the microscope: arctic mayflies and stoneflies.........................19 New book on arctic stoneflies.................................................................................21 Selected Future Conferences.....................................................................................22
    [Show full text]
  • A Chemically Triggered Transition from Conflict to Cooperation in Burying
    Ecology Letters, (2020) 23: 467–475 doi: 10.1111/ele.13445 LETTER A chemically triggered transition from conflict to cooperation in burying beetles Abstract Bo-Fei Chen,1 Mark Liu,1 Although interspecific competition has long been recognised as a major driver of trait divergence Dustin R. Rubenstein,2 Syuan- and adaptive evolution, relatively little effort has focused on how it influences the evolution of Jyun Sun,1 Jian-Nan Liu,1 Yu-Heng intraspecific cooperation. Here we identify the mechanism by which the perceived pressure of Lin1 and Sheng-Feng Shen1* interspecific competition influences the transition from intraspecific conflict to cooperation in a facultative cooperatively breeding species, the Asian burying beetle Nicrophorus nepalensis. We The peer review history for this not only found that beetles are more cooperative at carcasses when blowfly maggots have begun article is available at https://pub to digest the tissue, but that this social cooperation appears to be triggered by a single chemical lons.com/publon/10.1111/ele.13445 cue – dimethyl disulfide (DMDS) – emitted from carcasses consumed by blowflies, but not from control carcasses lacking blowflies. Our results provide experimental evidence that interspecific competition promotes the transition from intraspecific conflict to cooperation in N. nepalensis via a surprisingly simple social chemical cue that is a reliable indicator of resource competition between species. Keywords conflict, cooperation, social behaviour, sociality. Ecology Letters (2020) 23: 467–475 enables beetles to outcompete their primary competitors, INTRODUCTION blowflies (family Calliphoridae) (Sun et al. 2014; Liu et al. in Unraveling the mechanisms that shift individuals from being press). Temperature-dependent competition with blowflies competitive to cooperative is critical for understanding not occurs over carcass access with both adult blowflies, whose only the evolution of sociality but also of biological organisa- abundance and activity is higher at higher temperatures (Sun tion at many scales (Bourke 2011).
    [Show full text]
  • Ecological Transitions in Grouping Benefits Explain the Paradox Of
    vol. 195, no. 5 the american naturalist may 2020 Ecological Transitions in Grouping Benefits Explain the Paradox of Environmental Quality and Sociality Mark Liu (劉彥廷),1,* Shih-Fan Chan (詹仕凡),1,* Dustin R. Rubenstein,2 Syuan-Jyun Sun (孫烜駿),1 Bo-Fei Chen (陳伯飛),1 and Sheng-Feng Shen (沈聖峰)1,† 1. Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan; 2. Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York 10027; and Center for Integrative Animal Behavior, Columbia University, New York, New York 10027 Submitted March 21, 2019; Accepted October 18, 2019; Electronically published March 20, 2020 Online enhancements: supplemental PDF. Dryad data: https://doi.org/10.5061/dryad.ncjsxksqt. abstract: Both benign and harsh environments promote the evo- Introduction lution of sociality. This paradox—societies occur in environments A range of ecological (e.g., habitat, food, or nest site avail- of such contrasting quality—may be explained by the different fi ability) and environmental factors (e.g., climatic varia- types of bene ts that individuals receive from grouping: resource fl defense benefits that derive from group-defended critical resources tion) have been shown to in uence the evolution of soci- versus collective action benefits that result from social cooperation ality (Jetz and Rubenstein 2011; Purcell 2011; Kocher among group members. Here, we investigate cooperative behavior et al. 2014; Guevara and Avilés 2015; Sheehan et al. 2015; in the burying beetle Nicrophorus nepalensis along an elevational Lukas and Clutton-Brock 2017; Lin et al. 2019). In gen- gradient where environmental quality (climate and competition) eral, constrained resources or limited breeding territories varies with altitude.
    [Show full text]