2009 Vermilion, Alberta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
False Black Widows and Other Household Spiders
False Black Widows and Other Household Spiders Spiders can quite unnecessarily evoke all kinds of dread and fear. The Press does not help by publishing inaccurate and often alarmist stories about them. Spiders are in fact one of our very important beneficial creatures. Spiders in the UK devour a weight of insect 'pests' equivalent to that of the nation's human population! During the mid-late summer, many spiders mature and as a result become more obvious as they have then grown to their full size. One of these species is Steatoda nobilis. It came from the Canary and Madeiran Islands into Devon over a 100 years ago, being first recorded in Britain near Torquay in 1879! However it was not described from Britain until 1993, when it was known to have occurred since at least 1986 and 1989 as flourishing populations in Portsmouth (Hampshire) and Swanage (Dorset). There was also a population in Westcliff-on-Sea (Essex) recorded in 1990, and another in Littlehampton and Worthing (West Sussex). Its distribution is spreading more widely along the coast in the south and also inland, with confirmed records from South Devon, East Sussex, Kent, Surrey and Warwick. The large, grape-like individuals are the females and the smaller, more elongate ones, the males. These spiders are have become known as False Widows and, because of their colour, shape and size, are frequently mistaken for the Black Widow Spider that are found in warmer climes, but not in Britain (although some occasionally come into the country in packaged fruit and flowers). Black Widow Spiders belong to the world-wide genus Latrodectus. -
Lehman Caves Management Plan
National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0. -
Western Black Widow Spider
Arachnida Western Black Widow Spider Class Order Family Species Arachnida Araneae Theridiidae Latrodectus hesperus Range Reproduction Special Adaptations The genus is worldwide. Growth: gradual, molts several times. Venom: Although never Western Texas, Okla- Egg: produced in bunches of 40 or more, wrapped in silk and sus- aggressive, the females homa and Kansas north pended from the web, can hatch within a week of being laid. occasionally bite hu- to Canada and west to the Immature: pure white after hatching and slowly gaining color with each mans but only in self defense (males do not Pacific Coaststates molt. Adult: may live for several years. The female can store sperm for many bite humans). They months. It is a fallacy that the female always eats the male after can cause a serious but Habitat mating. rarely fatal result. The venom is neurotoxic and Found in tropical, temper- Physical Characteristics is reported to be 15 times ate and arid zones in a as poisonous as that of the rattlesnake. Symptoms multitude of habitats. Mouthparts: chelicerate, fangs are perpendicular to body line. Duct from a include a painful tight- poison gland opens from the base of each fang. The mouth and ening of the abdomenal jaws are on the underside of the head. Niche wall muscles, increased Legs: 8 long, narow legs. blood pressure and body Eyes: 8 eyes. Usually found in temperature, nausea, lo- Egg: their eggs are layed in clusters and covered with silk to undisturbed places like calized edema, asphyxia form an egg sac. wood piles, outhouses, and convulsions. Medical Immature: white at first , gaining color with each molt. -
106Th Annual Meeting of the German Zoological Society Abstracts
September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416 -
1 It's All Geek to Me: Translating Names Of
IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning. -
Records of the Hawaii Biological Survey for 1996
Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J. -
Jump Takeoff in a Small Jumping Spider
Journal of Comparative Physiology A https://doi.org/10.1007/s00359-021-01473-7 ORIGINAL PAPER Jump takeof in a small jumping spider Erin E. Brandt1,2 · Yoshan Sasiharan2 · Damian O. Elias1 · Natasha Mhatre2 Received: 27 October 2020 / Revised: 4 February 2021 / Accepted: 23 February 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Jumping in animals presents an interesting locomotory strategy as it requires the generation of large forces and accurate timing. Jumping in arachnids is further complicated by their semi-hydraulic locomotion system. Among arachnids, jumping spiders (Family Salticidae) are agile and dexterous jumpers. However, less is known about jumping in small salticid species. Here we used Habronattus conjunctus, a small jumping spider (body length ~ 4.5 mm) to examine its jumping performance and compare it to that of other jumping spiders and insects. We also explored how legs are used during the takeof phase of jumps. Jumps were staged between two raised platforms. We analyzed jumping videos with DeepLabCut to track 21 points on the cephalothorax, abdomen, and legs. By analyzing leg liftof and extension patterns, we found evidence that H. conjunc- tus primarily uses the third legs to power jumps. We also found that H. conjunctus jumps achieve lower takeof speeds and accelerations than most other jumping arthropods, including other jumping spiders. Habronattus conjunctus takeof time was similar to other jumping arthropods of the same body mass. We discuss the mechanical benefts and drawbacks of a semi- hydraulic system of locomotion and consider how small spiders may extract dexterous jumps from this locomotor system. -
