Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats molecules Article Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats Laura Rombolà 1, Laura Tridico 1, Damiana Scuteri 1, Tsukasa Sakurada 2, Shinobu Sakurada 3, Hirokazu Mizoguchi 3, Pinarosa Avato 4, Maria Tiziana Corasaniti 5, Giacinto Bagetta 1 and Luigi Antonio Morrone 1,* 1 Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Italy; [email protected] (L.R.); [email protected] (L.T.); [email protected] (D.S.); [email protected] (G.B.) 2 First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 815-8511 Fukuoka, Japan; [email protected] 3 Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan; [email protected] (S.S.); [email protected] (H.M.) 4 Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, IT-70125 Bari, Italy; [email protected] 5 Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0984-493-054; Fax: +39-0984-493-107 Academic Editor: Olga Tzakou Received: 15 March 2017; Accepted: 9 April 2017; Published: 11 April 2017 Abstract: Preclinical studies have recently highlighted that bergamot essential oil (BEO) is endowed with remarkable neurobiolological effects. BEO can affect synaptic transmission, modulate electroencephalographic activity and it showed neuroprotective and analgesic properties. The phytocomplex, along with other essential oils, is also widely used in aromatherapy to minimize symptoms of stress-induced anxiety and mild mood disorders. However, only limited preclinical evidences are actually available. This study examined the anxiolytic/sedative-like effects of BEO using an open field task (OFT), an elevated plus-maze task (EPM), and a forced swimming task (FST) in rats. This study further compared behavioural effects of BEO to those of the benzodiazepine diazepam. Analysis of data suggests that BEO induces anxiolytic-like/relaxant effects in animal behavioural tasks not superimposable to those of the DZP. The present observations provide further insight to the pharmacological profile of BEO and support its rational use in aromatherapy. Keywords: bergamot essential oil; diazepam; behavioural tests; rat 1. Introduction Bergamot essential oil (BEO) is obtained by cold pressing of the epicarp and part of the mesocarp of Citrus bergamia Risso and Poiteau, belonging to the Rutaceae family, genus Citrus. Bergamot is defined as a hybrid of bitter orange (Citrus aurantium L.) and lemon (Citrus limon L.) by some authors, or of Citrus aurantium L. and Citrus aurantifolia Swing by others [1]. BEO consists of several substances among which terpens and oxygenated molecules in the volatile fraction (93%–96% of total), coumarines and psoralens in the non-volatile fraction (4%–7% of total) of the essence [2,3]. Particularly, the volatile fraction includes monoterpene and sesquiterpene hydrocarbons (e.g., d-limonene, β-bisabolene, γ-terpinene, α- and β-pinene, sabinene, β-myrcene, terpinolene, and geranyl acetate) and oxygenated derivatives (e.g., linalool, linalyl acetate, neral, geranial, neryl acetate, and geranyl acetate). The most abundant compounds are the monoterpene hydrocarbons d-limonene (25.62%–53.19% of the whole Molecules 2017, 22, 614; doi:10.3390/molecules22040614 www.mdpi.com/journal/molecules Molecules 2017, 22, 614 2 of 11 Moleculesessential 2017 oil),, 22 the, 614monoterpene ester, linalyl acetate (15.61%–40.37%), and the monoterpene alcohol,2 of 11 linalool (1.75%–20.26%) (Figure1)[ 4]. Bergamot essential oil is widely used in the cosmetic industry 20.26%)as perfume (Figure fixative 1) [4]. and Bergamot as an aromaessential in oil the is foodwidel tradey used and in the pharmaceutical cosmetic industry industry. as perfume As reported fixative andby the as an European aroma in Medicines the food trade Agency and pharmaceutic (EMA) monographal industry. in the As Herbalreported Medicinal by the European Products Medicines section, Agencytraditional (EMA) and monograph folk medicine in the use Herbal of BEO Medicinal has long Products been known section, of, buttraditional only in and the folk last tenmedicine years usehave of preclinical BEO has long studies been provided known severalof, but dataonly toin supportthe last potentialten years therapeutichave preclinical use of studies the essential provided oil. severalBEO is useddata to facilitatesupport potential wound healing therapeutic as antiseptic use of the and essential antihelminthic, oil. BEO effects is used that to arefacilitate supported wound by healingantimicrobial as antiseptic [5] and and antifungal antihelminthic, [6] activities effects as th wellat are as supported the capacity by ofantimicrobial the phytocomplex [5] and toantifungal increase [6]oxidative activities metabolism as well as inthe human capacity polymorphonuclear of the phytocomplex leukocytes to increase [7]. oxidative Furthermore, metabolism data accumulated in human polymorphonuclearin the literature so far leukocytes indicate that[7]. bergamotFurthermore, oil isda endowedta accumulated with notable in the neurobiolologicalliterature so far indicate effects (seethat bergamot [8,9]) originating, oil is endowed at least with in part, notable by an neurobiolological interference with effects basic (see mechanisms [8,9]) originating, finely tuning at least synaptic in part, byplasticity an interference under physiological with basic mechanisms [10,11] as wellfinely as tuning pathological synaptic conditions, plasticity under i.e., brain physiological ischemia [10,11] [12] and as wellpain as [13 pathological–18], induced conditions, under controlled i.e., brain and ischemia broadly [12] validated and pain experimental [13–18], induced settings. under Interestingly, controlled andBEO broadly also showed validated neuroprotective experimental effectssettings. in Interest humaningly, neuroblastoma BEO also showed cell line neuroprotective [19–22]. Moreover, effects this in humanphytocomplex, neuroblastoma as with cell other line essential [19–22]. oilsMoreover, [23,24], this is widely phytocom usedplex, in aromatherapyas with other essential (a branch oils of [23,24], herbal ismedicine) widely used to relieve in aromatherapy symptoms of(a branch stress-induced of herbal anxiety medicine) [25], to although relieve symptoms limited preclinical of stress-induced data are anxietyactually [25], available although [26, 27limited]. In thispreclinical regard, data to further are actually characterize available the [26,27]. neurobiological In this regard, profile to further of the characterizephytocomplex the and,neurobiological consequently, profile to contributeof the phytocom to a rationalplex and, use consequently, of BEO in aromatherapy, to contribute to this a rational study useinvestigated of BEO in the aromatherapy, effects of the this essential study oilinvestigated in behavioural the effects tests usuallyof the essential performed oil in to behavioural study anxiolytic, tests usuallystimulant performed or sedative to study and antidepressive anxiolytic, stimulant effects ofor compoundssedative and asantidepressive the open field effects (OFT) of [28 compounds], elevated asplus-maze the open (EPM)field (OFT) [29], [28], and forcedelevated swimming plus-maze (FST) (EPM) [30 [29],,31] tasks.and forced The resultsswimming obtained (FST) with [30,31] BEO tasks. are Thecompared results with obtained the benzodiazepine with BEO are compared diazepam with (DZP). the benzodiazepine diazepam (DZP). Figure 1. MainMain compounds compounds present in volatile frac fractiontion of bergamot essential oil (BEO). 