Phylogeography in Sexual and Parthenogenetic European Oribatida
GÖTTINGER ZENTRUM FÜR BIODIVERSITÄTSFORSCHUNG UND ÖKOLOGIE - GÖTTINGEN CENTRE FOR BIODIVERSITY AND ECOLOGY - Phylogeography in sexual and parthenogenetic European Oribatida Dissertation zur Erlangung des akademischen Grades eines Doctor rerum naturalium an der Georg-August Universität Göttingen vorgelegt von Dipl. Biol. Martin Julien Rosenberger aus Langen, Hessen Referent: Prof. Dr. Stefan Scheu Koreferent: PD Dr. Mark Maraun Tag der Einreichung: 21 Oktober 2010 Tag der mündlichen Prüfung: Curriculum Vitae Curriculum Vitae Personal data Name: Martin Julien Rosenberger Address: Brandenburgerstrasse 53, 63329 Egelsbach Date of Birth: October 31st 1980 Place of Birth: Langen (Hessen) Education 1987-1991 Wilhelm Leuschner Primary School, Egelsbach 1991-2000 Abitur at Dreieich-Schule, Langen 2000-2006 Study of Biology at Darmstadt University of Technology, Germany 2006-2007 Diploma thesis: “Postglaziale Kolonisation von Zentraleuropa durch parthenogenetische (Platynothrus peltifer) und sexuelle (Steganacarus magnus) Hornmilben (Oribatida)” at Darmstadt University of Technology, Germany under supervision of Dipl. Biol. Katja Domes and Prof. Dr. S. Scheu 2007-2008 Scientific assistant at Darmstadt University of Technology, Germany 2008-2009 Scientific officer Darmstadt University of Technology, Germany Since 2009 PhD student at the Georg August University, Göttingen, Germany at the J. F. Blumenbach Insitute of Zoology and Anthropology under supervision of Prof. Dr. S. Scheu 2009-2010 Scientific officer at the Georg August University, Göttingen, -
A NEW SPECIES of the FAMILY ALYCIDAE (ACARI, ENDEOSTIGMATA) from SOUTHERN SIBERIA, RUSSIA Matti Uusitalo
Acarina 28 (2): 109–113 © Acarina 2020 A NEW SPECIES OF THE FAMILY ALYCIDAE (ACARI, ENDEOSTIGMATA) FROM SOUTHERN SIBERIA, RUSSIA Matti Uusitalo Zoological Museum, Center for Biodiversity, University of Turku, Turku, Finland e-mail: [email protected] ABSTRACT: A new species is described from southern Siberia, Tuva Republic, Russia: Amphialycus (Amphialycus) holarcticus sp. n. (Acari, Endeostigmata, Alycidae). This species can be recognized by its broad naso with longitudinally arranged striae; two pairs of cheliceral setae, posterior one being forked; three pairs of adoral setae; and a large number of genital setae. Two pairs of palpal eupathidia are close to each other, representing a kind of transitional form towards the fusion of the basal parts of eupathidia, observed in the subgenus Orthacarus. KEY WORDS: Mites, Amphialycus, taxonomy, Asia. DOI: 10.21684/0132-8077-2020-28-2-109-113 INTRODUCTION Mites of the family Alycidae G. Canestrini and chaelia Uusitalo, 2010 and should be re-examined. Fanzago, 1877 (Acari, Endeostigmata) are free- For example, Bimichaelia ramosus was redescribed living soil-dwellers, characterized by a worldwide and renamed as Laminamichaelia shibai Uusitalo distribution. A recent revision of the family by et al., 2020 in a recent review of the South African Uusitalo (2010) has focused on the European spe- Alycidae (Uusitalo et al. 2020). cies. Meanwhile, species from other regions are Furthermore, Bimichaelia grandis was de- virtually unknown. For example, alycids were not scribed by Berlese (1913) from the island of Java, included in a recent thorough checklist of the mites Indonesia; this species will be redescribed based of Pakistan (Halliday et al. -
Final Edition, May 1, 2020
Final Edition, May 1, 2020 EXPLORATIONS 2020: Research, Scholarship and Creative Expression at William Paterson University Sponsors and Supporters Faculty Senate Research, Office of Sponsored Programs Scholarship and Creative Expression Council Martin Williams, Director Lisa Warner, College of Education, Co-Chair Christine Bravo, Assistant Director, Nicholas Hirshon, College of Arts and Pre-Award Services Communication, Co-Chair Kate Boschert, Assistant Director, Myles Garvey, Cotsakos College of Business Research Development Kim Dimino, College of Science and Health Maureen Peters, Program Assistant Richard Huizar, College of Humanities and Anna Baiata, Grant and Contract Social Sciences Support Specialist David Williams, Cheng Library Skyler Hagner, Graduate Assistant Babita Srivastava, Adjunct Representative Chuckie Moses II, Undergraduate Assistant Jan Pinkston, Honors