2. Results 2.1. Effects of BEO on Open Field Test (OFT) Analysis of data indicates that systemic administration of bergamot essential oil (250 or 500500 µμL/kg)L/kg) induces significant significant differences differences in the in frequencies the frequencies of crossing of crossing (F treatment, (F treatment, Ftr(3, 140) Ftr(3,= 11.98, 140) p <= 0.0001, 11.98, Fp <time, 0.0001 Ft(3,, 140) F time, = 68.78, Ft(3, p < 140)0.0001, = Ftxtr(9, 68.78, 140)p < = 0.0001 1.004,, p Ftxtr(9, < 0.4395), 140) rearing = 1.004, (Ftr(3, 140)p < =0.4395), 6.348, p = rearing 0.0005, (Ft(3,Ftr(3, 140) 140) = 5.249, = 6.348 p <, 0.0018,p = 0.0005 Ftxtr(9,, Ft(3, 140) 140) = 1.610, = 5.249, p = 0.1179)p < 0.0018, and wallrearing Ftxtr(9, 140) (Ftr(3, = 1.610,140) = 11.24,p = 0.1179) p < 0.0001, and wallrearingFt(3, 140) = 32.80, (Ftr(3, p 140) < 0.0001, = 11.24 Ftxtr(9,, p < 0.0001, 140) Ft(3,= 2.42, 140) p = = 0.0138) 32.80, p (Figure< 0.0001, 2) Ftxtr(9,versus 140)jojoba = 2.42,oil (vehicle)p = 0.0138 or) (FigureDZP (1.22) mg/kg) versus group. jojoba oilParticularly, (vehicle) orthe DZP rats treated (1.2 mg/kg) with the group. higher Particularly, dose of BEO the (500 rats μ treatedL/kg) show with a decreasethe higher of dosecrossing, of BEO rearing, (500 µandL/kg) wallrearing show a decreasethat reach of statistical crossing, significance rearing, and at wallrearing the first two that intervals reach ofstatistical testing (5 significance and 10 min) at versus the first jojoba two oil intervals treated of rats testing (Figure (5 and2). Interestingly, 10 min) versus a statistically jojoba oil treated significant rats (Figuredifference2). is Interestingly, also observed a statisticallyat 5 min between significant BEO (500 difference μL/kg) isand also DZP observed groups
Recommended publications
  • HS-SPME and Microdistillation Isolation Methods for the Volatile Compounds of Bergamot Fruits Cultivated in Turkey
    Nat. Volatiles & Essent. Oils, 2019; 6(4): 21-25 Ağalar et al. RESEARCH ARTICLE HS-SPME and microdistillation isolation methods for the volatile compounds of bergamot fruits cultivated in Turkey Hale Gamze Ağalar1,*, Burak Temiz2 and Betül Demirci1 1 Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Tepebasi, Eskisehir, TURKEY 2 Department of Pharmacognosy, Institute of Health Sciences, Anadolu University, 26470, Tepebasi, Eskisehir, TURKEY *Corresponding author. Email: [email protected] Abstract Bergamot fruits are important for cosmetic, perfumery, food and drug industries. Bergamot essential oil is well characterized and is used extensively in many flavours and fragrances. In the present study, the bergamot fruits cultivated in Adana were collected for the isolation of the volatiles in the peels, by microdistillation and headspace-solid phase microextraction (SP-SPME) techniques. The fresh peels of the fruits subjected to microdistillation were analysed by GC and GC-MS systems, simultaneously. In the same time, to trap volatile compounds in the fresh peels HS-SPME technique was employed. As result, limonene (32.9, 36.8%), linalool (37.3, 16.6%) and linalyl acetate (7.8, 30.2%) were identified as the major compounds comparable in the peels obtained by microdistillation and HS-SPME, respectively. Keywords: Citrus x bergamia, bergamot, microdistillation, HS-SPME, volatiles Introduction Citrus × bergamia Risso & Poit. belonging to the Rutaceae family is defined as a hybrid between a sour orange (C. aurantium L.) and lemon (C. limon L. Burm. f.) or formed as a mutation of the latter. In the same time, bergamot is thought to be a hybrid between a sour orange and lime (Navarra et al., 2015).
    [Show full text]
  • Neuroprotective Potential of Limonene and Limonene Containing Natural Products
    molecules Review Neuroprotective Potential of Limonene and Limonene Containing Natural Products Lujain Bader Eddin 1 , Niraj Kumar Jha 2 , M. F. Nagoor Meeran 1 , Kavindra Kumar Kesari 3,4 , Rami Beiram 1 and Shreesh Ojha 1,* 1 Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; [email protected] (L.B.E.); [email protected] (M.F.N.M.); [email protected] (R.B.) 2 Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; [email protected] 3 Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland; kavindra.kesari@aalto.fi 4 Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland * Correspondence: [email protected] Abstract: Limonene is a monoterpene confined to the family of Rutaceae, showing several biological properties such as antioxidant, anti-inflammatory, anticancer, antinociceptive and gastroprotective characteristics. Recently, there is notable interest in investigating the pharmacological effects of limonene in various chronic diseases due to its mitigating effect on oxidative stress and inflam- mation and regulating apoptotic cell death. There are several available studies demonstrating the neuroprotective role of limonene in neurodegenerative diseases, including Alzheimer’s disease, Citation: Eddin, L.B.; Jha, N.K.; multiple sclerosis, epilepsy, anxiety, and stroke. The high abundance of limonene in nature, its Meeran, M.F.N.; Kesari, K.K.; Beiram, safety profile, and various mechanisms of action make this monoterpene a favorable molecule to R.; Ojha, S.
    [Show full text]
  • Bergamot Oil: Botany, Production, Pharmacology
    Entry Bergamot Oil: Botany, Production, Pharmacology Marco Valussi 1,* , Davide Donelli 2 , Fabio Firenzuoli 3 and Michele Antonelli 2 1 Herbal and Traditional Medicine Practitioners Association (EHTPA), Norwich NR3 1HG, UK 2 AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia RE, Italy; [email protected] (D.D.); [email protected] (M.A.) 3 CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; fabio.firenzuoli@unifi.it * Correspondence: [email protected] Definition: Bergamot essential oil (BEO) is the result of the mechanical manipulation (cold pressing) of the exocarp (flavedo) of the hesperidium of Citrus limon (L.) Osbeck Bergamot Group (synonym Citrus × bergamia Risso & Poit.), resulting in the bursting of the oil cavities embedded in the flavedo and the release of their contents. It is chemically dominated by monoterpene hydrocarbons (i.e., limonene), but with significant percentages of oxygenated monoterpenes (i.e., linalyl acetate) and of non-volatile oxygen heterocyclic compounds (i.e., bergapten). Keywords: bergamot; citrus; essential oil; production; review 1. Introduction The taxonomy, and consequently the nomenclature, of the genus Citrus, is particularly complicated and has been rapidly changing in recent years (see Table1). For over 400 years, the centre of origin and biodiversity, along with the evolution and phylogeny of the Citrus species, have all been puzzling problems for botanists and the confusing and changing Citation: Valussi, M.; Donelli, D.; nomenclature of this taxon over the years can reflect intrinsic reproductive features of Firenzuoli, F.; Antonelli, M. Bergamot Oil: Botany, Production, the species included in this genus, the cultural and geographical issues, and the rapidly Pharmacology. Encyclopedia 2021, 1, evolving techniques used to clarify its phylogeny [1].
    [Show full text]
  • The Fascinating History of Bergamot (Citrus Bergamia Risso & Poiteau
    Journal of Environmental Science and Engineering A 6 (2017) 22-30 doi:10.17265/2162-5298/2017.01.003 D DAVID PUBLISHING The Fascinating History of Bergamot (Citrus Bergamia Risso & Poiteau), the Exclusive Essence of Calabria: A Review Gina Maruca1, Gaetano Laghetti1, Rocco Mafrica2, Domenico Turiano3 and Karl Hammer4 1. Institute of Bioscience and Bioresouces, National Council of Research, Bari 70126, Italy 2. Institute of Agronomy, Department of Agrarian, Mediterranean University of Reggio Calabria, Reggio Calabria 89122, Italy 3. Sperimental Demonstrative Centre of the Straits of Messina, Regional Administration for the Development of the Calabrian Agriculture, Reggio Calabria 89100, Italy 4. Former Agrobiodiversity, University of Kassel, Witzenhausen D-37213, Germany Abstract: The bergamot (Citrus bergamia Risso et Poiteau), a citrus fruit growing almost exclusively in the South Italy, is considered the “prince of citrus” for its storical role in the perfume industry due to its essential oil, a product in great demand of a pleasant and refreshing scent. Recently, analgesic, anxiolytic, neuroprotective consistent effects have been ascribed to bergamot essential oil when it is used in aromatherapy, for the relief of pain and symptoms associated with stress-induced anxiety and depression. Moreover, today, bergamot fruit due to a considerable abundance and variety of nutraceutical compounds which are present in its juice, is becoming increasingly important also in the food, pharmaceutical and confectionery industries. In this review, it is discussed that the literature on C. bergamia, focusing on the several studies performed with the experimental data, and recently accumulated, may form the rational basis for further development. Key words: Bergamot (Citrus bergamia Risso & Poiteau), essential oil.