College, Professional Staff Martin Williams, Office of Sponsored Programs Sandra Hill, Associate Provost for Academic Affairs David and Lorraine Cheng Library Honors College Edward Owusu-Ansah, Dean Barbara Andrew, Director Cotsakos College of Business Jan Pinkston, Assistant Director Susan Godar, Interim Dean College of Education 12th Annual Undergraduate Research Amy Ginsberg, Dean Conference College of Arts and Communication Bhanu P. S. Chauhan, Chemistry, Co-Chair Darryl Moore, Dean Jaishri Menon, Biology, Co-Chair Center for Research, College of Science and Health Brenda Marshal, Director Venkat Sharma, Dean College of Humanities and Social Sciences Richard Helldobler, President Wartyna Davis, Interim Dean Joshua Powers, Provost and Marketing and Public Relations Senior Vice President for Academic Stuart Goldstein, Associate Vice President Christine Diehl, Director, Marketing Affairs Poster and Cover Art Liam Garcia, Undergraduate Student, Prof. Matt Finn, Art Department William Paterson University, Copyright 2020 2 EXPLORATIONS will not be presented in-person in 2020 because of COVID-19 (Coronavirus Disease) Pandemic. -
Effects of Weed Management on Soil Mites in Coffee Plantations in A
Neotropical Biology and Conservation 14(2): 275–289 (2019) doi: 10.3897/neotropical.14.e38094 RESEARCH ARTICLE Effects of weed management on soil mites in coffee plantations in a Neotropical environment Efeito dos diferentes tipos de métodos de manejo de ervas daninhas em ácaros de solo em plantações de café Patrícia de Pádua Marafeli1, Paulo Rebelles Reis2, Leopoldo Ferreira de Oliveira Bernardi1, Elifas Nunes de Alcântara2, Pablo Antonio Martinez3 1 Universidade Federal de Lavras, Departamento de Entomologia, Pós-Graduação em Entomologia, Lavras, MG, Brazil 2 Empresa de Pesquisa Agropecuária de Minas Gerais, EcoCentro Lavras, MG, Brazil 3 Universidad Nacional de Mar del Plata, Mar del Plata, Argentina Corresponding author: Leopoldo Ferreira de Oliveira Bernardi ([email protected]) Academic editor: A.M. Leal-Zanchet | Received 28 October 2018 | Accepted 31 March 2019 | Published 25 July 2019 Citation: Pádua Marafeli P, Reis PR, Oliveira Bernardi LF, Alcântara EN, Martinez PA (2019) Effects of weed management on soil mites in coffee plantations in a Neotropical environment. Neotropical Biology and Conservation 14(2): 275–289. https://doi.org/10.3897/neotropical.14.e38094 Abstract Environmental disturbance, as a result of land use change and/or different agricultural practices, may have negative impacts on the richness and abundance of edaphic mites. The objective of this study was to evaluate the effects of different weed management methods in coffee plantations on edaphic mites, and to compare these results with mite communities of native forest habitats in southeastern Brazil. Soil samples were taken between the rows of a coffee plantation under different weed management methods, such as without weeding, manual weeding, agricultural grid, contact herbicide (glyphosate), residual herbicide (oxyfluorfen), mechanical tiller, and mechanical mower, and in a native forest area. -
Aspects of the Courtship Behavior of Th E (Araneae : Theridiidae)
Ross, K . and R . L . Smith, 1979 . Aspects of the courtship behavior of the Black Widow spider , Latrodectus hesperus (Araneae : Theridiidae), with evidence for the existence of a contact se x pheromone. J . Arachnol . 7 :69-77 . ASPECTS OF THE COURTSHIP BEHAVIOR OF TH E BLACK WIDOW SPIDER, LATRODEC'TUS HESPERU S (ARANEAE : THERIDIIDAE), WITH EVIDENCE FO R THE EXISTENCE OF A CONTACT SEX PHEROMON E Kenneth Ross and Robert L. Smit h Departrnent of Entomology University of Arizona, Tucson, Arizona 8572 1 ABSTRAC T The courtship and mating behavior of the black widow spider, Latrodectus hesperus Chamberli n and [vie, were studied to determine stimuli responsible for mate location and courtship initiation in this species . We observed new courtship patterns which included a vigorous display performed b y females, " push-ups" executed by both sexes, and cryptic abdominal vibrations produced by male s immediately upon contact with female webs . Males initiated courtship when they contacted unoc- cupied conspecific female webs, but did not respond when placed on other male webs . Male L . hesperus also initiated courtship behavior on unoccupied female webs of another species, Latrodectu s mactans (Fabricius) . Female L . hesperus were stimulated by contact with conspecific male webs, bu t not other female webs . Scanning electron microscopy revealed what are presumed to be chemo- receptive hairs on the tarsi and pedipalps of males and females . We conclude that male and female L . hesperus produce sexually specific, complementary contact pheromones which are incorporated int o their silk . These substances apparently function in mate location, sex identification, and courtship fo r this species, but not as an isolating mechanism between L .