    [Show full text]
  • Evoil Spa Bergamot
    EVOIL® SPA BERGAMOT PRODUCT DATA SHEET EVOIL® SPA BERGAMOT is a composition of vegetable oils and bergamot essential oil in order to create a multi- functional oil. Plants elaborate essential oils with the purpose of protecting themselves from diseases, drive away predator insects or attract beneficial insects. Essential oils act, among other ways, by stimulating the sense of smell, harmonizing the psychic and emotional states since smell is directly connected to the zone of the brain where the center of emotions is located. Essential oils by themselves are very powerful concentrates, and unless indicated otherwise, should not be directly applied to the skin or irritation can result. EVOIL® SPA BERGAMOT is formulated in natural vegetable oils: Sweet Almond, Jojoba, Grape seed and Sunflower oils, all of them renowned for their excellent emollient properties. DESCRIPTION OF INGREDIENTS BERGAMOT OIL is the essential oil obtained by steam- distillation from Citrus bergamia, a South East Asia native plant, but then introduced to Europe, and particularly Italy. Its aroma is described as citric, fruity and sweet. Historically, BERGAMOT OIL has been an ingredient in Italian folk remedies for fevers and worms for centuries. BERGAMOT OIL contains about 300 active constituents. This may explain its many beneficial uses. The main active components are -pinene, myrcene, limonene and -bergaptene. The high content in -bergaptene may cause increased photosensitivity when the skin is exposed to sunlight. Another property of BERGAMOT ESSENTIAL OIL is that it has superb antiseptic qualities that are useful for skin disorders, such as acne, oily skin conditions and eczema and it can also be used on cold sores and wounds.
    [Show full text]
  • Bergamot Essential Oil Nanoemulsions: Antimicrobial and Cytotoxic Activity
    Z. Naturforsch. 2020; 75(7–8)c: 279–290 Enrico Marchese, Nunzia D’onofrio, Maria Luisa Balestrieri, Domenico Castaldo, Giovanna Ferrari and Francesco Donsì* Bergamot essential oil nanoemulsions: antimicrobial and cytotoxic activity https://doi.org/10.1515/ZNC-2019-0229 nanoemulsions might find use in therapeutic applications Received December 19, 2019; accepted May 17, 2020 as anticarcinogenic agents. Abstract: Bergamot essential oil (BEO) is well-known for Keywords: antimicrobial activity; bergamot essential oil; its food preservation activity, as well as anticancer efficacy. cytotoxicity; Caco2 cells; nanoemulsion; stability. However, the poor BEO water solubility and deriving low bioaccessibility have limited its wider applications. The incorporation in nanoemulsions of BEO and its refined 1 Introduction fractions was investigated to enhance its dispersibility in water to promote its antimicrobial activity, tested against Essential oils (EOs) are naturally-derived ingredients, Escherichia coli, Lactobacillus delbrueckii, and Saccharo- whichcanbefoundinflowers,buds,seeds,leaves, myces cerevisiae, and its cytotoxicity already at low con- herbs, wood, fruits, and roots of different plants [1, 2]. centrations. Different nanoemulsion formulations were They consist of a mixture of volatile compounds, mainly tested based on food-grade ingredients, which were char- synthesized by plants as a defense mechanism, which fi acterized in terms of hydrodynamic diameter and poly- can be classi ed in two main groups, namely (a) terpenes dispersity index, and physical stability. The antimicrobial and terpenoids and (b) aromatic and aliphatic constitu- – activity against all the tested micro-organisms was ents [3], accounting for 20 85% of EO composition, with fi observed to be higher for BEO in its initial composition, the other components being generally present at signi - than the light fraction, richer in D-limonene, ß-pinene, and cantly lower or trace concentrations.
    [Show full text]
  • 7 Giannetti Fogli Rivista.Qxd
    EVALUATION OF FLAVONOIDS AND FUROCOUMARINS IN BERGAMOT DERIVATIVES BY HPLC-DAD VANESSA GIANNETTI (*)1 - MAURIZIO BOCCACCI MARIANI (*) - ELENA TESTANI (*) - VIRGINIA D’AIUTO (*) Abstract The high concentration of bergamot polyphenolic fraction is generating growing interest in all its derivatives due to the potential beneficial effects on human health, suggesting new application in the functional foods field. Once widely used in perfumery for the exclusive fragrance of its essential oil, the bergamot has reported, in the last decades, a drop in demand due to the synthetic essence placing on the market. In order to re-launch this citrus on the international market, the dry juice extract seems to be particularly suitable to be mixed with other foods with minimal impact on their organoleptic properties. The characterization of bergamot derivatives (juice, pastazzo and dry juice extract) was performed with HPLC-DAD method, with the detection and quantification of some flavonoids such as neohesperidin, naringin e neoeriocitrin, which represent an antioxidant pattern almost unique in nature, and of two furo- coumarins, bergapten and bergamottin, potentially toxic if beyond certain limits. The method was validated in terms of detection limits (LODs), linearity, precision and accuracy. Riassunto L’elevata concentrazione della frazione polifenolica del bergamotto sta generando crescente interesse verso tutti i prodotti da esso derivati per i potenziali (*) Department for Technologies, Resources and Development, Sapienza University of Rome, Via del Castro Laurenziano 9, 00161, Rome, Italy. 1 Corresponding author: [email protected] J. COMMODITY SCI. TECHNOL. QUALITY 2010, 49 (I) 63 - 72 64 V. Giannetti, M. Boccacci Mariani, E. Testani, V. D’Aiuto effetti benefici sulla salute umana, suggerendo nuove applicazioni nel campo degli alimenti funzionali.
    [Show full text]
  • Assessment of Dietary Exposure to Flavouring Substances Via Consumption of Flavoured Teas
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Allgemeine Lebensmitteltechnologie Assessment of Dietary Exposure to Flavouring Substances via Consumption of Flavoured Teas Anne-Marie Orth Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Wilfried Schwab Prüfer der Dissertation: 1. Univ.-Prof. Dr. Karl-Heinz Engel 2. Univ.-Prof. Dr. Peter Schieberle Die Dissertation wurde am 04.03.2016 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 05.07.2016 angenommen. ASSESSMENT OF DIETARY EXPOSURE TO FLAVOURING SUBSTANCES VIA CONSUMPTION OF FLAVOURED TEAS Anne-Marie Orth This thesis was embedded in the 7 th framework EU-funded project FACET (Flavourings, Additives and Food Contact Materials Exposure Task ; Theme 2: Food, Agriculture and Fisheries, and Biotechnology, KBBE -211686). DANKSAGUNG Meinem Doktorvater Prof. Dr. Karl-Heinz Engel danke ich herzlich für die Überlassung des Themas im Rahmen des EU-Projektes FACET, das mir die Möglichkeit bot einen Einblick in ein internationales Umfeld zu gewinnen und dort arbeiten zu dürfen. Besonders bedanke ich mich für die zahlreichen anregenden Diskussionen und die fortwährende Hilfe bei fachlichen Fragestellungen. Darüber hinaus gilt mein Dank meinen ehemaligen Kolleginnen und Kollegen des Lehrstuhls für Allgemeine Lebensmitteltechnologie, die mich nicht nur jederzeit in jeglicher Hinsicht unterstützten, sondern mich vor allem als Mitglied eines großartigen Teams in ihre Mitte aufnahmen: Bastian Reichardt, Birgit Scholz, Rebecca Esche, Alexandra Wenzel, Andreas Barnsteiner, Tim Lubinus, Richard Röhlig, Thomas Frank, Walter Weiss, Kriskamol Na Jom, Florian Luber, Anja Demmel, Svenja Nörenberg, Claudia Steinmetz, Gerda Röske und Ludwig Ziegler.
    [Show full text]
  • S41598-021-90307-2.Pdf
    www.nature.com/scientificreports OPEN Type and magnitude of non‑compliance and adulteration in neroli, mandarin and bergamot essential oils purchased on‑line: potential consumer vulnerability Marissa Pierson1,2, Xavier Fernandez2 & Sylvain Antoniotti2,3* Thirty‑one samples of essential oils used both in perfumery and aromatherapy were purchased to business‑to‑consumers suppliers and submitted to standard gas chromatography‑based analysis of their chemical composition. Their compliance with ISO AFNOR standards was checked and revealed, although ISO AFNOR ranges are relatively loose, that more than 45% of the samples analyzed failed to pass the test and more than 19% were diluted with solvents such as propylene and dipropylene glycol, triethyl citrate, or vegetal oil. Cases of non‑compliance could be due to substitution or dilution with a cheaper essential oil, such as sweet orange oil, blending with selected compounds (linalool and linalyl acetate, maybe of synthetic origin), or issues of aging, harvest, or manufacturing that should be either deliberate or accidental. In some cases, natural variability could be invoked. These products are made available to the market without control and liability by resellers and could expose the public to safety issues, in addition to commercial prejudice, in sharp contrast with the ever‑increasing regulations applying to the sector and the high demand of consumers for safe, controlled and traceable products in fragrances and cosmetic products. Essentials oils (EOs) are complex natural substances obtained by physical treatments of selected parts of plants. In most instances, distillation is used, either through hydro-distillation techniques or, for more sensitive mate- rials, by steam distillation.
    [Show full text]
  • Chemistry and Health Effects of Furanocoumarins in Grapefruit
    journal of food and drug analysis xxx (2016) 1e13 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.jfda-online.com Review Article Chemistry and health effects of furanocoumarins in grapefruit * Wei-Lun Hung, Joon Hyuk Suh, Yu Wang Citrus Research and Education Center, Department of Food Science and Human Nutrition, University of Florida, Lake Alfred, FL, USA article info abstract Article history: Furanocoumarins are a specific group of secondary metabolites that commonly present in Received 1 September 2016 higher plants, such as citrus plants. The major furanocoumarins found in grapefruits 0 0 Received in revised form (Citrus paradisi) include bergamottin, epoxybergamottin, and 6 ,7 -dihydroxybergamottin. 2 November 2016 During biosynthesis of these furanocoumarins, coumarins undergo biochemical modifi- Accepted 3 November 2016 cations corresponding to a prenylation reaction catalyzed by the cytochrome P450 enzymes Available online xxx with the subsequent formation of furan rings. Because of undesirable interactions with several medications, many studies have developed methods for grapefruit furanocoumarin Keywords: quantification that include high-performance liquid chromatography coupled with UV anticancer activity detector or mass spectrometry. The distribution of furanocoumarins in grapefruits is bergamottin affected by several environmental conditions, such as processing techniques, storage bone health temperature, and packing materials. In the past few years, grapefruit furanocoumarins furanocoumarins have been demonstrated to exhibit several biological activities including antioxidative, grapefruit -inflammatory, and -cancer activities as well as bone health promotion both in vitro and in vivo. Notably, furanocoumarins potently exerted antiproliferative activities against cancer cell growth through modulation of several molecular pathways, such as regulation of the signal transducer and activator of transcription 3, nuclear factor-kB, phosphatidy- linositol-3-kinase/AKT, and mitogen-activated protein kinase expression.
    [Show full text]
  • SALVATORE RAGUSA (Professore
    SALVATORE RAGUSA (professore ordinario di Botanica farmaceutica presso l’Università degli Studi Magna Graecia di Catanzaro) CURRICULUM VITAE Salvatore Ragusa, nato a Messina l'8/7/1951, si è laureato in Farmacia il 25/7/1974 presso l'Università degli Studi di Messina con la votazione di 110/110 e lode ed ha conseguito, il 17/12/1976, il Diploma di Specializzazione in Farmacognosia presso la stessa Università con il massimo dei voti e la lode. Durante gli anni accademici 1972/73 e 1973/74 ha frequentato come allievo interno l'Istituto di Farmacologia e Farmacognosia della Facoltà di Farmacia dell’Università degli Studi di Messina, presso il quale, a decorrere dal 1°/12/1974, ha usufruito di un Assegno di Studio biennale di Formazione didattica e scientifica che gli è stato prorogato fino al 31/10/1981. Ricercatore confermato dal 1°/11/1981 all'11/9/1987 presso la Facoltà di Farmacia dell'Università degli Studi di Messina; in seguito all’afferenza dell’Istituto di Farmacologia e Farmacognosia al Dipartimento Farmaco-biologico, ha svolto la sua attività presso tale Dipartimento. Durante lo stesso periodo è stato componente della Commissione di Ateneo dell’Università degli Studi di Messina. Essendo risultato vincitore del concorso per titoli ed esami a professore di ruolo di seconda fascia, è stato chiamato, in data 12/9/1987, dalla Facoltà di Farmacia dell'Università degli Studi di Cagliari a ricoprire, in qualità di Professore associato, la cattedra di Farmacognosia. Dal 1°/11/1990 ha ottenuto il trasferimento presso la Facoltà di Farmacia dell'Università degli Studi di Messina, nella quale è stato Professore associato di Biologia vegetale fino al 31/10/2002.
    [Show full text]
  • Uses of Bergamot Essential Oil in Aromatherapy
    Home Cristina Proano-Carrion Aromandina Contact Cristina We send FREE weekly aromatherapy tips Your Name SignSign Up!Up! and people say it's very useful stuff! [email protected] Apr 06 2012 Uplift and Refresh Your Senses with Bergamot What is Bergamot? Bergamot (Citrus Bergamia) is a citrus fruit that is native to southern Italy, tropical parts of Asia and the Ivory Coast. This citrus fruit probably gets its name from the town of Bergamo in Lombardy, Italy, where it was commercially grown for the first time. Bergamot is rarely consumed as a fruit or fruit juice. It is primarily cultivated for its essential oil, which is obtained through cold compression of the fruit’s rind. Apart from its medicinal and therapeutic applications, the oil is widely used in perfumes, cosmetics as a flavoring agent for Earl Grey Tea. Bergamot Essential Oil – Uses in Aromatherapy Bergamot essential oil, with its clean and refreshing citrus fragrance, is an effective antidote against depression, anxiety, urinary tract infections and nervous indigestion. The oil has a balancing and toning effect on the nervous system which makes it effective against psychological disturbances as well as painful spasms. Bergamot is also used in the treatment of all kinds of infections owing to its strong antiseptic properties. Bergamot Essential Oil for Nervous Indigestion: Some people respond to emotional turmoil with overeating while others tend to starve themselves sick. The former results in flatulence, indigestion and colic, while the latter results in weakness and loss of immunity. Dr. Jean Valnet mentions the use of Bergamot for loss of appetite, but Patricia Davis cites that “its effect on the appetite is more regulating rather than stimulating”.
    [Show full text]